Abstract

We looked at the typical resolution provided by microspheres in nanoobject imaging. The resolution was studied with two kinds of materials: high-index barium titanate glass and low-index polystyrene. Spheres of different sizes were taken, and thus we also checked if there is any dependence of the resolution capabilities on their dimensions. We concluded that, although we observed an increase in resolution for some of the spheres, practical considerations and lack of consistency in imaging makes this technique too cumbersome for practical applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Unusual imaging properties of superresolution microspheres

Pin-Yi Li, Yang Tsao, Yun-Ju Liu, Zong-Xing Lou, Wei-Li Lee, Shi-Wei Chu, and Chih-Wei Chang
Opt. Express 24(15) 16479-16486 (2016)

Immersed transparent microsphere magnifying sub-diffraction-limited objects

Seoungjun Lee, Lin Li, Zengbo Wang, Wei Guo, Yinzhou Yan, and Tao Wang
Appl. Opt. 52(30) 7265-7270 (2013)

Influence of the photonic nanojet of microspheres on microsphere imaging

Songlin Yang, Fengge Wang, Yong-hong Ye, Yang Xia, Yun Deng, Jianguo Wang, and Yurong Cao
Opt. Express 25(22) 27551-27558 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
  2. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780 (1994).
    [Crossref]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref]
  4. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
    [Crossref]
  5. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016 (2011).
    [Crossref]
  6. S. So, M. Kim, D. Lee, D. M. Nguyen, and J. Rho, “Overcoming diffraction limit: From microscopy to nanoscopy,” Appl. Spectrosc. Rev. 53(2-4), 290–312 (2018).
    [Crossref]
  7. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
    [Crossref]
  8. G. Huszka and M. A. M. Gijs, “Turning a normal microscope into a super-resolution instrument using a scanning microlens array,” Sci. Rep. 8(1), 601 (2018).
    [Crossref]
  9. A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
    [Crossref]
  10. L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3(1), 3501 (2013).
    [Crossref]
  11. Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
    [Crossref]
  12. A. Bezryadina, J. Li, J. Zhao, A. Kothambawala, J. Ponsetto, E. Huang, J. Wang, and Z. Liu, “Localized plasmonic structured illumination microscopy with an optically trapped microlens,” Nanoscale 9(39), 14907–14912 (2017).
    [Crossref]
  13. A. Brettin, F. Abolmaali, K. F. Blanchette, C. L. McGinnis, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, I. Anisimov, A. M. Urbas, L. Poffo, A. V. Maslov, and V. N. Astratov, “Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces,” Appl. Phys. Lett. 114(13), 131101 (2019).
    [Crossref]
  14. A. V. Maslov and V. N. Astratov, “Resolution and Reciprocity in Microspherical Nanoscopy: Point-Spread Function Versus Photonic Nanojets,” Phys. Rev. Appl. 11(6), 064004 (2019).
    [Crossref]
  15. L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light: Sci. Appl. 2(9), e104 (2013).
    [Crossref]
  16. H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
    [Crossref]
  17. A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
    [Crossref]
  18. A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40(1), 5 (2015).
    [Crossref]
  19. A. Darafsheh, “Influence of the background medium on imaging performance of microsphere-assisted super-resolution microscopy,” Opt. Lett. 42(4), 735 (2017).
    [Crossref]
  20. G. Huszka, H. Yang, and M. A. M. Gijs, “Microsphere-based super-resolution scanning optical microscope,” Opt. Express 25(13), 15079 (2017).
    [Crossref]
  21. F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7(1), 13748 (2016).
    [Crossref]
  22. S. Gao, K. Meng, Z. Yang, H. Liu, T. Chen, and L. Sun, “Large field-of-view super-resolution image obtained by manipulating submerged microsphere,” J. Phys.: Conf. Ser. 1074, 012172 (2018).
    [Crossref]
  23. J. W. Park, A. J. Pedraza, and W. R. Allen, “The interface between sputter-deposited gold thin films and ion-bombarded sapphire substrates,” Appl. Surf. Sci. 103(1), 39–48 (1996).
    [Crossref]
  24. Y. E. Geints and A. A. Zemlyanov, “Photonic nanojet super-resolution in immersed ordered assembly of dielectric microspheres,” J. Quant. Spectrosc. Radiat. Transfer 200, 32–37 (2017).
    [Crossref]
  25. K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)],” Ann. Phys. 528(11-12), 901–904 (2016).
    [Crossref]
  26. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7(2), 403–408 (2007).
    [Crossref]
  27. Wikipedia, “Visible spectrum,” https://en.wikipedia.org/wiki/Visible_spectrum .
  28. T. J. Holmes, D. Biggs, and A. Adu-Tarif, “Blind deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum Press, 1995).
  29. R. J. Hanisch, R. L. White, and R. L. Gilliland, “Deconvolutions of Hubble Space Telescope Images and Spectra,” in Deconvolution of Images and Spectra, P. A. Jansson, ed., 2nd ed. (Academic press, 1997).
  30. D. S. C. Biggs and M. Andrews, “Acceleration of iterative image restoration algorithms,” Appl. Opt. 36(8), 1766 (1997).
    [Crossref]
  31. M. Sasaki, T. Kurosawa, and K. Hane, “Micro-objective manipulated with optical tweezers,” Appl. Phys. Lett. 70(6), 785–787 (1997).
    [Crossref]

2019 (2)

A. Brettin, F. Abolmaali, K. F. Blanchette, C. L. McGinnis, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, I. Anisimov, A. M. Urbas, L. Poffo, A. V. Maslov, and V. N. Astratov, “Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces,” Appl. Phys. Lett. 114(13), 131101 (2019).
[Crossref]

A. V. Maslov and V. N. Astratov, “Resolution and Reciprocity in Microspherical Nanoscopy: Point-Spread Function Versus Photonic Nanojets,” Phys. Rev. Appl. 11(6), 064004 (2019).
[Crossref]

2018 (3)

S. So, M. Kim, D. Lee, D. M. Nguyen, and J. Rho, “Overcoming diffraction limit: From microscopy to nanoscopy,” Appl. Spectrosc. Rev. 53(2-4), 290–312 (2018).
[Crossref]

G. Huszka and M. A. M. Gijs, “Turning a normal microscope into a super-resolution instrument using a scanning microlens array,” Sci. Rep. 8(1), 601 (2018).
[Crossref]

S. Gao, K. Meng, Z. Yang, H. Liu, T. Chen, and L. Sun, “Large field-of-view super-resolution image obtained by manipulating submerged microsphere,” J. Phys.: Conf. Ser. 1074, 012172 (2018).
[Crossref]

2017 (4)

A. Darafsheh, “Influence of the background medium on imaging performance of microsphere-assisted super-resolution microscopy,” Opt. Lett. 42(4), 735 (2017).
[Crossref]

G. Huszka, H. Yang, and M. A. M. Gijs, “Microsphere-based super-resolution scanning optical microscope,” Opt. Express 25(13), 15079 (2017).
[Crossref]

Y. E. Geints and A. A. Zemlyanov, “Photonic nanojet super-resolution in immersed ordered assembly of dielectric microspheres,” J. Quant. Spectrosc. Radiat. Transfer 200, 32–37 (2017).
[Crossref]

A. Bezryadina, J. Li, J. Zhao, A. Kothambawala, J. Ponsetto, E. Huang, J. Wang, and Z. Liu, “Localized plasmonic structured illumination microscopy with an optically trapped microlens,” Nanoscale 9(39), 14907–14912 (2017).
[Crossref]

2016 (3)

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref]

K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)],” Ann. Phys. 528(11-12), 901–904 (2016).
[Crossref]

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7(1), 13748 (2016).
[Crossref]

2015 (1)

2014 (2)

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref]

2013 (2)

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3(1), 3501 (2013).
[Crossref]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light: Sci. Appl. 2(9), e104 (2013).
[Crossref]

2012 (1)

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

2011 (2)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016 (2011).
[Crossref]

2007 (1)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref]

2006 (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

1997 (2)

D. S. C. Biggs and M. Andrews, “Acceleration of iterative image restoration algorithms,” Appl. Opt. 36(8), 1766 (1997).
[Crossref]

M. Sasaki, T. Kurosawa, and K. Hane, “Micro-objective manipulated with optical tweezers,” Appl. Phys. Lett. 70(6), 785–787 (1997).
[Crossref]

1996 (2)

J. W. Park, A. J. Pedraza, and W. R. Allen, “The interface between sputter-deposited gold thin films and ion-bombarded sapphire substrates,” Appl. Surf. Sci. 103(1), 39–48 (1996).
[Crossref]

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

1994 (1)

Abolmaali, F.

A. Brettin, F. Abolmaali, K. F. Blanchette, C. L. McGinnis, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, I. Anisimov, A. M. Urbas, L. Poffo, A. V. Maslov, and V. N. Astratov, “Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces,” Appl. Phys. Lett. 114(13), 131101 (2019).
[Crossref]

Adu-Tarif, A.

T. J. Holmes, D. Biggs, and A. Adu-Tarif, “Blind deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum Press, 1995).

Allen, K. W.

K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)],” Ann. Phys. 528(11-12), 901–904 (2016).
[Crossref]

Allen, W. R.

J. W. Park, A. J. Pedraza, and W. R. Allen, “The interface between sputter-deposited gold thin films and ion-bombarded sapphire substrates,” Appl. Surf. Sci. 103(1), 39–48 (1996).
[Crossref]

Andrews, M.

Anisimov, I.

A. Brettin, F. Abolmaali, K. F. Blanchette, C. L. McGinnis, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, I. Anisimov, A. M. Urbas, L. Poffo, A. V. Maslov, and V. N. Astratov, “Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces,” Appl. Phys. Lett. 114(13), 131101 (2019).
[Crossref]

Astratov, V. N.

A. Brettin, F. Abolmaali, K. F. Blanchette, C. L. McGinnis, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, I. Anisimov, A. M. Urbas, L. Poffo, A. V. Maslov, and V. N. Astratov, “Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces,” Appl. Phys. Lett. 114(13), 131101 (2019).
[Crossref]

A. V. Maslov and V. N. Astratov, “Resolution and Reciprocity in Microspherical Nanoscopy: Point-Spread Function Versus Photonic Nanojets,” Phys. Rev. Appl. 11(6), 064004 (2019).
[Crossref]

K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)],” Ann. Phys. 528(11-12), 901–904 (2016).
[Crossref]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Bezryadina, A.

A. Bezryadina, J. Li, J. Zhao, A. Kothambawala, J. Ponsetto, E. Huang, J. Wang, and Z. Liu, “Localized plasmonic structured illumination microscopy with an optically trapped microlens,” Nanoscale 9(39), 14907–14912 (2017).
[Crossref]

Biggs, D.

T. J. Holmes, D. Biggs, and A. Adu-Tarif, “Blind deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum Press, 1995).

Biggs, D. S. C.

Blanchette, K. F.

A. Brettin, F. Abolmaali, K. F. Blanchette, C. L. McGinnis, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, I. Anisimov, A. M. Urbas, L. Poffo, A. V. Maslov, and V. N. Astratov, “Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces,” Appl. Phys. Lett. 114(13), 131101 (2019).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).

Brettin, A.

A. Brettin, F. Abolmaali, K. F. Blanchette, C. L. McGinnis, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, I. Anisimov, A. M. Urbas, L. Poffo, A. V. Maslov, and V. N. Astratov, “Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces,” Appl. Phys. Lett. 114(13), 131101 (2019).
[Crossref]

Cárabe, A.

Chen, T.

S. Gao, K. Meng, Z. Yang, H. Liu, T. Chen, and L. Sun, “Large field-of-view super-resolution image obtained by manipulating submerged microsphere,” J. Phys.: Conf. Ser. 1074, 012172 (2018).
[Crossref]

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref]

Dal Negro, L.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Darafsheh, A.

A. Darafsheh, “Influence of the background medium on imaging performance of microsphere-assisted super-resolution microscopy,” Opt. Lett. 42(4), 735 (2017).
[Crossref]

A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40(1), 5 (2015).
[Crossref]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Derov, J. S.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Ding, H.

Durant, S.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref]

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref]

Feng, C.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref]

Finlay, J. C.

Gao, S.

S. Gao, K. Meng, Z. Yang, H. Liu, T. Chen, and L. Sun, “Large field-of-view super-resolution image obtained by manipulating submerged microsphere,” J. Phys.: Conf. Ser. 1074, 012172 (2018).
[Crossref]

Geints, Y. E.

Y. E. Geints and A. A. Zemlyanov, “Photonic nanojet super-resolution in immersed ordered assembly of dielectric microspheres,” J. Quant. Spectrosc. Radiat. Transfer 200, 32–37 (2017).
[Crossref]

Gijs, M. A. M.

G. Huszka and M. A. M. Gijs, “Turning a normal microscope into a super-resolution instrument using a scanning microlens array,” Sci. Rep. 8(1), 601 (2018).
[Crossref]

G. Huszka, H. Yang, and M. A. M. Gijs, “Microsphere-based super-resolution scanning optical microscope,” Opt. Express 25(13), 15079 (2017).
[Crossref]

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref]

Gillette, M. U.

Gilliland, R. L.

R. J. Hanisch, R. L. White, and R. L. Gilliland, “Deconvolutions of Hubble Space Telescope Images and Spectra,” in Deconvolution of Images and Spectra, P. A. Jansson, ed., 2nd ed. (Academic press, 1997).

Guardiola, C.

Guo, W.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light: Sci. Appl. 2(9), e104 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref]

Hane, K.

M. Sasaki, T. Kurosawa, and K. Hane, “Micro-objective manipulated with optical tweezers,” Appl. Phys. Lett. 70(6), 785–787 (1997).
[Crossref]

Hanisch, R. J.

R. J. Hanisch, R. L. White, and R. L. Gilliland, “Deconvolutions of Hubble Space Telescope Images and Spectra,” in Deconvolution of Images and Spectra, P. A. Jansson, ed., 2nd ed. (Academic press, 1997).

Hell, S. W.

Holmes, T. J.

T. J. Holmes, D. Biggs, and A. Adu-Tarif, “Blind deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum Press, 1995).

Hong, M.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref]

Huang, E.

A. Bezryadina, J. Li, J. Zhao, A. Kothambawala, J. Ponsetto, E. Huang, J. Wang, and Z. Liu, “Localized plasmonic structured illumination microscopy with an optically trapped microlens,” Nanoscale 9(39), 14907–14912 (2017).
[Crossref]

Huszka, G.

G. Huszka and M. A. M. Gijs, “Turning a normal microscope into a super-resolution instrument using a scanning microlens array,” Sci. Rep. 8(1), 601 (2018).
[Crossref]

G. Huszka, H. Yang, and M. A. M. Gijs, “Microsphere-based super-resolution scanning optical microscope,” Opt. Express 25(13), 15079 (2017).
[Crossref]

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref]

Kim, M.

S. So, M. Kim, D. Lee, D. M. Nguyen, and J. Rho, “Overcoming diffraction limit: From microscopy to nanoscopy,” Appl. Spectrosc. Rev. 53(2-4), 290–312 (2018).
[Crossref]

Kothambawala, A.

A. Bezryadina, J. Li, J. Zhao, A. Kothambawala, J. Ponsetto, E. Huang, J. Wang, and Z. Liu, “Localized plasmonic structured illumination microscopy with an optically trapped microlens,” Nanoscale 9(39), 14907–14912 (2017).
[Crossref]

Krivitsky, L. A.

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3(1), 3501 (2013).
[Crossref]

Kurosawa, T.

M. Sasaki, T. Kurosawa, and K. Hane, “Micro-objective manipulated with optical tweezers,” Appl. Phys. Lett. 70(6), 785–787 (1997).
[Crossref]

Lee, D.

S. So, M. Kim, D. Lee, D. M. Nguyen, and J. Rho, “Overcoming diffraction limit: From microscopy to nanoscopy,” Appl. Spectrosc. Rev. 53(2-4), 290–312 (2018).
[Crossref]

Lee, H.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref]

Lee, S.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light: Sci. Appl. 2(9), e104 (2013).
[Crossref]

Li, J.

A. Bezryadina, J. Li, J. Zhao, A. Kothambawala, J. Ponsetto, E. Huang, J. Wang, and Z. Liu, “Localized plasmonic structured illumination microscopy with an optically trapped microlens,” Nanoscale 9(39), 14907–14912 (2017).
[Crossref]

Li, L.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light: Sci. Appl. 2(9), e104 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref]

Li, W. J.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7(1), 13748 (2016).
[Crossref]

Li, Y.

K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)],” Ann. Phys. 528(11-12), 901–904 (2016).
[Crossref]

Limberopoulos, N. I.

A. Brettin, F. Abolmaali, K. F. Blanchette, C. L. McGinnis, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, I. Anisimov, A. M. Urbas, L. Poffo, A. V. Maslov, and V. N. Astratov, “Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces,” Appl. Phys. Lett. 114(13), 131101 (2019).
[Crossref]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Liu, H.

S. Gao, K. Meng, Z. Yang, H. Liu, T. Chen, and L. Sun, “Large field-of-view super-resolution image obtained by manipulating submerged microsphere,” J. Phys.: Conf. Ser. 1074, 012172 (2018).
[Crossref]

Liu, L.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7(1), 13748 (2016).
[Crossref]

Liu, Z.

A. Bezryadina, J. Li, J. Zhao, A. Kothambawala, J. Ponsetto, E. Huang, J. Wang, and Z. Liu, “Localized plasmonic structured illumination microscopy with an optically trapped microlens,” Nanoscale 9(39), 14907–14912 (2017).
[Crossref]

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7(1), 13748 (2016).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref]

Luk’yanchuk, B.

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3(1), 3501 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref]

Maslov, A. V.

A. Brettin, F. Abolmaali, K. F. Blanchette, C. L. McGinnis, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, I. Anisimov, A. M. Urbas, L. Poffo, A. V. Maslov, and V. N. Astratov, “Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces,” Appl. Phys. Lett. 114(13), 131101 (2019).
[Crossref]

A. V. Maslov and V. N. Astratov, “Resolution and Reciprocity in Microspherical Nanoscopy: Point-Spread Function Versus Photonic Nanojets,” Phys. Rev. Appl. 11(6), 064004 (2019).
[Crossref]

McGinnis, C. L.

A. Brettin, F. Abolmaali, K. F. Blanchette, C. L. McGinnis, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, I. Anisimov, A. M. Urbas, L. Poffo, A. V. Maslov, and V. N. Astratov, “Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces,” Appl. Phys. Lett. 114(13), 131101 (2019).
[Crossref]

Meng, K.

S. Gao, K. Meng, Z. Yang, H. Liu, T. Chen, and L. Sun, “Large field-of-view super-resolution image obtained by manipulating submerged microsphere,” J. Phys.: Conf. Ser. 1074, 012172 (2018).
[Crossref]

Millet, L.

Mir, M.

Nesmelov, Y. E.

A. Brettin, F. Abolmaali, K. F. Blanchette, C. L. McGinnis, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, I. Anisimov, A. M. Urbas, L. Poffo, A. V. Maslov, and V. N. Astratov, “Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces,” Appl. Phys. Lett. 114(13), 131101 (2019).
[Crossref]

Nguyen, D. M.

S. So, M. Kim, D. Lee, D. M. Nguyen, and J. Rho, “Overcoming diffraction limit: From microscopy to nanoscopy,” Appl. Spectrosc. Rev. 53(2-4), 290–312 (2018).
[Crossref]

Palovcak, A.

Park, J. W.

J. W. Park, A. J. Pedraza, and W. R. Allen, “The interface between sputter-deposited gold thin films and ion-bombarded sapphire substrates,” Appl. Surf. Sci. 103(1), 39–48 (1996).
[Crossref]

Pedraza, A. J.

J. W. Park, A. J. Pedraza, and W. R. Allen, “The interface between sputter-deposited gold thin films and ion-bombarded sapphire substrates,” Appl. Surf. Sci. 103(1), 39–48 (1996).
[Crossref]

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref]

Poffo, L.

A. Brettin, F. Abolmaali, K. F. Blanchette, C. L. McGinnis, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, I. Anisimov, A. M. Urbas, L. Poffo, A. V. Maslov, and V. N. Astratov, “Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces,” Appl. Phys. Lett. 114(13), 131101 (2019).
[Crossref]

Ponsetto, J.

A. Bezryadina, J. Li, J. Zhao, A. Kothambawala, J. Ponsetto, E. Huang, J. Wang, and Z. Liu, “Localized plasmonic structured illumination microscopy with an optically trapped microlens,” Nanoscale 9(39), 14907–14912 (2017).
[Crossref]

Popescu, G.

Rho, J.

S. So, M. Kim, D. Lee, D. M. Nguyen, and J. Rho, “Overcoming diffraction limit: From microscopy to nanoscopy,” Appl. Spectrosc. Rev. 53(2-4), 290–312 (2018).
[Crossref]

Rogers, J.

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Sasaki, M.

M. Sasaki, T. Kurosawa, and K. Hane, “Micro-objective manipulated with optical tweezers,” Appl. Phys. Lett. 70(6), 785–787 (1997).
[Crossref]

So, S.

S. So, M. Kim, D. Lee, D. M. Nguyen, and J. Rho, “Overcoming diffraction limit: From microscopy to nanoscopy,” Appl. Spectrosc. Rev. 53(2-4), 290–312 (2018).
[Crossref]

Sun, C.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref]

Sun, L.

S. Gao, K. Meng, Z. Yang, H. Liu, T. Chen, and L. Sun, “Large field-of-view super-resolution image obtained by manipulating submerged microsphere,” J. Phys.: Conf. Ser. 1074, 012172 (2018).
[Crossref]

Trouillon, R.

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref]

Unarunotai, S.

Urbas, A. M.

A. Brettin, F. Abolmaali, K. F. Blanchette, C. L. McGinnis, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, I. Anisimov, A. M. Urbas, L. Poffo, A. V. Maslov, and V. N. Astratov, “Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces,” Appl. Phys. Lett. 114(13), 131101 (2019).
[Crossref]

Walker, D. E.

A. Brettin, F. Abolmaali, K. F. Blanchette, C. L. McGinnis, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, I. Anisimov, A. M. Urbas, L. Poffo, A. V. Maslov, and V. N. Astratov, “Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces,” Appl. Phys. Lett. 114(13), 131101 (2019).
[Crossref]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Walsh, G. F.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Wang, F.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7(1), 13748 (2016).
[Crossref]

Wang, J.

A. Bezryadina, J. Li, J. Zhao, A. Kothambawala, J. Ponsetto, E. Huang, J. Wang, and Z. Liu, “Localized plasmonic structured illumination microscopy with an optically trapped microlens,” Nanoscale 9(39), 14907–14912 (2017).
[Crossref]

Wang, J. J.

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3(1), 3501 (2013).
[Crossref]

Wang, T.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light: Sci. Appl. 2(9), e104 (2013).
[Crossref]

Wang, Y.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7(1), 13748 (2016).
[Crossref]

Wang, Z.

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3(1), 3501 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016 (2011).
[Crossref]

Webb, R. H.

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

Wen, Y.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7(1), 13748 (2016).
[Crossref]

White, R. L.

R. J. Hanisch, R. L. White, and R. L. Gilliland, “Deconvolutions of Hubble Space Telescope Images and Spectra,” in Deconvolution of Images and Spectra, P. A. Jansson, ed., 2nd ed. (Academic press, 1997).

Wichmann, J.

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).

Xiong, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref]

Yan, Y.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light: Sci. Appl. 2(9), e104 (2013).
[Crossref]

Yang, H.

G. Huszka, H. Yang, and M. A. M. Gijs, “Microsphere-based super-resolution scanning optical microscope,” Opt. Express 25(13), 15079 (2017).
[Crossref]

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref]

Yang, Z.

S. Gao, K. Meng, Z. Yang, H. Liu, T. Chen, and L. Sun, “Large field-of-view super-resolution image obtained by manipulating submerged microsphere,” J. Phys.: Conf. Ser. 1074, 012172 (2018).
[Crossref]

Yu, H.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7(1), 13748 (2016).
[Crossref]

Yu, P.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7(1), 13748 (2016).
[Crossref]

Zemlyanov, A. A.

Y. E. Geints and A. A. Zemlyanov, “Photonic nanojet super-resolution in immersed ordered assembly of dielectric microspheres,” J. Quant. Spectrosc. Radiat. Transfer 200, 32–37 (2017).
[Crossref]

Zhang, X.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref]

Zhao, J.

A. Bezryadina, J. Li, J. Zhao, A. Kothambawala, J. Ponsetto, E. Huang, J. Wang, and Z. Liu, “Localized plasmonic structured illumination microscopy with an optically trapped microlens,” Nanoscale 9(39), 14907–14912 (2017).
[Crossref]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

ACS Nano (1)

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref]

Ann. Phys. (1)

K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)],” Ann. Phys. 528(11-12), 901–904 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

M. Sasaki, T. Kurosawa, and K. Hane, “Micro-objective manipulated with optical tweezers,” Appl. Phys. Lett. 70(6), 785–787 (1997).
[Crossref]

A. Brettin, F. Abolmaali, K. F. Blanchette, C. L. McGinnis, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, I. Anisimov, A. M. Urbas, L. Poffo, A. V. Maslov, and V. N. Astratov, “Enhancement of resolution in microspherical nanoscopy by coupling of fluorescent objects to plasmonic metasurfaces,” Appl. Phys. Lett. 114(13), 131101 (2019).
[Crossref]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Appl. Spectrosc. Rev. (1)

S. So, M. Kim, D. Lee, D. M. Nguyen, and J. Rho, “Overcoming diffraction limit: From microscopy to nanoscopy,” Appl. Spectrosc. Rev. 53(2-4), 290–312 (2018).
[Crossref]

Appl. Surf. Sci. (1)

J. W. Park, A. J. Pedraza, and W. R. Allen, “The interface between sputter-deposited gold thin films and ion-bombarded sapphire substrates,” Appl. Surf. Sci. 103(1), 39–48 (1996).
[Crossref]

J. Phys.: Conf. Ser. (1)

S. Gao, K. Meng, Z. Yang, H. Liu, T. Chen, and L. Sun, “Large field-of-view super-resolution image obtained by manipulating submerged microsphere,” J. Phys.: Conf. Ser. 1074, 012172 (2018).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

Y. E. Geints and A. A. Zemlyanov, “Photonic nanojet super-resolution in immersed ordered assembly of dielectric microspheres,” J. Quant. Spectrosc. Radiat. Transfer 200, 32–37 (2017).
[Crossref]

Light: Sci. Appl. (1)

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light: Sci. Appl. 2(9), e104 (2013).
[Crossref]

Nano Lett. (2)

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref]

Nanoscale (1)

A. Bezryadina, J. Li, J. Zhao, A. Kothambawala, J. Ponsetto, E. Huang, J. Wang, and Z. Liu, “Localized plasmonic structured illumination microscopy with an optically trapped microlens,” Nanoscale 9(39), 14907–14912 (2017).
[Crossref]

Nat. Commun. (2)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref]

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7(1), 13748 (2016).
[Crossref]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Appl. (1)

A. V. Maslov and V. N. Astratov, “Resolution and Reciprocity in Microspherical Nanoscopy: Point-Spread Function Versus Photonic Nanojets,” Phys. Rev. Appl. 11(6), 064004 (2019).
[Crossref]

Rep. Prog. Phys. (1)

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

Sci. Rep. (2)

G. Huszka and M. A. M. Gijs, “Turning a normal microscope into a super-resolution instrument using a scanning microlens array,” Sci. Rep. 8(1), 601 (2018).
[Crossref]

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3(1), 3501 (2013).
[Crossref]

Other (4)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).

Wikipedia, “Visible spectrum,” https://en.wikipedia.org/wiki/Visible_spectrum .

T. J. Holmes, D. Biggs, and A. Adu-Tarif, “Blind deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum Press, 1995).

R. J. Hanisch, R. L. White, and R. L. Gilliland, “Deconvolutions of Hubble Space Telescope Images and Spectra,” in Deconvolution of Images and Spectra, P. A. Jansson, ed., 2nd ed. (Academic press, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. SEM image of a typical 250 nm period lattice.
Fig. 2.
Fig. 2. Optical microscope image ($100 \times $ magnification, NA = 0.95 objective) of a 500 nm (a) and 300 nm (b) period lattices, taken in air. In the insets, the Fourier transforms of the images showing the clear presence of the grating (a) and its absence (b). The scalebars are 2.5 µm.
Fig. 3.
Fig. 3. Optical microscope image of a cluster of BTG spheres used for imaging (a) and a 250 nm lattice viewed through them (b). It can be seen that some spheres image the lattice while others do not. The scalebars are 10 µm.
Fig. 4.
Fig. 4. Crop of a lattice image from a specific sphere. These cropped images were then used for processing. The scalebar is 1 µm
Fig. 5.
Fig. 5. (a) Typical image of a lattice after deconvolution. It shows a much higher contrast as well as areas where there is no lattice imaged. (b) Typical image when a lattice was not imaged. A high-frequency periodicity can be observed as an artifact of the deconvolution. (c) The Fourier transform of an image with lattice present. Apart from the 0-order peak, in the center of the figure, one can see 4 maxima, close to the center, related to the lattice period and two more, related to artifacts in the deconvolution. The scalebars are 1 µm
Fig. 6.
Fig. 6. The variation of the magnification function of the imaging plane, for the spheres that allowed viewing the lattices. It can be seen that magnification can vary substantially for the same sphere. The panels are for different sphere clusters. (a) and (b) are lattices with 250 nm period while (c) is a lattice with 300 nm period. The same convention will be kept throughout the subsequent images. To be noted that the “imaging plane” number cannot be correlated from one graph to another.
Fig. 7.
Fig. 7. The variation of magnification function on the sphere radii in micrometers. It clearly shows that the spheres with the same radius can image with different magnifications. Each sphere is denoted with one specific color to differentiate between the variation within one sphere and the variation from one sphere to another, but having the same radius.
Fig. 8.
Fig. 8. The average depth of the imaging plane function of the sphere radii in micrometers. According to the ray optic theory, position of the imaging plane should be linearly dependent on the sphere radii, the fact that cannot be experimentally verified.
Fig. 9.
Fig. 9. The average depth of the imaging plane function of the sphere radii in micrometers in the case of a $50 \times $ magnification objective. Also in this case, there is no clear correlation between the imaging plane and the sphere radii. (a) is for 250 nm lattice period and (b) is for 300 nm lattice period. This convention is kept for the subsequent figures.
Fig. 10.
Fig. 10. The magnification function of the sphere radii in micrometers in the case of a $50 \times $ magnification objective. The same conclusion as from the $100 \times $ magnification objective applies.
Fig. 11.
Fig. 11. The magnification function of the imaging plane in the case of a $50 \times $ magnification objective. Also here, a clear increase in magnification with depth is observed.