Abstract

In this paper, high repetition rate flat coherent optical frequency comb generation based on the normal dispersion tantalum pentoxide (Ta2O5) optical waveguide is proposed and numerically investigated. The 1.2 meters long normal dispersion Ta2O5 integrated nonlinear waveguide through dispersion engineering is used to generate a flat optical frequency comb of about 50 nm span based on self-phase modulation and optical wave breaking near 1550 nm. The time-spectrum evolution during the pulse propagation process is analyzed by the X-Frog technique. The effects of various parameters on the broadening comb spectra bandwidth and flatness are considered, and the spectral coherence of the optical frequency comb is also studied. The simulation results show that the Ta2O5 integrated nonlinear waveguide has a great prospect in broadband high repetition rate flat coherent optical frequency comb generation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Supercontinuum-based 10-GHz flat-topped optical frequency comb generation

Rui Wu, Victor Torres-Company, Daniel E. Leaird, and Andrew M. Weiner
Opt. Express 21(5) 6045-6052 (2013)

Dual-pump frequency comb generation in normally dispersive optical fibers

Aku Antikainen and Govind P. Agrawal
J. Opt. Soc. Am. B 32(8) 1705-1711 (2015)

Midinfrared optical frequency comb based on difference frequency generation using high repetition rate Er-doped fiber laser with single wall carbon nanotube film

M. Tsuzuki, L. Jin, M. Yamanaka, V. Sonnenchein, H. Tomita, A. Sato, T. Ohara, Y. Sakakibara, E. Omoda, H. Kataura, T. Iguchi, and N. Nishizawa
Photon. Res. 4(6) 313-317 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. T. Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
    [Crossref]
  2. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
    [Crossref]
  3. Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
    [Crossref]
  4. A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33(16), 1905–1907 (2008).
    [Crossref]
  5. G. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
    [Crossref]
  6. M. C. Lo, R. Guzmán, M. Ali, R. Santos, L. Augustin, and G. Carpintero, “1.8-THz-wide optical frequency comb emitted from monolithic passively mode-locked semiconductor quantum-well laser,” Opt. Lett. 42(19), 3872–3875 (2017).
    [Crossref]
  7. http://www.calmarlaser.com/products/fiber_laser/eureka.php
  8. M. Imran, P. M. Anandarajah, A. K. Anandarajah, N. Sambo, and L. Poti, “A Survey of Optical Carrier Generation Techniques for Terabit Capacity Elastic Optical Networks,” IEEE Commun. Surv. Tutor. 20(1), 211–263 (2018).
    [Crossref]
  9. http://www.ramphotonics.com/cavityless/
  10. K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4(4), 406–411 (2017).
    [Crossref]
  11. J. Dai, Y. Dai, F. Yin, Y. Zhou, J. Li, Y. Fan, and K. Xu, “Compact optoelectronic oscillator based on a Fabry–Perot resonant electro-optic modulator,” Chin. Opt. Lett. 14, 110701 (2016).
    [Crossref]
  12. M. Zhang, B. Buscaino, C. Wang, A. S. Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
    [Crossref]
  13. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
    [Crossref]
  14. S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
    [Crossref]
  15. K. Yang, D. Oh, S. Lee, Q. Yang, X. Yi, B. Shen, H. Wang, and K. J. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
    [Crossref]
  16. S. Wang, H. Guo, X. Bai, and X. Zeng, “Broadband Kerr frequency combs and intracavity soliton dynamics influenced by high-order cavity dispersion,” Opt. Lett. 39(10), 2880–2883 (2014).
    [Crossref]
  17. A. Fülöp, M. Mazur, A. L. Riesgo, ÓB Helgason, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
    [Crossref]
  18. S. W. Huang, H. Liu, J. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression,” Sci. Rep. 6(1), 26255 (2016).
    [Crossref]
  19. H. Takara, “Multiple optical carrier generation from a supercontinuum source,” Opt. Photonics News 13(3), 48–51 (2002).
    [Crossref]
  20. S. Taccheo, K. Ennser, D. Forin, G. Tosi-Beleffi, and F. Curti, “Supercontinuum-based devices for telecom applications,” International Conference on Transparent Optical Networks, IEEE, 1, 32–36 (2006).
  21. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008).
    [Crossref]
  22. A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
    [Crossref]
  23. R. Wu, V. T. Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
    [Crossref]
  24. V. Ataie, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping,” J. Lightwave Technol. 32(4), 840–846 (2014).
    [Crossref]
  25. S. Yu, F. Bao, and H. Hu, “Broadband optical frequency comb generation with flexible frequency spacing and center wavelength,” IEEE Photonics J. 10(2), 1–7 (2018).
    [Crossref]
  26. E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20(3), 3331–3344 (2012).
    [Crossref]
  27. Q. Li, Y. Huang, Z. Jia, C. Yao, G. Qin, Y. Ohishi, and W. Qin, “Design of Fluorotellurite Microstructured Fibers With Near-Zero-Flattened Dispersion Profiles for Optical-Frequency Comb Generation,” J. Lightwave Technol. 36(11), 2211–2215 (2018).
    [Crossref]
  28. L. Gaeta A, M. Lipson, and J. Kippenberg T, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
    [Crossref]
  29. D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18(2), 923–930 (2010).
    [Crossref]
  30. X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619–624 (2017).
    [Crossref]
  31. X. Ji, X. Yao, M. A. Tadayon, A. Mohanty, C. P. Hendon, and M. Lipson, “High Confinement and Low Loss Si3N4 Waveguides for Miniaturizing Optical Coherence Tomography,” in CLEO2017, paper SM3C.4.
  32. T. H. Tan D, J. A. Ooi K, and K. T. Ng D, “Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform,” Photonics Res. 6(5), B50–B66 (2018).
    [Crossref]
  33. T. S. Saini, N. P. T. Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Coherent Mid-infrared Supercontinuum Generation using Rib Waveguide Pumped with Femtosecond Laser,” in CLEO2018, paper JTu2A.143.
  34. Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
    [Crossref]
  35. X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated High Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs,” ACS Photonics 5(5), 1943–1950 (2018).
    [Crossref]
  36. E. Stassen, M. Pu, E. Semenova, E. Zavarin, W. Lundin, and K. Yvind, “High-confinement gallium nitride-on-sapphire waveguides for integrated nonlinear photonics,” Opt. Lett. 44(5), 1064–1067 (2019).
    [Crossref]
  37. D. J. Wilson, K. Schneider, S. Hoenl, M. Anderson, T. J. Kippenberg, and P. Seidler, “Integrated gallium phosphide nonlinear photonics,” https://arxiv.org/abs/1808.03554
  38. H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
    [Crossref]
  39. M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Lončar, “Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides,” Opt. Lett. 44(5), 1222–1225 (2019).
    [Crossref]
  40. C. Wu, J. Huang, D. Ou, T. Liao, Y. Chiu, M. Shih, Y. Lin, A. Chu, and C. Lee, “Efficient wavelength conversion with low operation power in a Ta2O5 based micro-ring resonator,” Opt. Lett. 42(23), 4804–4807 (2017).
    [Crossref]
  41. Y. Okawachi, M. Yu, J. Cardenas, X. Ji, M. Lipson, and A. L. Gaeta, “Coherent, directional supercontinuum generation,” Opt. Lett. 42(21), 4466–4469 (2017).
    [Crossref]
  42. H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
    [Crossref]
  43. C. Lacava, M. A. Ettabib, and P. Petropoulos, “Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks,” Appl. Sci. 7(1), 103 (2017).
    [Crossref]
  44. R. Fan, C. Wu, Y. Lin, C. Liu, P. Hwang, C. Liu, J. Qiao, M. Shih, Y. Hung, Y. Chiu, A. Chu, and C. Lee, “Visible to near-infrared octave spanning supercontinuum generation in tantalum pentoxide (Ta2O5) air-cladding waveguide,” Opt. Lett. 44(6), 1512–1515 (2019).
    [Crossref]
  45. C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Ballanda, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng., R 22(6), 269–322 (1998).
    [Crossref]
  46. M. Belt, M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, “Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates,” Optica 4(5), 532–536 (2017).
    [Crossref]
  47. M. Itoh, T. Kominato, M. Abe, M. Itoh, and T. Hashimoto, “Low-Loss Silica-Based SiO2-Ta2O5 Waveguides With Extremely High Δ Fabricated Using Sputtered Thin Films,” J. Lightwave Technol. 33(2), 318–323 (2015).
    [Crossref]
  48. R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness,” Nanomaterials 8(11), 910 (2018).
    [Crossref]
  49. G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013).
  50. O. Lysenko, M. Bache, and A. Lavrinenko, “Nonlinear optical model for strip plasmonic waveguides,” J. Opt. Soc. Am. B 33(7), 1341–1348 (2016).
    [Crossref]
  51. I. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  52. M Hirano, Y Yamamoto, and T. Hasegawa, “Silica-based highly nonlinear fiber advances,” in OFC2016: Tu2E. 4.
  53. M. Dudley J, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).
  54. M. Dudley J, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  55. X. Yang, D. J. Richardson, and P. Petropoulos, “Nonlinear Generation of Ultra-Flat Broadened Spectrum Based on Adaptive Pulse Shaping,” J. Lightwave Technol. 30(12), 1971–1977 (2012).
    [Crossref]

2019 (5)

2018 (12)

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

T. H. Tan D, J. A. Ooi K, and K. T. Ng D, “Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform,” Photonics Res. 6(5), B50–B66 (2018).
[Crossref]

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated High Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs,” ACS Photonics 5(5), 1943–1950 (2018).
[Crossref]

S. Yu, F. Bao, and H. Hu, “Broadband optical frequency comb generation with flexible frequency spacing and center wavelength,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

Q. Li, Y. Huang, Z. Jia, C. Yao, G. Qin, Y. Ohishi, and W. Qin, “Design of Fluorotellurite Microstructured Fibers With Near-Zero-Flattened Dispersion Profiles for Optical-Frequency Comb Generation,” J. Lightwave Technol. 36(11), 2211–2215 (2018).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

M. Imran, P. M. Anandarajah, A. K. Anandarajah, N. Sambo, and L. Poti, “A Survey of Optical Carrier Generation Techniques for Terabit Capacity Elastic Optical Networks,” IEEE Commun. Surv. Tutor. 20(1), 211–263 (2018).
[Crossref]

K. Yang, D. Oh, S. Lee, Q. Yang, X. Yi, B. Shen, H. Wang, and K. J. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

A. Fülöp, M. Mazur, A. L. Riesgo, ÓB Helgason, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness,” Nanomaterials 8(11), 910 (2018).
[Crossref]

2017 (9)

M. Belt, M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, “Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates,” Optica 4(5), 532–536 (2017).
[Crossref]

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619–624 (2017).
[Crossref]

M. C. Lo, R. Guzmán, M. Ali, R. Santos, L. Augustin, and G. Carpintero, “1.8-THz-wide optical frequency comb emitted from monolithic passively mode-locked semiconductor quantum-well laser,” Opt. Lett. 42(19), 3872–3875 (2017).
[Crossref]

A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
[Crossref]

K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4(4), 406–411 (2017).
[Crossref]

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

C. Wu, J. Huang, D. Ou, T. Liao, Y. Chiu, M. Shih, Y. Lin, A. Chu, and C. Lee, “Efficient wavelength conversion with low operation power in a Ta2O5 based micro-ring resonator,” Opt. Lett. 42(23), 4804–4807 (2017).
[Crossref]

Y. Okawachi, M. Yu, J. Cardenas, X. Ji, M. Lipson, and A. L. Gaeta, “Coherent, directional supercontinuum generation,” Opt. Lett. 42(21), 4466–4469 (2017).
[Crossref]

C. Lacava, M. A. Ettabib, and P. Petropoulos, “Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks,” Appl. Sci. 7(1), 103 (2017).
[Crossref]

2016 (3)

2015 (1)

2014 (3)

2013 (1)

2012 (2)

2011 (1)

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

2010 (1)

2009 (1)

G. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

2008 (2)

2007 (1)

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

2006 (1)

M. Dudley J, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2002 (1)

H. Takara, “Multiple optical carrier generation from a supercontinuum source,” Opt. Photonics News 13(3), 48–51 (2002).
[Crossref]

1998 (1)

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Ballanda, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng., R 22(6), 269–322 (1998).
[Crossref]

1965 (1)

Abe, M.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013).

Akrout, A.

G. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Ali, M.

Alic, N.

Amma, Y.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Anandarajah, A. K.

M. Imran, P. M. Anandarajah, A. K. Anandarajah, N. Sambo, and L. Poti, “A Survey of Optical Carrier Generation Techniques for Terabit Capacity Elastic Optical Networks,” IEEE Commun. Surv. Tutor. 20(1), 211–263 (2018).
[Crossref]

Anandarajah, P. M.

M. Imran, P. M. Anandarajah, A. K. Anandarajah, N. Sambo, and L. Poti, “A Survey of Optical Carrier Generation Techniques for Terabit Capacity Elastic Optical Networks,” IEEE Commun. Surv. Tutor. 20(1), 211–263 (2018).
[Crossref]

Anderson, M.

D. J. Wilson, K. Schneider, S. Hoenl, M. Anderson, T. J. Kippenberg, and P. Seidler, “Integrated gallium phosphide nonlinear photonics,” https://arxiv.org/abs/1808.03554

Andrekson, P. A.

A. Fülöp, M. Mazur, A. L. Riesgo, ÓB Helgason, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

Ansari, A. S.

M. Zhang, B. Buscaino, C. Wang, A. S. Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Ataie, V.

Augustin, L.

Autran, J. L.

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Ballanda, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng., R 22(6), 269–322 (1998).
[Crossref]

Bache, M.

Bai, X.

Ballanda, B.

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Ballanda, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng., R 22(6), 269–322 (1998).
[Crossref]

Bao, C.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Bao, F.

S. Yu, F. Bao, and H. Hu, “Broadband optical frequency comb generation with flexible frequency spacing and center wavelength,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

Barbosa, F. A. S.

Bartels, A.

Becker, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Beha, K.

Belt, M.

Ben Ezra, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Billat, A.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Blache, F.

G. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Blumenthal, D. J.

Bonk, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Bowers, J. E.

Brès, C. S.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Bryant, A.

Buscaino, B.

M. Zhang, B. Buscaino, C. Wang, A. S. Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Cardenas, J.

Carpintero, G.

Chai, Z.

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness,” Nanomaterials 8(11), 910 (2018).
[Crossref]

Chaneliere, C.

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Ballanda, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng., R 22(6), 269–322 (1998).
[Crossref]

Cheng, Y.

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness,” Nanomaterials 8(11), 910 (2018).
[Crossref]

Chiu, Y.

Chu, A.

Chu, S.

Chu, W.

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness,” Nanomaterials 8(11), 910 (2018).
[Crossref]

Coen, S.

M. Dudley J, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Coillet, A.

Cole, D. C.

Company, V. T.

V. T. Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

R. Wu, V. T. Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
[Crossref]

Curti, F.

S. Taccheo, K. Ennser, D. Forin, G. Tosi-Beleffi, and F. Curti, “Supercontinuum-based devices for telecom applications,” International Conference on Transparent Optical Networks, IEEE, 1, 32–36 (2006).

Da Ros, F.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

da Silva, E. P.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Dai, J.

Dai, Y.

Davenport, M. L.

Del’Haye, P.

Desiatov, B.

Devine, R. A. B.

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Ballanda, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng., R 22(6), 269–322 (1998).
[Crossref]

Diddams, S. A.

Dijk, F. V.

G. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Dreschmann, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Du, Q.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Du, T.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Duan, G.

G. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Duchesne, D.

Dudley J, M.

M. Dudley J, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

M. Dudley J, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).

Dutt, A.

Ellermeyer, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Ennser, K.

S. Taccheo, K. Ennser, D. Forin, G. Tosi-Beleffi, and F. Curti, “Supercontinuum-based devices for telecom applications,” International Conference on Transparent Optical Networks, IEEE, 1, 32–36 (2006).

Ettabib, M. A.

C. Lacava, M. A. Ettabib, and P. Petropoulos, “Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks,” Appl. Sci. 7(1), 103 (2017).
[Crossref]

Fan, R.

Fan, Y.

Fang, Z.

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness,” Nanomaterials 8(11), 910 (2018).
[Crossref]

Feehan, J. S.

Ferrera, M.

Feurer, T.

Finot, C.

Forin, D.

S. Taccheo, K. Ennser, D. Forin, G. Tosi-Beleffi, and F. Curti, “Supercontinuum-based devices for telecom applications,” International Conference on Transparent Optical Networks, IEEE, 1, 32–36 (2006).

Freude, W.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Frey, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Fülöp, A.

A. Fülöp, M. Mazur, A. L. Riesgo, ÓB Helgason, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

Gaeta, A. L.

Gaeta A, L.

L. Gaeta A, M. Lipson, and J. Kippenberg T, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

Galili, M.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Gariah, H.

G. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Genty, G.

M. Dudley J, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gorodetsky, M. L.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

Grassani, D.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Gu, T.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Guan, P.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Guo, H.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

S. Wang, H. Guo, X. Bai, and X. Zeng, “Broadband Kerr frequency combs and intracavity soliton dynamics influenced by high-order cavity dispersion,” Opt. Lett. 39(10), 2880–2883 (2014).
[Crossref]

Guzmán, R.

Han, K.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Han, Y.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated High Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs,” ACS Photonics 5(5), 1943–1950 (2018).
[Crossref]

Hao, Z.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated High Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs,” ACS Photonics 5(5), 1943–1950 (2018).
[Crossref]

Hasegawa, T.

M Hirano, Y Yamamoto, and T. Hasegawa, “Silica-based highly nonlinear fiber advances,” in OFC2016: Tu2E. 4.

Hashimoto, T.

Heidt, A. M.

Heinecke, D.

Helgason, ÓB

A. Fülöp, M. Mazur, A. L. Riesgo, ÓB Helgason, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

Hendon, C. P.

X. Ji, X. Yao, M. A. Tadayon, A. Mohanty, C. P. Hendon, and M. Lipson, “High Confinement and Low Loss Si3N4 Waveguides for Miniaturizing Optical Coherence Tomography,” in CLEO2017, paper SM3C.4.

Herkommer, C.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Hillerkuss, D.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Hirano, M

M Hirano, Y Yamamoto, and T. Hasegawa, “Silica-based highly nonlinear fiber advances,” in OFC2016: Tu2E. 4.

Hoa, N. P. T.

T. S. Saini, N. P. T. Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Coherent Mid-infrared Supercontinuum Generation using Rib Waveguide Pumped with Femtosecond Laser,” in CLEO2018, paper JTu2A.143.

Hoenl, S.

D. J. Wilson, K. Schneider, S. Hoenl, M. Anderson, T. J. Kippenberg, and P. Seidler, “Integrated gallium phosphide nonlinear photonics,” https://arxiv.org/abs/1808.03554

Hoh, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Hu, H.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

S. Yu, F. Bao, and H. Hu, “Broadband optical frequency comb generation with flexible frequency spacing and center wavelength,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

Hu, J.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Huang, C. B.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Huang, J.

Huang, S. W.

S. W. Huang, H. Liu, J. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression,” Sci. Rep. 6(1), 26255 (2016).
[Crossref]

Huang, Y.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Q. Li, Y. Huang, Z. Jia, C. Yao, G. Qin, Y. Ohishi, and W. Qin, “Design of Fluorotellurite Microstructured Fibers With Near-Zero-Flattened Dispersion Profiles for Optical-Frequency Comb Generation,” J. Lightwave Technol. 36(11), 2211–2215 (2018).
[Crossref]

Huber, G.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Huebner, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Hung, Y.

Hwang, P.

Imran, M.

M. Imran, P. M. Anandarajah, A. K. Anandarajah, N. Sambo, and L. Poti, “A Survey of Optical Carrier Generation Techniques for Terabit Capacity Elastic Optical Networks,” IEEE Commun. Surv. Tutor. 20(1), 211–263 (2018).
[Crossref]

Ingerslev, K.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Itoh, M.

Jaramillo-Villegas, J. A.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Ji, X.

Jia, Z.

Jiang, Z.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Jordan, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Kahn, J. M.

M. Zhang, B. Buscaino, C. Wang, A. S. Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Kibler, B.

Kim, S.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

D. J. Wilson, K. Schneider, S. Hoenl, M. Anderson, T. J. Kippenberg, and P. Seidler, “Integrated gallium phosphide nonlinear photonics,” https://arxiv.org/abs/1808.03554

Kippenberg T, J.

L. Gaeta A, M. Lipson, and J. Kippenberg T, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

Kleinow, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Koenig, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Kominato, T.

Koos, C.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Kuo, B. P. P.

Kuo, B. P.-P.

Kwong, D.-L.

S. W. Huang, H. Liu, J. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression,” Sci. Rep. 6(1), 26255 (2016).
[Crossref]

Lacava, C.

C. Lacava, M. A. Ettabib, and P. Petropoulos, “Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks,” Appl. Sci. 7(1), 103 (2017).
[Crossref]

Lamont, M. R. E.

Lavrinenko, A.

Leaird, D. E.

A. Fülöp, M. Mazur, A. L. Riesgo, ÓB Helgason, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

R. Wu, V. T. Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
[Crossref]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Lee, C.

Lee, S.

K. Yang, D. Oh, S. Lee, Q. Yang, X. Yi, B. Shen, H. Wang, and K. J. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Légaré, F.

LeGouezigou, O.

G. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Lelarge, F.

G. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Leuthold, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Li, H.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated High Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs,” ACS Photonics 5(5), 1943–1950 (2018).
[Crossref]

Li, J.

J. Dai, Y. Dai, F. Yin, Y. Zhou, J. Li, Y. Fan, and K. Xu, “Compact optoelectronic oscillator based on a Fabry–Perot resonant electro-optic modulator,” Chin. Opt. Lett. 14, 110701 (2016).
[Crossref]

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Li, Q.

Liao, T.

Lin, J.

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness,” Nanomaterials 8(11), 910 (2018).
[Crossref]

Lin, Y.

Lipson, M.

L. Gaeta A, M. Lipson, and J. Kippenberg T, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

Y. Okawachi, M. Yu, J. Cardenas, X. Ji, M. Lipson, and A. L. Gaeta, “Coherent, directional supercontinuum generation,” Opt. Lett. 42(21), 4466–4469 (2017).
[Crossref]

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619–624 (2017).
[Crossref]

X. Ji, X. Yao, M. A. Tadayon, A. Mohanty, C. P. Hendon, and M. Lipson, “High Confinement and Low Loss Si3N4 Waveguides for Miniaturizing Optical Coherence Tomography,” in CLEO2017, paper SM3C.4.

Little, B. E.

Liu, C.

Liu, H.

S. W. Huang, H. Liu, J. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression,” Sci. Rep. 6(1), 26255 (2016).
[Crossref]

Liu, X.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated High Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs,” ACS Photonics 5(5), 1943–1950 (2018).
[Crossref]

Lo, M. C.

Loncar, M.

M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Lončar, “Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides,” Opt. Lett. 44(5), 1222–1225 (2019).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. S. Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Ludwig, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Lundin, W.

Luo, X.

T. S. Saini, N. P. T. Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Coherent Mid-infrared Supercontinuum Generation using Rib Waveguide Pumped with Femtosecond Laser,” in CLEO2018, paper JTu2A.143.

Luo, Y.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated High Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs,” ACS Photonics 5(5), 1943–1950 (2018).
[Crossref]

Luo, Z.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Lutz, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Lysenko, O.

Malitson, I.

Mallecot, F.

G. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Marculescu, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Martinez, A.

G. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Mazur, M.

A. Fülöp, M. Mazur, A. L. Riesgo, ÓB Helgason, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

Merghem, K.

G. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Meyer, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Miyamoto, Y.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Mizuno, T.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Moeller, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Mohanty, A.

X. Ji, X. Yao, M. A. Tadayon, A. Mohanty, C. P. Hendon, and M. Lipson, “High Confinement and Low Loss Si3N4 Waveguides for Miniaturizing Optical Coherence Tomography,” in CLEO2017, paper SM3C.4.

Morandotti, R.

Morioka, T.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Moss, D. J.

Myslivets, E.

Nagasaka, K.

T. S. Saini, N. P. T. Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Coherent Mid-infrared Supercontinuum Generation using Rib Waveguide Pumped with Femtosecond Laser,” in CLEO2018, paper JTu2A.143.

Narkiss, N.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Nebendahl, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Ng D, K. T.

T. H. Tan D, J. A. Ooi K, and K. T. Ng D, “Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform,” Photonics Res. 6(5), B50–B66 (2018).
[Crossref]

Nooruzzaman, M.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Oehler, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Oh, D.

K. Yang, D. Oh, S. Lee, Q. Yang, X. Yi, B. Shen, H. Wang, and K. J. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Ohishi, Y.

Q. Li, Y. Huang, Z. Jia, C. Yao, G. Qin, Y. Ohishi, and W. Qin, “Design of Fluorotellurite Microstructured Fibers With Near-Zero-Flattened Dispersion Profiles for Optical-Frequency Comb Generation,” J. Lightwave Technol. 36(11), 2211–2215 (2018).
[Crossref]

T. S. Saini, N. P. T. Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Coherent Mid-infrared Supercontinuum Generation using Rib Waveguide Pumped with Femtosecond Laser,” in CLEO2018, paper JTu2A.143.

Okawachi, Y.

Ooi K, J. A.

T. H. Tan D, J. A. Ooi K, and K. T. Ng D, “Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform,” Photonics Res. 6(5), B50–B66 (2018).
[Crossref]

Ottaviano, L.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Ou, D.

Oxenløwe, L. K.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Papp, S. B.

Parmigiani, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Peccianti, M.

Petropoulos, P.

C. Lacava, M. A. Ettabib, and P. Petropoulos, “Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks,” Appl. Sci. 7(1), 103 (2017).
[Crossref]

X. Yang, D. J. Richardson, and P. Petropoulos, “Nonlinear Generation of Ultra-Flat Broadened Spectrum Based on Adaptive Pulse Shaping,” J. Lightwave Technol. 30(12), 1971–1977 (2012).
[Crossref]

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Pfeiffer, M. H. P.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Pommereau, F.

G. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Poti, L.

M. Imran, P. M. Anandarajah, A. K. Anandarajah, N. Sambo, and L. Poti, “A Survey of Optical Carrier Generation Techniques for Terabit Capacity Elastic Optical Networks,” IEEE Commun. Surv. Tutor. 20(1), 211–263 (2018).
[Crossref]

Price, J. H. V.

Provost, J. G.

G. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Provost, L.

Pu, M.

E. Stassen, M. Pu, E. Semenova, E. Zavarin, W. Lundin, and K. Yvind, “High-confinement gallium nitride-on-sapphire waveguides for integrated nonlinear photonics,” Opt. Lett. 44(5), 1064–1067 (2019).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Qi, J.

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness,” Nanomaterials 8(11), 910 (2018).
[Crossref]

Qi, M.

A. Fülöp, M. Mazur, A. L. Riesgo, ÓB Helgason, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Qiao, J.

Qiao, L.

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness,” Nanomaterials 8(11), 910 (2018).
[Crossref]

Qin, G.

Qin, W.

Radic, S.

Ramdane, A.

G. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Razzari, L.

Reimer, C.

M. Zhang, B. Buscaino, C. Wang, A. S. Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Resan, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Richardson, D. J.

Riesgo, A. L.

A. Fülöp, M. Mazur, A. L. Riesgo, ÓB Helgason, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

Roberts, S. P.

Roeger, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Saini, T. S.

T. S. Saini, N. P. T. Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Coherent Mid-infrared Supercontinuum Generation using Rib Waveguide Pumped with Femtosecond Laser,” in CLEO2018, paper JTu2A.143.

Sambo, N.

M. Imran, P. M. Anandarajah, A. K. Anandarajah, N. Sambo, and L. Poti, “A Survey of Optical Carrier Generation Techniques for Terabit Capacity Elastic Optical Networks,” IEEE Commun. Surv. Tutor. 20(1), 211–263 (2018).
[Crossref]

Santos, R.

Sasaki, Y.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Schellinger, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Schmogrow, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Schneider, K.

D. J. Wilson, K. Schneider, S. Hoenl, M. Anderson, T. J. Kippenberg, and P. Seidler, “Integrated gallium phosphide nonlinear photonics,” https://arxiv.org/abs/1808.03554

Seidler, P.

D. J. Wilson, K. Schneider, S. Hoenl, M. Anderson, T. J. Kippenberg, and P. Seidler, “Integrated gallium phosphide nonlinear photonics,” https://arxiv.org/abs/1808.03554

Semenova, E.

E. Stassen, M. Pu, E. Semenova, E. Zavarin, W. Lundin, and K. Yvind, “High-confinement gallium nitride-on-sapphire waveguides for integrated nonlinear photonics,” Opt. Lett. 44(5), 1064–1067 (2019).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Shen, A.

G. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Shen, B.

K. Yang, D. Oh, S. Lee, Q. Yang, X. Yi, B. Shen, H. Wang, and K. J. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Shih, M.

Stassen, E.

Sun, C.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated High Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs,” ACS Photonics 5(5), 1943–1950 (2018).
[Crossref]

Suzuki, T.

T. S. Saini, N. P. T. Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Coherent Mid-infrared Supercontinuum Generation using Rib Waveguide Pumped with Femtosecond Laser,” in CLEO2018, paper JTu2A.143.

Taccheo, S.

S. Taccheo, K. Ennser, D. Forin, G. Tosi-Beleffi, and F. Curti, “Supercontinuum-based devices for telecom applications,” International Conference on Transparent Optical Networks, IEEE, 1, 32–36 (2006).

Tadayon, M. A.

X. Ji, X. Yao, M. A. Tadayon, A. Mohanty, C. P. Hendon, and M. Lipson, “High Confinement and Low Loss Si3N4 Waveguides for Miniaturizing Optical Coherence Tomography,” in CLEO2017, paper SM3C.4.

Takara, H.

H. Takara, “Multiple optical carrier generation from a supercontinuum source,” Opt. Photonics News 13(3), 48–51 (2002).
[Crossref]

Tan D, T. H.

T. H. Tan D, J. A. Ooi K, and K. T. Ng D, “Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform,” Photonics Res. 6(5), B50–B66 (2018).
[Crossref]

Torres-Company, V.

A. Fülöp, M. Mazur, A. L. Riesgo, ÓB Helgason, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

Tosi-Beleffi, G.

S. Taccheo, K. Ennser, D. Forin, G. Tosi-Beleffi, and F. Curti, “Supercontinuum-based devices for telecom applications,” International Conference on Transparent Optical Networks, IEEE, 1, 32–36 (2006).

Tuan, T. H.

T. S. Saini, N. P. T. Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Coherent Mid-infrared Supercontinuum Generation using Rib Waveguide Pumped with Femtosecond Laser,” in CLEO2018, paper JTu2A.143.

Vahala, K. J.

K. Yang, D. Oh, S. Lee, Q. Yang, X. Yi, B. Shen, H. Wang, and K. J. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Vallaitis, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Wabnitz, S.

Wang, C.

M. Zhang, B. Buscaino, C. Wang, A. S. Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Wang, H.

K. Yang, D. Oh, S. Lee, Q. Yang, X. Yi, B. Shen, H. Wang, and K. J. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Wang, J.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated High Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs,” ACS Photonics 5(5), 1943–1950 (2018).
[Crossref]

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated High Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs,” ACS Photonics 5(5), 1943–1950 (2018).
[Crossref]

Wang, L.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated High Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs,” ACS Photonics 5(5), 1943–1950 (2018).
[Crossref]

Wang, M.

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness,” Nanomaterials 8(11), 910 (2018).
[Crossref]

Wang, P.

A. Fülöp, M. Mazur, A. L. Riesgo, ÓB Helgason, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

Wang, S.

Wei, T.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated High Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs,” ACS Photonics 5(5), 1943–1950 (2018).
[Crossref]

Weiner, A. M.

A. Fülöp, M. Mazur, A. L. Riesgo, ÓB Helgason, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

V. T. Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

R. Wu, V. T. Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
[Crossref]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Weingarten, K.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Weng, W.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Wilson, D. J.

D. J. Wilson, K. Schneider, S. Hoenl, M. Anderson, T. J. Kippenberg, and P. Seidler, “Integrated gallium phosphide nonlinear photonics,” https://arxiv.org/abs/1808.03554

Winter, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Wong, C. W.

S. W. Huang, H. Liu, J. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression,” Sci. Rep. 6(1), 26255 (2016).
[Crossref]

Wu, C.

Wu, R.

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness,” Nanomaterials 8(11), 910 (2018).
[Crossref]

R. Wu, V. T. Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
[Crossref]

Xiong, B.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated High Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs,” ACS Photonics 5(5), 1943–1950 (2018).
[Crossref]

Xu, J.

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness,” Nanomaterials 8(11), 910 (2018).
[Crossref]

Xu, K.

Xuan, Y.

A. Fülöp, M. Mazur, A. L. Riesgo, ÓB Helgason, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Xue, X.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Yamamoto, Y

M Hirano, Y Yamamoto, and T. Hasegawa, “Silica-based highly nonlinear fiber advances,” in OFC2016: Tu2E. 4.

Yan, J.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated High Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs,” ACS Photonics 5(5), 1943–1950 (2018).
[Crossref]

Yang, J.

S. W. Huang, H. Liu, J. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression,” Sci. Rep. 6(1), 26255 (2016).
[Crossref]

Yang, K.

K. Yang, D. Oh, S. Lee, Q. Yang, X. Yi, B. Shen, H. Wang, and K. J. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Yang, Q.

K. Yang, D. Oh, S. Lee, Q. Yang, X. Yi, B. Shen, H. Wang, and K. J. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Yang, X.

Yao, C.

Yao, X.

X. Ji, X. Yao, M. A. Tadayon, A. Mohanty, C. P. Hendon, and M. Lipson, “High Confinement and Low Loss Si3N4 Waveguides for Miniaturizing Optical Coherence Tomography,” in CLEO2017, paper SM3C.4.

Ye, F.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Yi, X.

K. Yang, D. Oh, S. Lee, Q. Yang, X. Yi, B. Shen, H. Wang, and K. J. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Yin, F.

Yu, M.

Yu, S.

S. Yu, F. Bao, and H. Hu, “Broadband optical frequency comb generation with flexible frequency spacing and center wavelength,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

Yvind, K.

E. Stassen, M. Pu, E. Semenova, E. Zavarin, W. Lundin, and K. Yvind, “High-confinement gallium nitride-on-sapphire waveguides for integrated nonlinear photonics,” Opt. Lett. 44(5), 1064–1067 (2019).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Zavarin, E.

Zeng, X.

Zhang, C.

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Zhang, J.

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness,” Nanomaterials 8(11), 910 (2018).
[Crossref]

Zhang, M.

M. Zhang, B. Buscaino, C. Wang, A. S. Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Zhang, W.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Zhang, Y.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated High Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs,” ACS Photonics 5(5), 1943–1950 (2018).
[Crossref]

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Zhong, H.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Zhou, J.

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness,” Nanomaterials 8(11), 910 (2018).
[Crossref]

Zhou, Y.

Zhu, R.

M. Zhang, B. Buscaino, C. Wang, A. S. Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Zibar, D.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

ACS Photonics (1)

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated High Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs,” ACS Photonics 5(5), 1943–1950 (2018).
[Crossref]

Appl. Sci. (1)

C. Lacava, M. A. Ettabib, and P. Petropoulos, “Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks,” Appl. Sci. 7(1), 103 (2017).
[Crossref]

Bell Labs Tech. J. (1)

G. Duan, A. Shen, A. Akrout, F. V. Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J. G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Commun. Surv. Tutor. (1)

M. Imran, P. M. Anandarajah, A. K. Anandarajah, N. Sambo, and L. Poti, “A Survey of Optical Carrier Generation Techniques for Terabit Capacity Elastic Optical Networks,” IEEE Commun. Surv. Tutor. 20(1), 211–263 (2018).
[Crossref]

IEEE Photonics J. (1)

S. Yu, F. Bao, and H. Hu, “Broadband optical frequency comb generation with flexible frequency spacing and center wavelength,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

Laser Photonics Rev. (1)

V. T. Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

Mater. Sci. Eng., R (1)

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Ballanda, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng., R 22(6), 269–322 (1998).
[Crossref]

Nanomaterials (1)

R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness,” Nanomaterials 8(11), 910 (2018).
[Crossref]

Nat. Commun. (2)

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

A. Fülöp, M. Mazur, A. L. Riesgo, ÓB Helgason, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

Nat. Photonics (6)

K. Yang, D. Oh, S. Lee, Q. Yang, X. Yi, B. Shen, H. Wang, and K. J. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s linerate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

L. Gaeta A, M. Lipson, and J. Kippenberg T, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. S. Brès, and T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides,” Nat. Photonics 12(6), 330–335 (2018).
[Crossref]

Nature (1)

M. Zhang, B. Buscaino, C. Wang, A. S. Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Opt. Express (3)

Opt. Lett. (8)

M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Lončar, “Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides,” Opt. Lett. 44(5), 1222–1225 (2019).
[Crossref]

C. Wu, J. Huang, D. Ou, T. Liao, Y. Chiu, M. Shih, Y. Lin, A. Chu, and C. Lee, “Efficient wavelength conversion with low operation power in a Ta2O5 based micro-ring resonator,” Opt. Lett. 42(23), 4804–4807 (2017).
[Crossref]

Y. Okawachi, M. Yu, J. Cardenas, X. Ji, M. Lipson, and A. L. Gaeta, “Coherent, directional supercontinuum generation,” Opt. Lett. 42(21), 4466–4469 (2017).
[Crossref]

S. Wang, H. Guo, X. Bai, and X. Zeng, “Broadband Kerr frequency combs and intracavity soliton dynamics influenced by high-order cavity dispersion,” Opt. Lett. 39(10), 2880–2883 (2014).
[Crossref]

A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33(16), 1905–1907 (2008).
[Crossref]

M. C. Lo, R. Guzmán, M. Ali, R. Santos, L. Augustin, and G. Carpintero, “1.8-THz-wide optical frequency comb emitted from monolithic passively mode-locked semiconductor quantum-well laser,” Opt. Lett. 42(19), 3872–3875 (2017).
[Crossref]

E. Stassen, M. Pu, E. Semenova, E. Zavarin, W. Lundin, and K. Yvind, “High-confinement gallium nitride-on-sapphire waveguides for integrated nonlinear photonics,” Opt. Lett. 44(5), 1064–1067 (2019).
[Crossref]

R. Fan, C. Wu, Y. Lin, C. Liu, P. Hwang, C. Liu, J. Qiao, M. Shih, Y. Hung, Y. Chiu, A. Chu, and C. Lee, “Visible to near-infrared octave spanning supercontinuum generation in tantalum pentoxide (Ta2O5) air-cladding waveguide,” Opt. Lett. 44(6), 1512–1515 (2019).
[Crossref]

Opt. Photonics News (1)

H. Takara, “Multiple optical carrier generation from a supercontinuum source,” Opt. Photonics News 13(3), 48–51 (2002).
[Crossref]

Optica (3)

Photonics Res. (2)

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

T. H. Tan D, J. A. Ooi K, and K. T. Ng D, “Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform,” Photonics Res. 6(5), B50–B66 (2018).
[Crossref]

Rev. Mod. Phys. (1)

M. Dudley J, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Sci. Rep. (1)

S. W. Huang, H. Liu, J. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression,” Sci. Rep. 6(1), 26255 (2016).
[Crossref]

Science (1)

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

Other (9)

S. Taccheo, K. Ennser, D. Forin, G. Tosi-Beleffi, and F. Curti, “Supercontinuum-based devices for telecom applications,” International Conference on Transparent Optical Networks, IEEE, 1, 32–36 (2006).

http://www.calmarlaser.com/products/fiber_laser/eureka.php

http://www.ramphotonics.com/cavityless/

T. S. Saini, N. P. T. Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Coherent Mid-infrared Supercontinuum Generation using Rib Waveguide Pumped with Femtosecond Laser,” in CLEO2018, paper JTu2A.143.

X. Ji, X. Yao, M. A. Tadayon, A. Mohanty, C. P. Hendon, and M. Lipson, “High Confinement and Low Loss Si3N4 Waveguides for Miniaturizing Optical Coherence Tomography,” in CLEO2017, paper SM3C.4.

G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013).

M Hirano, Y Yamamoto, and T. Hasegawa, “Silica-based highly nonlinear fiber advances,” in OFC2016: Tu2E. 4.

M. Dudley J, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).

D. J. Wilson, K. Schneider, S. Hoenl, M. Anderson, T. J. Kippenberg, and P. Seidler, “Integrated gallium phosphide nonlinear photonics,” https://arxiv.org/abs/1808.03554

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Dispersion engineering of the Ta2O5 waveguide: (a)Ta2O5 waveguide structure; (b) The all guided mode field distribution of the waveguide with 690 nm × 2300 nm at 1550 nm; (c) TE0 mode field of the integrated waveguide with 690 nm × 2300 nm cross-section dimensions (Ta2O5-core/SiO2-clad); (d) Simulated GVD with a fixed height of 690 nm while the width changes; (e) Simulated GVD with a fixed width of 2300 nm while the height changes; (f) The effective mode field area Aeff and the nonlinear coefficient γ of the TE0 mode with the 690 nm × 2300 nm Ta2O5 waveguide structure.
Fig. 2.
Fig. 2. Schematic diagram of the broadband high repetition rate optical frequency comb generation.
Fig. 3.
Fig. 3. Simulation results of an initial unchirped hyperbolic secant pulse propagates in a 1.2 m long Ta2O5 waveguide: (a) Evolution of the spectrum and the pulse during the propagation; (b) The three-dimensional evolution of the spectrum and pulse during the propagation; (c) The spectrum and pulse envelope when the pulse propagates to 1.2 m.
Fig. 4.
Fig. 4. Spectrograms of the initial unchirped hyperbolic secant pulse at various propagation lengths: (a) 0 m; (b) 0.4 m; (c) 1.2 m; (d) 2.0 m.
Fig. 5.
Fig. 5. The final broadening spectra under the condition that only one parameter is changed while the other parameters are constant: (a) only change β2; (b) only change P0; (c) only change T0; (d) only change β3; (e) only change chirp parameters C; (f) only change loss α; (g) only change input pulse waveform.
Fig. 6.
Fig. 6. Spectral coherence of the optical frequency comb generated by a hyperbolic secant pulse propagating in 1.2 m long integrated waveguide.

Tables (2)

Tables Icon

Table 1. Four low loss integrated platforms with the material and waveguide propagation loss parameters

Tables Icon

Table 2. The parameters used in the simulation.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ϕ NL, max = γ P 0 L eff , max
D = d τ d λ = 2 π λ 2 β 2 λ c d 2 n e f f d λ 2
n T a 2 O 5 = 2. 06 + 0 .025 λ 2
n S i O 2 2 = 1 + 0.6961663 λ 2 λ 2 0.0684043 2 + 0.4079426 λ 2 λ 2 0.1162414 2 + 0.8974794 λ 2 λ 2 9.896161 2
A z + α 2 A i k >= 2 i k β k k ! k A T k = i γ ( | A | 2 A + i λ 0 2 π c T ( | A | 2 A ) T R A | A | 2 T )
I ( τ , ω ) = | A ( z , t ) A r e f ( t τ ) exp ( i ω t ) d t | 2
| ω S P M ( Z O W B ) ω 0 | max ( γ P 0 / | β 2 | ) 1 / 2
Z O W B T 0 1 / γ P 0 | β 2 |
| g 12 ( 1 ) ( λ , t 1 t 2 ) | = | E 1 ( λ , t 1 ) E 2 ( λ , t 2 ) | E 1 ( λ , t 1 ) | 2 | E 2 ( λ , t 2 ) | 2 |