Abstract

In structured illumination microscopy (SIM), the imaging speed is expected to be increased to observe living cells. The conventional 2D SIM reconstruction algorithm (RA) requires nine raw images to reconstruct a super-resolution image. Here, we develop a partial-frequency-spectrum (PFS) reconstruction algorithm, based on the subtraction of frequency spectrum, which can reconstruct a super-resolution image by using six raw SIM images (two SIM images for each orientation). Our experiments of actin filament in bovine pulmonary artery endothelial (BPAE) cell imaging indicate that by the PFS algorithm, the frame rate increases. The PFS algorithm can resolve 120 nm in our experiment, which is equivalent to the reconstruction result of conventional 9-frame SIM. The PFS algorithm only requires the phase estimation of the three images. The reconstruction speed is about 5 times faster that of the conventional nine-images SIM method.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reconstruction of super-resolution STORM images using compressed sensing based on low-resolution raw images and interpolation

Tao Cheng, Danni Chen, Bin Yu, and Hanben Niu
Biomed. Opt. Express 8(5) 2445-2457 (2017)

Three-dimensional super-resolution imaging of live whole cells using galvanometer-based structured illumination microscopy

Wenjie Liu, Qiulan Liu, Zhimin Zhang, Yubing Han, Cuifang Kuang, Liang Xu, Hongqin Yang, and Xu Liu
Opt. Express 27(5) 7237-7248 (2019)

Deconvolution methods for structured illumination microscopy

Nadya Chakrova, Bernd Rieger, and Sjoerd Stallinga
J. Opt. Soc. Am. A 33(7) B12-B20 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref]
  2. R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
    [Crossref]
  3. M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U. S. A. 102(49), 17565–17569 (2005).
    [Crossref]
  4. S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
    [Crossref]
  5. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref]
  6. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150 (2000).
    [Crossref]
  7. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref]
  8. R. Förster, K. Wicker, W. Müller, A. Jost, and R. Heintzmann, “Motion artefact detection in structured illumination microscopy for live cell imaging,” Opt. Express 24(19), 22121–22134 (2016).
    [Crossref]
  9. X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, and P. Xi, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
    [Crossref]
  10. J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Muller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12(5), 988–1010 (2017).
    [Crossref]
  11. P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
    [Crossref]
  12. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
    [Crossref]
  13. X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
    [Crossref]
  14. S. A. Shroff, J. R. Fienup, and D. R. Williams, “Lateral superresolution using a posteriori phase shift estimation for a moving object: experimental results,” J. Opt. Soc. Am. A 27(8), 1770 (2010).
    [Crossref]
  15. A. Lal, C. Shan, and X. Peng, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
    [Crossref]
  16. W. Kai, M. Ondrej, B. Gerrit, F. Reto, and H. Rainer, “Phase optimisation for structured illumination microscopy,” Opt. Express 21(2), 2032–2049 (2013).
    [Crossref]
  17. K. Wicker, “Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space,” Opt. Express 21(21), 24692–24701 (2013).
    [Crossref]
  18. D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
    [Crossref]
  19. A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
    [Crossref]
  20. F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
    [Crossref]
  21. S. Dong, P. Nanda, R. Shiradkar, K. Guo, and G. Zheng, “High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography,” Opt. Express 22(17), 20856–20870 (2014).
    [Crossref]
  22. A. Lal, X. S. Huang, and P. Xi, “A frequency domain reconstruction of SIM image using four raw algorithm,” Proc. SPIE 27(9), 4555–4570 (2018).
    [Crossref]

2018 (3)

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, and P. Xi, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref]

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref]

A. Lal, X. S. Huang, and P. Xi, “A frequency domain reconstruction of SIM image using four raw algorithm,” Proc. SPIE 27(9), 4555–4570 (2018).
[Crossref]

2017 (1)

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Muller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12(5), 988–1010 (2017).
[Crossref]

2016 (3)

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

A. Lal, C. Shan, and X. Peng, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
[Crossref]

R. Förster, K. Wicker, W. Müller, A. Jost, and R. Heintzmann, “Motion artefact detection in structured illumination microscopy for live cell imaging,” Opt. Express 24(19), 22121–22134 (2016).
[Crossref]

2015 (1)

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

2014 (1)

2013 (2)

2012 (1)

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref]

2010 (2)

S. A. Shroff, J. R. Fienup, and D. R. Williams, “Lateral superresolution using a posteriori phase shift estimation for a moving object: experimental results,” J. Opt. Soc. Am. A 27(8), 1770 (2010).
[Crossref]

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref]

2009 (1)

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref]

2006 (2)

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

2005 (1)

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U. S. A. 102(49), 17565–17569 (2005).
[Crossref]

2000 (2)

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150 (2000).
[Crossref]

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

1999 (1)

R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[Crossref]

1994 (1)

Agard, D. A.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150 (2000).
[Crossref]

Baird, M. A.

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Ball, G.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Muller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12(5), 988–1010 (2017).
[Crossref]

Bao, Z.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Beach, J. R.

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Betzig, E.

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Bianco, P. R.

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

Chen, B. C.

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Chen, G.

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

Chen, L.

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref]

Chhun, B. B.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref]

Cremer, C. G.

R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[Crossref]

Dan, D.

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

Davidson, M. W.

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Demmerle, J.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Muller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12(5), 988–1010 (2017).
[Crossref]

Dobbie, I. M.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Muller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12(5), 988–1010 (2017).
[Crossref]

Dong, S.

Dubertret, B.

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref]

Eggeling, C.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U. S. A. 102(49), 17565–17569 (2005).
[Crossref]

Fan, J.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, and P. Xi, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref]

Fienup, J. R.

Förster, R.

Gerrit, B.

Girirajan, T. P.

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

Griffis, E. R.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref]

Guo, K.

Gustafsson, M. G.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref]

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

Gustafsson, M. G. L.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150 (2000).
[Crossref]

Hammer, J. A.

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Heintzmann, R.

R. Förster, K. Wicker, W. Müller, A. Jost, and R. Heintzmann, “Motion artefact detection in structured illumination microscopy for live cell imaging,” Opt. Express 24(19), 22121–22134 (2016).
[Crossref]

R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[Crossref]

Hell, S. W.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U. S. A. 102(49), 17565–17569 (2005).
[Crossref]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref]

Hess, S. T.

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

Hofmann, M.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U. S. A. 102(49), 17565–17569 (2005).
[Crossref]

Huang, X.

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref]

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, and P. Xi, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref]

Huang, X. S.

A. Lal, X. S. Huang, and P. Xi, “A frequency domain reconstruction of SIM image using four raw algorithm,” Proc. SPIE 27(9), 4555–4570 (2018).
[Crossref]

Innocent, C.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Muller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12(5), 988–1010 (2017).
[Crossref]

Jakobs, S.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U. S. A. 102(49), 17565–17569 (2005).
[Crossref]

Jost, A.

Kai, W.

Keller, P. J.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref]

Khairy, K.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref]

Kirchhausen, T.

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Kner, P.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref]

Lal, A.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, and P. Xi, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref]

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref]

A. Lal, X. S. Huang, and P. Xi, “A frequency domain reconstruction of SIM image using four raw algorithm,” Proc. SPIE 27(9), 4555–4570 (2018).
[Crossref]

A. Lal, C. Shan, and X. Peng, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
[Crossref]

Lei, M.

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

Li, D.

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Li, L.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, and P. Xi, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref]

Liu, H.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, and P. Xi, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref]

Liu, W.

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref]

Loriette, V.

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref]

Mao, H.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, and P. Xi, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref]

Markaki, Y.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Muller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12(5), 988–1010 (2017).
[Crossref]

Mason, M. D.

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

Matsuda, A.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Muller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12(5), 988–1010 (2017).
[Crossref]

Milkie, D. E.

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Miron, E.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Muller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12(5), 988–1010 (2017).
[Crossref]

Moses, B.

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Muller, M.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Muller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12(5), 988–1010 (2017).
[Crossref]

Müller, W.

Nanda, P.

North, A. J.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Muller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12(5), 988–1010 (2017).
[Crossref]

Olivo-Marin, J. C.

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref]

Ondrej, M.

Orieux, F.

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref]

Pasham, M.

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Peng, X.

A. Lal, C. Shan, and X. Peng, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
[Crossref]

Qian, J.

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

Rainer, H.

Reto, F.

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Santella, A.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref]

Schermelleh, L.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Muller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12(5), 988–1010 (2017).
[Crossref]

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref]

Sedat, J. W.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150 (2000).
[Crossref]

Sepulveda, E.

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref]

Shan, C.

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref]

A. Lal, C. Shan, and X. Peng, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
[Crossref]

Shao, L.

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Shiradkar, R.

Shroff, S. A.

Stelzer, E. H.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref]

Wei, L.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, and P. Xi, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref]

Wichmann, J.

Wicker, K.

Williams, D. R.

Winoto, L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref]

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref]

Wu, R.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, and P. Xi, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref]

Wu, Y.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, and P. Xi, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref]

Xi, P.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, and P. Xi, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref]

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref]

A. Lal, X. S. Huang, and P. Xi, “A frequency domain reconstruction of SIM image using four raw algorithm,” Proc. SPIE 27(9), 4555–4570 (2018).
[Crossref]

Xu, P.

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Yang, Y.

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

Yao, B.

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

Zhang, M.

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Zhang, X.

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Zhao, K.

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref]

Zheng, G.

Zhou, X.

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Zong, W.

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref]

Biophys. J. (1)

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Lal, C. Shan, and X. Peng, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
[Crossref]

IEEE Trans. Image Process. (2)

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref]

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref]

J. Biomed. Opt. (1)

X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for superresolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
[Crossref]

J. Microsc. (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Biotechnol. (1)

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, and P. Xi, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref]

Nat. Methods (3)

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Nat. Protoc. (1)

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Muller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12(5), 988–1010 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U. S. A. (1)

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U. S. A. 102(49), 17565–17569 (2005).
[Crossref]

Proc. SPIE (3)

R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[Crossref]

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150 (2000).
[Crossref]

A. Lal, X. S. Huang, and P. Xi, “A frequency domain reconstruction of SIM image using four raw algorithm,” Proc. SPIE 27(9), 4555–4570 (2018).
[Crossref]

Science (1)

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, “ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics,” Science 349(6251), aab3500 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic diagram of the PFS algorithm. I represents synthesis a wide field image. II represents the process of separating high-frequency components by subtraction and moving high-frequency components back to the original position. III indicates the process of obtaining extended frequency spectrum.
Fig. 2.
Fig. 2. Simplified spectrum model. (a) Wide-field image in Fourier domain. (b) Frequency spectrum of a raw SIM image. The red lines represent the high-frequency component.
Fig. 3.
Fig. 3. Key steps to separate the high-frequency spectrum (simplified spectrum model). (a) Removing CL in ${\tilde{D}_1}(k )$ by using the wide-field image ${\tilde{D}_w}(k )$. (b) Subtracting the low frequency spectrum of CH1. (c) Obtaining the non-overlapping high frequency part of CH2. In the process of spectrum subtraction, residual spectrum is generated, shown as the dotted line.
Fig. 4.
Fig. 4. (a1) -(a2) The test target and the corresponding frequency spectrum. (a3)-(a4) The blurred image and the corresponding frequency spectrum. (b1)-(b3) Comparison of images obtained by different reconstruction algorithms. (b1) Wide-field Wiener-filtered with a good trade-off between resolution enhancement and noise suppression. (b2) Reconstructed images using PFS algorithm with different noise ratios. (b3) Reconstructed images using conventional SIM method with different noise ratios. (c1)-(c2) Comparison of different reconstruction algorithms with image quality evaluation methods (PSNR, SSIM).
Fig. 5.
Fig. 5. Images reconstructed by different reconstruction algorithms of actin filament in BPAE cells. (a) Super-resolution image reconstructed by PFS algorithm, the picture in the low left corner is an enlargement of the yellow box. (b)-(d) Enlarge images of the blue dotted boxes in (a). (b) Wiener-filtered image of wide-field image. (c) Super-resolution image reconstructed by PFS algorithm. (d) Conventional SIM image (9 frame). (e) The graph shows the normalized intensity of the red line with different reconstruction algorithm. Note that this position with PFS algorithm can resolve 120 nm.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

D ( r ) = [ S ( r ) I ( r ) ] H ( r )
I ( r ) = I 0 [ 1 + m × cos ( 2 π p × r + φ ) ]
D ~ ( k ) = I 0 [ S ~ ( k ) + m 2 S ~ ( k p ) exp ( + i φ ) + m 2 S ~ ( k + p ) exp ( i φ ) ] H ~ ( k )
D ~ ( k ) = I 0 S ~ ( k ) H ~ ( k ) C L + m 2 I 0 S ~ ( k p ) exp ( + i φ ) H ~ ( k ) C H 1 + m 2 I 0 S ~ ( k + p ) exp ( i φ ) H ~ ( k ) C H 2 = ( C L + C H 1 + C H 2 )
D ~ 1 ( k ) = I 0 [ S ~ ( k ) + m 2 S ~ ( k p ) exp ( + i φ ) + m 2 S ~ ( k + p ) exp ( i ( φ ) ) ] H ~ ( k )
D ~ 2 ( k ) = I 0 [ S ~ ( k ) + m 2 S ~ ( k p ) exp ( + i ( φ + π ) ) + m 2 S ~ ( k + p ) exp ( i ( φ + π ) ) ] H ~ ( k )
D ~ w ( k ) = D ~ 1 ( k ) + D ~ 2 ( k ) = 2 I 0 S ~ ( k ) H ~ ( k )
V = k V ~ ( k ) V ~ ( k + p )
φ = arg k V ~ ( k ) V ~ ( k + p )
C L = β D ~ w ( k )
D ~ 1.2 ( k ) = [ D ~ 1 ( k ) β D ~ w ( k ) ] = [ I 0 2 β I 0 ] S ~ ( k ) H ~ ( k ) + m 2 I 0 S ~ ( k p ) exp ( + i φ ) H ~ ( k ) + m 2 I 0 S ~ ( k + p ) exp ( i φ ) H ~ ( k )
D ~ W i e n e r ( k ) = [ H ~ ( k ) | H ~ ( k ) | 2 + N a A 2 | k | 2 α ] D ~ w ( k )
S ~ s h i f t ( k ) = F [ { F 1 D ~ W i e n e r ( k ) } × exp ( i 2 π p r ) ] H ~ ( k ) exp ( i φ )
D ~ 1.3 ( k ) = D ~ 1.2 ( k ) ξ S ~ s h i f t ( k )
V 1 = k [ D ~ 1.2 ( k ) ξ S ~ s h i f t ( k ) ] [ D ~ 1.2 ( k ) ξ S ~ s h i f t ( k ) ]
ξ = k [ D ~ 1.2 ( k ) S ~ s h i f t ( k ) + D ~ 1.2 ( k ) S ~ s h i f t ( k ) ] 2 k D ~ 1.2 ( k ) D ~ 1.2 ( k )
S ~ H ( k ) = m I 0 2 S ~ ( k p ) H ~ ( k ) exp ( i φ ) + N R
N r = [ ξ ( A | k p | α W i e n e r ( A | k p | α ) H ~ ( k ) ) ] 2
S ~ ( k p ) R A = R A 1 ξ [ H ~ ( k ) | H ~ ( k ) | 2 + N R | ξ | 2 A 2 | k + p | 2 α ] S ~ H ( k )