Abstract

We report a small-core UV-grade silica multimode photonic crystal fiber for nonlinear frequency conversion in the ultraviolet spectral region. The fiber has been fabricated using F110 UV-Grade glass from Heraeus, which features excellent transmission and low solarization in the UV window. Pumping the fiber core at 355 nm with picosecond laser pulses, we observe the appearance of parametric sidebands in several spatial modes up to 380 nm. We modelled this process using intermodal phase-matching conditions and obtained excellent agreement between calculations and the measured data. We further report frequency conversion pumping into the fiber microstructured cladding where broadband cascaded Raman scattering spanning up to 391 nm is observed. These results represent a significant step towards the efficient and stable generation of UV supercontinuum spectra in an all-silica fiber platform.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Black-light continuum generation in a silica-core photonic crystal fiber

T. Sylvestre, A. R. Ragueh, M. W. Lee, B. Stiller, G. Fanjoux, B. Barviau, A. Mussot, and A. Kudlinski
Opt. Lett. 37(2) 130-132 (2012)

Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation

Vincent Tombelaine, Alexis Labruyère, Jens Kobelke, Kay Schuster, Volker Reichel, Philippe Leproux, Vincent Couderc, Raphaël Jamier, and Hartmut Bartelt
Opt. Express 17(18) 15392-15401 (2009)

Coherent supercontinuum generation in soft glass photonic crystal fibers

Mariusz Klimczak, Bartłomiej Siwicki, Alexander Heidt, and Ryszard Buczyński
Photon. Res. 5(6) 710-727 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Travers, “Blue extension of optical fiber supercontinuum generation,” J. Opt. 12(11), 113001 (2010).
    [Crossref]
  2. C. Poudel and C. F. Kaminski, “Supercontinuum radiation in fluorescence microscopy and biomedical imaging applications,” J. Opt. Soc. Am. B 36(2), A139–A153 (2019).
    [Crossref]
  3. T. Sylvestre, A. R. Ragueh, M. W. Lee, B. Stiller, G. Fanjoux, B. Barviau, A. Mussot, and A. Kudlinski, “Black-light continuum generation in a silica-core photonic crystal fiber,” Opt. Lett. 37(2), 130–132 (2012).
    [Crossref]
  4. F. Yu, M. Cann, A. Brunton, W. Wadsworth, and J. Knight, “Single-mode solarization-free hollow-core fiber for ultraviolet pulse delivery,” Opt. Express 26(8), 10879–10887 (2018).
    [Crossref]
  5. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fiber,” Nat. Photonics 9(2), 133–139 (2015).
    [Crossref]
  6. F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
    [Crossref]
  7. S. P. Stark, J. C. Travers, and P. S. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37(5), 770–772 (2012).
    [Crossref]
  8. J. C. Travers, F. T. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibers,” Nat. Photonics 13(8), 547–554 (2019).
    [Crossref]
  9. Y. Y. Wang, F. Couny, P. S. Light, B. J. Mangan, and F. Benabid, “Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF,” Opt. Lett. 35(8), 1127–1129 (2010).
    [Crossref]
  10. P. Hosseini, A. Ermolov, F. Tani, D. Novoa, and P. S. J. Russell, “UV soliton dynamics and Raman-enhanced supercontinuum generation in photonic crystal fiber,” ACS Photonics 5(6), 2426–2430 (2018).
    [Crossref]
  11. Z. Zhu, L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Observation of multimode solitons in few-mode fiber,” Opt. Lett. 41(20), 4819–4822 (2016).
    [Crossref]
  12. W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4(1), 1719 (2013).
    [Crossref]
  13. L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
    [Crossref]
  14. H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
    [Crossref]
  15. M. A. Eftekhar, Z. S. Eznaveh, J. E. Antonio-Lopez, J. C. A. Zacarias, A. Schulzgen, M. kolesik, F. W. Wise, R. A. Correa, and D. Christodoulides, “Broadband supercontinuum generation in tapered multimode graded-index optical fibers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. STh1K.7.
  16. G. Lopez-Galmiche, Z. Sanjabi Eznaveh, M. A. Eftekhar, J. Antonio Lopez, L. G. Wright, F. Wise, D. Christodoulides, and R. Amezcua Correa, “Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm,” Opt. Lett. 41(11), 2553–2556 (2016).
    [Crossref]
  17. K. Krupa, C. Louot, V. Couderc, M. Fabert, R. Guenard, B. M. Shalaby, A. Tonello, D. Pagnoux, P. Leproux, A. Bendahmane, R. Dupiol, G. Millot, and S. Wabnitz, “Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber,” Opt. Lett. 41(24), 5785–5788 (2016).
    [Crossref]
  18. J. M. Stone and J. C. Knight, “Visibly white light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008).
    [Crossref]
  19. G. Prabhakar, P. Gregg, L. Rishoj, P. Kristensen, and S. Ramachandran, “Octave-wide supercontinuum generation of light-carrying orbital angular momentum,” Opt. Express 27(8), 11547–11556 (2019).
    [Crossref]
  20. R. Dupiol, K. Krupa, A. Tonello, M. Fabert, D. Modotto, S. Wabnitz, G. Millot, and V. Couderc, “Kerr and Raman beam cleanup with supercontinuum generation in multimode fiber,” in Conference on Lasers and Electro-Optics, (2018), paper SM3D.6
  21. R. H. Stolen, “Modes in fiber optical waveguides with ring index profiles,” Appl. Opt. 14(7), 1533–1537 (1975).
    [Crossref]
  22. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed (Academic Press, 2013).
  23. S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
    [Crossref]
  24. A. Mafi, “Pulse propagation in a short nonlinear graded-index multimode optical fiber,” J. Lightwave Technol. 30(17), 2803–2811 (2012).
    [Crossref]
  25. R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthelemy, V. Couderc, S. Wabnitz, and G. Millot, “Far-detuned cascaded intermodal four-wave mixing in a multimode fiber,” Opt. Lett. 42(7), 1293–1296 (2017).
    [Crossref]
  26. E. Nazemosadat, H. Pourbeyram, and A. Mafi, “Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers,” J. Opt. Soc. Am. B 33(2), 144–150 (2016).
    [Crossref]
  27. M. A. Eftekhar, “Accelerated nonlinear interactions in graded-index multimode fibers,” Nat. Commun. 10(1), 1638 (2019).
    [Crossref]
  28. L. G. Wright, D. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
    [Crossref]
  29. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001).
    [Crossref]
  30. T. Baselt, B. Nelsen, A. F. Lasagni, and P. Hartmann, “Supercontinuum generation in the cladding modes of an endlessly single-mode fiber,” Appl. Sci. 9(20), 4428 (2019).
    [Crossref]
  31. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  32. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  33. G. P. Agrawal, Nonlinear Fibers Optics (Academic Press Elsevier, 2007).
  34. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
    [Crossref]

2019 (6)

C. Poudel and C. F. Kaminski, “Supercontinuum radiation in fluorescence microscopy and biomedical imaging applications,” J. Opt. Soc. Am. B 36(2), A139–A153 (2019).
[Crossref]

J. C. Travers, F. T. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibers,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

G. Prabhakar, P. Gregg, L. Rishoj, P. Kristensen, and S. Ramachandran, “Octave-wide supercontinuum generation of light-carrying orbital angular momentum,” Opt. Express 27(8), 11547–11556 (2019).
[Crossref]

S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
[Crossref]

M. A. Eftekhar, “Accelerated nonlinear interactions in graded-index multimode fibers,” Nat. Commun. 10(1), 1638 (2019).
[Crossref]

T. Baselt, B. Nelsen, A. F. Lasagni, and P. Hartmann, “Supercontinuum generation in the cladding modes of an endlessly single-mode fiber,” Appl. Sci. 9(20), 4428 (2019).
[Crossref]

2018 (2)

P. Hosseini, A. Ermolov, F. Tani, D. Novoa, and P. S. J. Russell, “UV soliton dynamics and Raman-enhanced supercontinuum generation in photonic crystal fiber,” ACS Photonics 5(6), 2426–2430 (2018).
[Crossref]

F. Yu, M. Cann, A. Brunton, W. Wadsworth, and J. Knight, “Single-mode solarization-free hollow-core fiber for ultraviolet pulse delivery,” Opt. Express 26(8), 10879–10887 (2018).
[Crossref]

2017 (1)

2016 (4)

2015 (4)

L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fiber,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

L. G. Wright, D. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

2013 (2)

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
[Crossref]

W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4(1), 1719 (2013).
[Crossref]

2012 (3)

2010 (2)

2008 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2001 (1)

1989 (1)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[Crossref]

1975 (1)

Abdolvand, A.

Agrawal, G. P.

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed (Academic Press, 2013).

G. P. Agrawal, Nonlinear Fibers Optics (Academic Press Elsevier, 2007).

Amezcua Correa, R.

Antonio Lopez, J.

Antonio-Lopez, J. E.

M. A. Eftekhar, Z. S. Eznaveh, J. E. Antonio-Lopez, J. C. A. Zacarias, A. Schulzgen, M. kolesik, F. W. Wise, R. A. Correa, and D. Christodoulides, “Broadband supercontinuum generation in tapered multimode graded-index optical fibers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. STh1K.7.

Babic, F.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fiber,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Barthelemy, A.

Barviau, B.

Baselt, T.

T. Baselt, B. Nelsen, A. F. Lasagni, and P. Hartmann, “Supercontinuum generation in the cladding modes of an endlessly single-mode fiber,” Appl. Sci. 9(20), 4428 (2019).
[Crossref]

Belli, F.

J. C. Travers, F. T. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibers,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

Benabid, F.

Bendahmane, A.

Bigot, L.

S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
[Crossref]

Blow, K. J.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[Crossref]

Brahms, C.

J. C. Travers, F. T. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibers,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

Brunton, A.

Cann, M.

Chang, W.

Christodoulides, D.

G. Lopez-Galmiche, Z. Sanjabi Eznaveh, M. A. Eftekhar, J. Antonio Lopez, L. G. Wright, F. Wise, D. Christodoulides, and R. Amezcua Correa, “Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm,” Opt. Lett. 41(11), 2553–2556 (2016).
[Crossref]

L. G. Wright, D. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

M. A. Eftekhar, Z. S. Eznaveh, J. E. Antonio-Lopez, J. C. A. Zacarias, A. Schulzgen, M. kolesik, F. W. Wise, R. A. Correa, and D. Christodoulides, “Broadband supercontinuum generation in tapered multimode graded-index optical fibers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. STh1K.7.

Christodoulides, D. N.

Z. Zhu, L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Observation of multimode solitons in few-mode fiber,” Opt. Lett. 41(20), 4819–4822 (2016).
[Crossref]

L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Correa, R. A.

M. A. Eftekhar, Z. S. Eznaveh, J. E. Antonio-Lopez, J. C. A. Zacarias, A. Schulzgen, M. kolesik, F. W. Wise, R. A. Correa, and D. Christodoulides, “Broadband supercontinuum generation in tapered multimode graded-index optical fibers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. STh1K.7.

Couderc, V.

Couny, F.

Dudley, J. M.

S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Dupiol, R.

Eftekhar, M. A.

M. A. Eftekhar, “Accelerated nonlinear interactions in graded-index multimode fibers,” Nat. Commun. 10(1), 1638 (2019).
[Crossref]

G. Lopez-Galmiche, Z. Sanjabi Eznaveh, M. A. Eftekhar, J. Antonio Lopez, L. G. Wright, F. Wise, D. Christodoulides, and R. Amezcua Correa, “Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm,” Opt. Lett. 41(11), 2553–2556 (2016).
[Crossref]

M. A. Eftekhar, Z. S. Eznaveh, J. E. Antonio-Lopez, J. C. A. Zacarias, A. Schulzgen, M. kolesik, F. W. Wise, R. A. Correa, and D. Christodoulides, “Broadband supercontinuum generation in tapered multimode graded-index optical fibers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. STh1K.7.

Eggleton, B. J.

Ermolov, A.

P. Hosseini, A. Ermolov, F. Tani, D. Novoa, and P. S. J. Russell, “UV soliton dynamics and Raman-enhanced supercontinuum generation in photonic crystal fiber,” ACS Photonics 5(6), 2426–2430 (2018).
[Crossref]

Eznaveh, Z. S.

M. A. Eftekhar, Z. S. Eznaveh, J. E. Antonio-Lopez, J. C. A. Zacarias, A. Schulzgen, M. kolesik, F. W. Wise, R. A. Correa, and D. Christodoulides, “Broadband supercontinuum generation in tapered multimode graded-index optical fibers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. STh1K.7.

Fabert, M.

Fanjoux, G.

S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
[Crossref]

T. Sylvestre, A. R. Ragueh, M. W. Lee, B. Stiller, G. Fanjoux, B. Barviau, A. Mussot, and A. Kudlinski, “Black-light continuum generation in a silica-core photonic crystal fiber,” Opt. Lett. 37(2), 130–132 (2012).
[Crossref]

Fatome, J.

S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
[Crossref]

Finger, M. A.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fiber,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gregg, P.

Grigorova, F. T.

J. C. Travers, F. T. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibers,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

Guenard, R.

Hale, A.

Hartmann, P.

T. Baselt, B. Nelsen, A. F. Lasagni, and P. Hartmann, “Supercontinuum generation in the cladding modes of an endlessly single-mode fiber,” Appl. Sci. 9(20), 4428 (2019).
[Crossref]

Hosseini, P.

P. Hosseini, A. Ermolov, F. Tani, D. Novoa, and P. S. J. Russell, “UV soliton dynamics and Raman-enhanced supercontinuum generation in photonic crystal fiber,” ACS Photonics 5(6), 2426–2430 (2018).
[Crossref]

Jiang, X.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fiber,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Joly, N. Y.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fiber,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Kaminski, C. F.

Kerbage, C.

Kibler, B.

Knight, J.

Knight, J. C.

kolesik, M.

M. A. Eftekhar, Z. S. Eznaveh, J. E. Antonio-Lopez, J. C. A. Zacarias, A. Schulzgen, M. kolesik, F. W. Wise, R. A. Correa, and D. Christodoulides, “Broadband supercontinuum generation in tapered multimode graded-index optical fibers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. STh1K.7.

Kristensen, P.

Krupa, K.

Kudlinski, A.

Lasagni, A. F.

T. Baselt, B. Nelsen, A. F. Lasagni, and P. Hartmann, “Supercontinuum generation in the cladding modes of an endlessly single-mode fiber,” Appl. Sci. 9(20), 4428 (2019).
[Crossref]

Lee, M. W.

Leproux, P.

Light, P. S.

Lopez-Galmiche, G.

Louot, C.

Mafi, A.

Mangan, B. J.

Millot, G.

S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
[Crossref]

R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthelemy, V. Couderc, S. Wabnitz, and G. Millot, “Far-detuned cascaded intermodal four-wave mixing in a multimode fiber,” Opt. Lett. 42(7), 1293–1296 (2017).
[Crossref]

K. Krupa, C. Louot, V. Couderc, M. Fabert, R. Guenard, B. M. Shalaby, A. Tonello, D. Pagnoux, P. Leproux, A. Bendahmane, R. Dupiol, G. Millot, and S. Wabnitz, “Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber,” Opt. Lett. 41(24), 5785–5788 (2016).
[Crossref]

R. Dupiol, K. Krupa, A. Tonello, M. Fabert, D. Modotto, S. Wabnitz, G. Millot, and V. Couderc, “Kerr and Raman beam cleanup with supercontinuum generation in multimode fiber,” in Conference on Lasers and Electro-Optics, (2018), paper SM3D.6

Modotto, D.

R. Dupiol, K. Krupa, A. Tonello, M. Fabert, D. Modotto, S. Wabnitz, G. Millot, and V. Couderc, “Kerr and Raman beam cleanup with supercontinuum generation in multimode fiber,” in Conference on Lasers and Electro-Optics, (2018), paper SM3D.6

Mussot, A.

Nazemosadat, E.

Nelsen, B.

T. Baselt, B. Nelsen, A. F. Lasagni, and P. Hartmann, “Supercontinuum generation in the cladding modes of an endlessly single-mode fiber,” Appl. Sci. 9(20), 4428 (2019).
[Crossref]

Novoa, D.

P. Hosseini, A. Ermolov, F. Tani, D. Novoa, and P. S. J. Russell, “UV soliton dynamics and Raman-enhanced supercontinuum generation in photonic crystal fiber,” ACS Photonics 5(6), 2426–2430 (2018).
[Crossref]

Pagnoux, D.

Perret, S.

S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
[Crossref]

Poudel, C.

Pourbeyram, H.

E. Nazemosadat, H. Pourbeyram, and A. Mafi, “Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers,” J. Opt. Soc. Am. B 33(2), 144–150 (2016).
[Crossref]

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
[Crossref]

Prabhakar, G.

Ragueh, A. R.

Ramachandran, S.

Renninger, W. H.

W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4(1), 1719 (2013).
[Crossref]

Rishoj, L.

Russell, P. S. J.

P. Hosseini, A. Ermolov, F. Tani, D. Novoa, and P. S. J. Russell, “UV soliton dynamics and Raman-enhanced supercontinuum generation in photonic crystal fiber,” ACS Photonics 5(6), 2426–2430 (2018).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fiber,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

S. P. Stark, J. C. Travers, and P. S. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37(5), 770–772 (2012).
[Crossref]

Sanjabi Eznaveh, Z.

Schulzgen, A.

M. A. Eftekhar, Z. S. Eznaveh, J. E. Antonio-Lopez, J. C. A. Zacarias, A. Schulzgen, M. kolesik, F. W. Wise, R. A. Correa, and D. Christodoulides, “Broadband supercontinuum generation in tapered multimode graded-index optical fibers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. STh1K.7.

Shalaby, B. M.

Stark, S. P.

Stiller, B.

Stolen, R. H.

Stone, J. M.

Sylvestre, T.

Tani, F.

P. Hosseini, A. Ermolov, F. Tani, D. Novoa, and P. S. J. Russell, “UV soliton dynamics and Raman-enhanced supercontinuum generation in photonic crystal fiber,” ACS Photonics 5(6), 2426–2430 (2018).
[Crossref]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Tonello, A.

Travers, J. C.

J. C. Travers, F. T. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibers,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fiber,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

S. P. Stark, J. C. Travers, and P. S. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37(5), 770–772 (2012).
[Crossref]

J. C. Travers, “Blue extension of optical fiber supercontinuum generation,” J. Opt. 12(11), 113001 (2010).
[Crossref]

Wabnitz, S.

R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthelemy, V. Couderc, S. Wabnitz, and G. Millot, “Far-detuned cascaded intermodal four-wave mixing in a multimode fiber,” Opt. Lett. 42(7), 1293–1296 (2017).
[Crossref]

K. Krupa, C. Louot, V. Couderc, M. Fabert, R. Guenard, B. M. Shalaby, A. Tonello, D. Pagnoux, P. Leproux, A. Bendahmane, R. Dupiol, G. Millot, and S. Wabnitz, “Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber,” Opt. Lett. 41(24), 5785–5788 (2016).
[Crossref]

L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
[Crossref]

R. Dupiol, K. Krupa, A. Tonello, M. Fabert, D. Modotto, S. Wabnitz, G. Millot, and V. Couderc, “Kerr and Raman beam cleanup with supercontinuum generation in multimode fiber,” in Conference on Lasers and Electro-Optics, (2018), paper SM3D.6

Wadsworth, W.

Wang, Y. Y.

Westbrook, P. S.

Windeler, R. S.

Wise, F.

Wise, F. W.

Z. Zhu, L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Observation of multimode solitons in few-mode fiber,” Opt. Lett. 41(20), 4819–4822 (2016).
[Crossref]

L. G. Wright, D. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
[Crossref]

W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4(1), 1719 (2013).
[Crossref]

M. A. Eftekhar, Z. S. Eznaveh, J. E. Antonio-Lopez, J. C. A. Zacarias, A. Schulzgen, M. kolesik, F. W. Wise, R. A. Correa, and D. Christodoulides, “Broadband supercontinuum generation in tapered multimode graded-index optical fibers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. STh1K.7.

Wong, G. K.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fiber,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Wood, D.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[Crossref]

Wright, L. G.

Z. Zhu, L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Observation of multimode solitons in few-mode fiber,” Opt. Lett. 41(20), 4819–4822 (2016).
[Crossref]

G. Lopez-Galmiche, Z. Sanjabi Eznaveh, M. A. Eftekhar, J. Antonio Lopez, L. G. Wright, F. Wise, D. Christodoulides, and R. Amezcua Correa, “Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm,” Opt. Lett. 41(11), 2553–2556 (2016).
[Crossref]

L. G. Wright, D. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
[Crossref]

Yu, F.

Zacarias, J. C. A.

M. A. Eftekhar, Z. S. Eznaveh, J. E. Antonio-Lopez, J. C. A. Zacarias, A. Schulzgen, M. kolesik, F. W. Wise, R. A. Correa, and D. Christodoulides, “Broadband supercontinuum generation in tapered multimode graded-index optical fibers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. STh1K.7.

Zhu, Z.

ACS Photonics (1)

P. Hosseini, A. Ermolov, F. Tani, D. Novoa, and P. S. J. Russell, “UV soliton dynamics and Raman-enhanced supercontinuum generation in photonic crystal fiber,” ACS Photonics 5(6), 2426–2430 (2018).
[Crossref]

APL Photonics (1)

S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
[Crossref]

Appl. Sci. (1)

T. Baselt, B. Nelsen, A. F. Lasagni, and P. Hartmann, “Supercontinuum generation in the cladding modes of an endlessly single-mode fiber,” Appl. Sci. 9(20), 4428 (2019).
[Crossref]

IEEE J. Quantum Electron. (1)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

J. C. Travers, “Blue extension of optical fiber supercontinuum generation,” J. Opt. 12(11), 113001 (2010).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Commun. (2)

M. A. Eftekhar, “Accelerated nonlinear interactions in graded-index multimode fibers,” Nat. Commun. 10(1), 1638 (2019).
[Crossref]

W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4(1), 1719 (2013).
[Crossref]

Nat. Photonics (3)

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fiber,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

J. C. Travers, F. T. Grigorova, C. Brahms, and F. Belli, “High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibers,” Nat. Photonics 13(8), 547–554 (2019).
[Crossref]

L. G. Wright, D. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (7)

S. P. Stark, J. C. Travers, and P. S. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37(5), 770–772 (2012).
[Crossref]

Y. Y. Wang, F. Couny, P. S. Light, B. J. Mangan, and F. Benabid, “Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF,” Opt. Lett. 35(8), 1127–1129 (2010).
[Crossref]

T. Sylvestre, A. R. Ragueh, M. W. Lee, B. Stiller, G. Fanjoux, B. Barviau, A. Mussot, and A. Kudlinski, “Black-light continuum generation in a silica-core photonic crystal fiber,” Opt. Lett. 37(2), 130–132 (2012).
[Crossref]

Z. Zhu, L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Observation of multimode solitons in few-mode fiber,” Opt. Lett. 41(20), 4819–4822 (2016).
[Crossref]

G. Lopez-Galmiche, Z. Sanjabi Eznaveh, M. A. Eftekhar, J. Antonio Lopez, L. G. Wright, F. Wise, D. Christodoulides, and R. Amezcua Correa, “Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm,” Opt. Lett. 41(11), 2553–2556 (2016).
[Crossref]

K. Krupa, C. Louot, V. Couderc, M. Fabert, R. Guenard, B. M. Shalaby, A. Tonello, D. Pagnoux, P. Leproux, A. Bendahmane, R. Dupiol, G. Millot, and S. Wabnitz, “Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber,” Opt. Lett. 41(24), 5785–5788 (2016).
[Crossref]

R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthelemy, V. Couderc, S. Wabnitz, and G. Millot, “Far-detuned cascaded intermodal four-wave mixing in a multimode fiber,” Opt. Lett. 42(7), 1293–1296 (2017).
[Crossref]

Optica (1)

Phys. Rev. Lett. (1)

L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (5)

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

G. P. Agrawal, Nonlinear Fibers Optics (Academic Press Elsevier, 2007).

R. Dupiol, K. Krupa, A. Tonello, M. Fabert, D. Modotto, S. Wabnitz, G. Millot, and V. Couderc, “Kerr and Raman beam cleanup with supercontinuum generation in multimode fiber,” in Conference on Lasers and Electro-Optics, (2018), paper SM3D.6

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed (Academic Press, 2013).

M. A. Eftekhar, Z. S. Eznaveh, J. E. Antonio-Lopez, J. C. A. Zacarias, A. Schulzgen, M. kolesik, F. W. Wise, R. A. Correa, and D. Christodoulides, “Broadband supercontinuum generation in tapered multimode graded-index optical fibers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. STh1K.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. (a) Design of the UV-grade solid-core microstructured fiber for nonlinear UV generation. (b) SEM image of the PCF manufactured by Photonics Bretagne using F110 UV-grade silica glass. (c) Contrast-enhanced black and white image from the SEM image (b).
Fig. 2.
Fig. 2. (a) Computed mode profiles of the 8 main guided modes from LP01 to LP22. (b) Computed inverse group velocity $\beta _{1}$ for 8 spatial modes versus wavelength. (c) Computed group velocity dispersion parameter $\beta _{2}$ for 8 spatial modes versus wavelength.
Fig. 3.
Fig. 3. Experimental setup for intermodal FWM and Raman generation in the UV-Grade fiber (UV-PCF).
Fig. 4.
Fig. 4. Experimental output spectrum showing intermodal FWM sidebands for (a) an output power of 23 µW and (b) a fiber output power of 31 µW. The spectral resolution is 0.5 nm and the images in the inset show the modal content of each component of interest (f = 7.5 mm for both).
Fig. 5.
Fig. 5. Intermodal FWM spectrum for a fiber output power of 14 µW with the modal images of each FWM component of interest. The spectral resolution is 0.1 nm (f = 8 mm).
Fig. 6.
Fig. 6. Experimental results of intermodal FWM spectra in the UV-grade photonic crystal fiber pumped at 355 nm with the aspherical lens of f = 15.3 mm and for different fiber output power and fiber length (a) L = 1 m, P$_{out}$ = 187 µW, (b) L = 4 m, P$_{out}$ = 21 µW, (c) L = 1 m, P$_{out}$ = 145 µW, (d) L = 4 m, P$_{out}$ = 23.5 µW.
Fig. 7.
Fig. 7. Intermodal FWM spectrum for a fiber output power of 34 µW, with a resolution of 0.5 nm and with the modal images of each component of interest (f = 11 mm).
Fig. 8.
Fig. 8. (a) Experimental output spectrum for a fiber length of 4 m showing wideband cascaded Raman scattering from 355 nm to 391 nm. The fiber output image shows pump coupling in almost all the bridges. (b) Experimental output spectrum for a fiber length 4 m showing similar results but with pump coupling in only a few bridges (f = 8 mm for both).
Fig. 9.
Fig. 9. (a) Experimental output spectrum for a 4 m long fiber showing wideband cascaded Raman scattering from 355 nm to 385 nm. The fiber output image shows where the pump is coupled in the fiber, here in all bridges and the core. (b) Experimental output spectra for a fiber length 4 m showing wideband cascaded Raman scattering from 355 nm to 377.7 nm and intermodal FWM effects at 358.1 nm and 370.5 nm. Output power level varies from 0.1 to 0.2 mW from bottom to top (f = 15.3 mm for both).
Fig. 10.
Fig. 10. Typical computed cladding mode profiles with (a) an effective index ($n_{eff}$) of 1.460546 with 0.1897 dB/m losses, (b) $n_{eff}$ = 1.460524 and 1.3501 dB/m losses. (c) $n_{eff}$ = 1.460539 with 0.2276 dB/m losses.
Fig. 11.
Fig. 11. (a) To calculate the dispersion properties of the PCF bridges, we performed FEM modelling of the structure as shown with each large air hole having diameter of 3.5 µm. The figure shows the computed fundamental mode in the bridge region between the air holes. (b) Computed group velocity dispersion parameter $\beta _{2}$ for the fundamental mode versus wavelength.
Fig. 12.
Fig. 12. Simulation with a peak power of 100 W and a loss of 1 dB/m with under a colormap of the simulation of the continuum generation over 4 m of the fiber length.

Tables (1)

Tables Icon

Table 1. Comparison between theory and experiment for a number of intermodal FWM processes. The experimental values listed correspond to results shown in different figures as follows: Wavelengths shown in black correspond to the results in Fig. 6(a) or (b) or (c) or $\underline{\underline{(\textrm{d})}}$. Wavelengths shown in $\color{blue}{\textrm{Blue}}$ correspond to the results in Fig. 5; Wavelengths in $\color{green}{\textrm{Green}}$ correspond to the results in Fig. 9(b); Wavelengths in $\color{red}{\textrm{Red}}$ correspond to the results in Fig. 7; Wavelengths in $\color{purple}{\textrm{Purple}}$ correspond to the results in Fig. 4(a) or (b). Those idler wavelengths marked (*) have been calculated from the experimental signal wavelengths.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2 λ p = 1 λ i + 1 λ s ,
Δ β = ( β 1 k ( p ) β 1 j ( p ) ) Ω + ( β 2 k ( p ) + β 2 j ( p ) ) Ω 2 2 = 0 ,
ω i k = 2 ( β 1 j ( p ) β 1 k ( p ) ) ( β 2 k ( p ) + β 2 j ( p ) ) + ω p , ω s j = ω p 2 ( β 1 j ( p ) β 1 k ( p ) ) ( β 2 k ( p ) + β 2 j ( p ) ) ,
A z + α 2 A k 2 i k + 1 k ! β k k A T k = i γ ( 1 + i τ s h o c k T ) × ( A ( z , T ) + R ( T ) | A ( z , T T ) | 2 d T ) ,