Abstract

Computer vision and classification methods have become increasingly wide-spread in recent years due to ever-increasing access to computation power. Advances in semiconductor devices are the basis for this growth, but few publications have probed the benefits of data-driven methods for improving a critical component of semiconductor manufacturing, the detection and inspection of defects for such devices. As defects become smaller, intensity threshold-based approaches eventually fail to adequately discern differences between faulty and non-faulty structures. To overcome these challenges we present machine learning methods including convolutional neural networks (CNN) applied to image-based defect detection. These images are formed from the simulated scattering of realistic geometries with and without key defects while also taking into account line edge roughness (LER). LER is a known and challenging problem in fabrication as it yields additional scattering that further complicates defect inspection. Simulating images of an intentional defect array, a CNN approach is applied to extend detectability and enhance classification to these defects, even those that are more than 20 times smaller than the inspection wavelength.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional deep sub-wavelength defect detection using λ = 193 nm optical microscopy

Bryan M. Barnes, Martin Y. Sohn, Francois Goasmat, Hui Zhou, András E. Vladár, Richard M. Silver, and Abraham Arceo
Opt. Express 21(22) 26219-26226 (2013)

Defect detection of capacitive touch panel using a nonnegative matrix factorization and tolerance model

Changcheng Jiang, Yanming Quan, and Xingui Lin
Appl. Opt. 55(9) 2331-2338 (2016)

X-ray cone-beam computed tomography geometric artefact reduction based on a data-driven strategy

Kai Xiao, Yu Han, Yifu Xu, Lei Li, Xiaoqi Xi, Haibing Bu, and Bin Yan
Appl. Opt. 58(17) 4771-4780 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Silverman, “Your smartphone is light years ahead of NASA computers that guided Apollo moon landings,” Houston Chronicle (11 April 2019).
  2. G. E. Moore, “Cramming more components onto integrated circuits,” Proc. IEEE 86(1), 82–85 (1998).
    [Crossref]
  3. J. Koomey, S. Berard, M. Sanchez, and H. Wong, “Implications of historical trends in the electrical efficiency of computing,” IEEE Annals Hist. Comput. 33(3), 46–54 (2011).
    [Crossref]
  4. Semiconductor Industry Association, “Annual semiconductor sales,” (2017).
  5. M. M. Waldrop, “The chips are down for Moore’s law,” Nature (London, U. K.) 530(7589), 144–147 (2016).
    [Crossref]
  6. N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
    [Crossref]
  7. J. E. Bjorkholm, “EUV lithography - the successor to optical lithography,” Intel Technol. J. 2, 1–8 (1998).
  8. T. F. Crimmins, “Defect metrology challenges at the 11-nm node and beyond,” in Metrology, Inspection, and Process Control for Microlithography XXIV, vol. 7638 (International Society for Optics and Photonics, 2010), 76380H.
  9. N. Gorji, B. Tanner, R. Vijayaraghavan, A. Danilewsky, and P. McNally, “Nondestructive, in situ mapping of die surface displacements in encapsulated ic chip packages using x-ray diffraction imaging techniques,” in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), (IEEE, 2017), pp. 520–525.
  10. T. Harada, M. Nakasuji, A. Tokimasa, T. Watanabe, Y. Usui, and H. Kinoshita, “Defect characterization of an extreme-ultraviolet mask using a coherent extreme-ultraviolet scatterometry microscope,” Jpn. J. Appl. Phys. 51, 06FB08 (2012).
    [Crossref]
  11. R. M. Silver, B. M. Barnes, Y. Sohn, R. Quintanilha, H. Zhou, C. Deeb, M. Johnson, M. Goodwin, and D. Patel, “The limits and extensibility of optical patterned defect inspection,” Proc. SPIE 7638, 76380J (2010).
    [Crossref]
  12. F. Adly, O. Alhussein, P. D. Yoo, Y. Al-Hammadi, K. Taha, S. Muhaidat, Y.-S. Jeong, U. Lee, and M. Ismail, “Simplified Subspaced Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Ind. Inf. 11(6), 1267–1276 (2015).
    [Crossref]
  13. F. Adly, P. D. Yoo, S. Muhaidat, Y. Al-Hammadi, U. Lee, and M. Ismail, “Randomized General Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Semicond. Manufact. 28(2), 145–152 (2015).
    [Crossref]
  14. K. Nakata, R. Orihara, Y. Mizuoka, and K. Takagi, “A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing,” IEEE Trans. Semicond. Manufact. 30(4), 339–344 (2017).
    [Crossref]
  15. T. Nakazawa and D. V. Kulkarni, “Wafer Map Defect Pattern Classification and Image Retrieval Using Convolutional Neural Network,” IEEE Trans. Semicond. Manufact. 31(2), 309–314 (2018).
    [Crossref]
  16. G. Tello, O. Y. Al-Jarrah, P. D. Yoo, Y. Al-Hammadi, S. Muhaidat, and U. Lee, “Deep-Structured Machine Learning Model for the Recognition of Mixed-Defect Patterns in Semiconductor Fabrication Processes,” IEEE Trans. Semicond. Manufact. 31(2), 315–322 (2018).
    [Crossref]
  17. K. Kyeong and H. Kim, “Classification of Mixed-Type Defect Patterns in Wafer Bin Maps Using Convolutional Neural Networks,” IEEE Trans. Semicond. Manufact. 31(3), 395–402 (2018).
    [Crossref]
  18. S. Purandare, J. Zhu, R. Zhou, G. Popescu, A. Schwing, and L. L. Goddard, “Optical inspection of nanoscale structures using a novel machine learning based synthetic image generation algorithm,” Opt. Express 27(13), 17743–17762 (2019).
    [Crossref]
  19. C. Li, G. Gao, Z. Liu, M. Yu, and D. Huang, “Fabric Defect Detection Based on Biological Vision Modeling,” IEEE Access 6, 27659–27670 (2018).
    [Crossref]
  20. K. Zhang, Y. Yan, P. Li, J. Jing, X. Liu, and Z. Wang, “Fabric Defect Detection Using Salience Metric for Color Dissimilarity and Positional Aggregation,” IEEE Access 6, 49170–49181 (2018).
    [Crossref]
  21. R. A. Lizarraga-Morales, F. E. Correa-Tome, R. E. Sanchez-Yanez, and J. Cepeda-Negrete, “On the Use of Binary Features in a Rule-Based Approach for Defect on Patterned Textiles,” IEEE Access 7, 18042–18049 (2019).
    [Crossref]
  22. L. Tong, W. K. Wong, and C. K. Kwong, “Fabric Defect Detection for Apparel Industry: A Nonlocal Sparse Representation Approach,” IEEE Access 5, 5947–5964 (2017).
    [Crossref]
  23. D. Soukup and R. Huber-Mörk, “Convolutional neural networks for steel surface defect detection from photometric stereo images,” Int. Symp. on Vis. Comput. (2014).
  24. M. Niskanen, O. Silvén, and H. Kauppinen, “Color and texture based wood inspection with non-supervised clustering,” Proc. scandinavian Conf. on image analysis (2001).
  25. S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).
  26. A. Raghunathan, S. Bennett, H. O. Stamper, J. G. Hartley, A. Arceo, M. Johnson, C. Deeb, D. Patel, and J. Nadeau, “13nm gate Intentional Defect Array (IDA) wafer patterning by e-beam lithography for defect metrology evaluation,” Microelectron. Eng. 88(8), 2729–2731 (2011).
    [Crossref]
  27. B. Barnes, “Geometries and material properties for simulating semiconductor patterned bridge defects using the finite-difference time-domain (FDTD) method,” (2018), https://doi.org/10.18434/T4/1500937.
  28. B. M. Barnes, M. Y. Sohn, F. Goasmat, H. Zhou, A. E. Vladár, R. M. Silver, and A. Arceo, “Three-dimensional deep sub-wavelength defect detection using $\lambda$λ= 193 nm optical microscopy,” Opt. Express 21(22), 26219–26226 (2013).
    [Crossref]
  29. B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolithography, MEMS, MOEMS 14(1), 014001 (2015).
    [Crossref]
  30. B. M. Barnes, H. Zhou, M.-A. Henn, M. Y. Sohn, and R. M. Silver, “Optimizing image-based patterned defect inspection through FDTD simulations at multiple ultraviolet wavelengths,” Proc. SPIE 10330, 103300W (2017).
    [Crossref]
  31. A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Trans. Electromagn. Compat. EMC-22(3), 191–202 (1980).
    [Crossref]
  32. B. M. Barnes, R. Quinthanilha, Y.-J. Sohn, H. Zhou, and R. M. Silver, “Optical illumination optimization for patterned defect inspection,” in Metrology, Inspection, and Process Control for Microlithography XXV, vol. 7971 (International Society for Optics and Photonics, 2011), p. 79710D
  33. R. Durrett, Probability: Theory and Examples (Cambridge Univ., 2010).
  34. B. M. Barnes, H. Zhou, M.-A. Henn, M. Y. Sohn, and R. M. Silver, “Assessing the wavelength extensibility of optical patterned defect inspection,” Proc. SPIE 10145, 1014516 (2017).
    [Crossref]
  35. B. M. Barnes, M.-A. Henn, M. Y. Sohn, H. Zhou, and R. M. Silver, “Assessing form-dependent optical scattering at vacuum- and extreme-ultraviolet wavelengths off nanostructures with two-dimensional periodicity,” Phys. Rev. Appl. 11(6), 064056 (2019).
    [Crossref]
  36. M. Y. Sohn, B. M. Barnes, and R. M. Silver, “Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy,” Optik (Munich, Ger.) 156, 635–645 (2018).
    [Crossref]
  37. A. Wojdyla, A. Donoghue, M. P. Benk, P. P. Naulleau, and K. A. Goldberg, “Aerial imaging study of the mask-induced line-width roughness of euv lithography masks,” Proc. SPIE 9776, 97760H (2016).
    [Crossref]
  38. B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolith. MEMS MOEMS 14(1), 014001 (2015).
    [Crossref]
  39. M. Yoshizawa and S. Moriya, “Study of the acid-diffusion effect on line edge roughness using the edge roughness evaluation method,” J. Vac. Sci. Technol. B 20(4), 1342 (2002).
    [Crossref]
  40. N. Kubota, T. Hayashi, T. Iwai, H. Komano, and A. Kawai, “Advanced resist design using AFM analysis for ArF lithography,” J. Photopolym. Sci. Technol. 16(3), 467–474 (2003).
    [Crossref]
  41. S. C. Palmateer, S. G. Cann, J. E. Curtin, S. P. Doran, L. M. Eriksen, A. R. Forte, R. R. Kunz, T. M. Lyszczarz, M. B. Stern, and C. M. Nelson-Thomas, “Line-edge roughness in sub-0.18-$\mu$μm resist patterns,” Proc. SPIE 3333, 634 (1998).
    [Crossref]
  42. A. Yamaguchi and O. Komuro, “Characterization of line edge roughness in resist patterns by using fourier analysis and auto-correlation function,” Jpn. J. Appl. Phys. 42(Part 1), 3763–3770 (2003).
    [Crossref]
  43. J. Croon, G. Storms, S. Winkelmeier, I. Pollentier, M. Ercken, S. Decoutere, W. Sansen, and H. Maes, “Line edge roughness: characterization, modeling and impact on device behavior,” in Electron Devices Meeting, 2002. IEDM’02. International, (IEEE, 2002).
  44. C. A. Mack, “Analytic form for the power spectral density in one, two, and three dimensions,” J. Micro/Nanolith. MEMS MOEMS 10(4), 040501 (2011).
    [Crossref]
  45. C. A. Mack, “Generating random rough edges, surfaces, and volumes,” Appl. Opt. 52(7), 1472 (2013).
    [Crossref]
  46. P. Oldiges, Q. Lin, K. Petrillo, M. Sanchez, M. Ieong, and M. Hargrove, “Modeling line edge roughness effects in sub 100 nanometer gate length devices,” Simulation of Semiconductor Processes and Devices (2000).
  47. H. Gross, S. Heidenreich, M.-A. Henn, G. Dai, F. Scholze, and M. Bär, “Modelling line edge roughness in periodic line-space structures by fourier optics to improve scatterometry,” J. Eur. Opt. Soc. Publications 9, 14003 (2014).
    [Crossref]
  48. M.-A. Henn, S. Heidenreich, H. Gross, A. Rathsfeld, F. Scholze, and M. Bär, “Improved grating reconstruction by determination of line roughness in extreme ultraviolet scatterometry,” Opt. Lett. 37(24), 5229–5231 (2012).
    [Crossref]
  49. A. Agresti, Categorical Data Analysis (John Wiley & Sons, 2003).
  50. I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning (MIT Press, 2016).
  51. I.-S. Tsai, C.-H. Lin, and J.-J. Lin, “Applying an artificial neural network to pattern recognition in fabric defects,” Text. Res. J. 65(3), 123–130 (1995).
    [Crossref]
  52. M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. on Image Process. 1(2), 205–220 (1992).
    [Crossref]
  53. M.-A. Henn, Z. Hui, R. M. Silver, and B. M. Barnes, “Applications of machine learning at the limits of form-dependent scattering for defect metrology,” Proc. SPIE 10959, 109590Z (2019).
    [Crossref]
  54. Google Brain, “TensorFlow,” (2015).

2019 (4)

S. Purandare, J. Zhu, R. Zhou, G. Popescu, A. Schwing, and L. L. Goddard, “Optical inspection of nanoscale structures using a novel machine learning based synthetic image generation algorithm,” Opt. Express 27(13), 17743–17762 (2019).
[Crossref]

R. A. Lizarraga-Morales, F. E. Correa-Tome, R. E. Sanchez-Yanez, and J. Cepeda-Negrete, “On the Use of Binary Features in a Rule-Based Approach for Defect on Patterned Textiles,” IEEE Access 7, 18042–18049 (2019).
[Crossref]

B. M. Barnes, M.-A. Henn, M. Y. Sohn, H. Zhou, and R. M. Silver, “Assessing form-dependent optical scattering at vacuum- and extreme-ultraviolet wavelengths off nanostructures with two-dimensional periodicity,” Phys. Rev. Appl. 11(6), 064056 (2019).
[Crossref]

M.-A. Henn, Z. Hui, R. M. Silver, and B. M. Barnes, “Applications of machine learning at the limits of form-dependent scattering for defect metrology,” Proc. SPIE 10959, 109590Z (2019).
[Crossref]

2018 (7)

M. Y. Sohn, B. M. Barnes, and R. M. Silver, “Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy,” Optik (Munich, Ger.) 156, 635–645 (2018).
[Crossref]

C. Li, G. Gao, Z. Liu, M. Yu, and D. Huang, “Fabric Defect Detection Based on Biological Vision Modeling,” IEEE Access 6, 27659–27670 (2018).
[Crossref]

K. Zhang, Y. Yan, P. Li, J. Jing, X. Liu, and Z. Wang, “Fabric Defect Detection Using Salience Metric for Color Dissimilarity and Positional Aggregation,” IEEE Access 6, 49170–49181 (2018).
[Crossref]

T. Nakazawa and D. V. Kulkarni, “Wafer Map Defect Pattern Classification and Image Retrieval Using Convolutional Neural Network,” IEEE Trans. Semicond. Manufact. 31(2), 309–314 (2018).
[Crossref]

G. Tello, O. Y. Al-Jarrah, P. D. Yoo, Y. Al-Hammadi, S. Muhaidat, and U. Lee, “Deep-Structured Machine Learning Model for the Recognition of Mixed-Defect Patterns in Semiconductor Fabrication Processes,” IEEE Trans. Semicond. Manufact. 31(2), 315–322 (2018).
[Crossref]

K. Kyeong and H. Kim, “Classification of Mixed-Type Defect Patterns in Wafer Bin Maps Using Convolutional Neural Networks,” IEEE Trans. Semicond. Manufact. 31(3), 395–402 (2018).
[Crossref]

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

2017 (4)

K. Nakata, R. Orihara, Y. Mizuoka, and K. Takagi, “A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing,” IEEE Trans. Semicond. Manufact. 30(4), 339–344 (2017).
[Crossref]

L. Tong, W. K. Wong, and C. K. Kwong, “Fabric Defect Detection for Apparel Industry: A Nonlocal Sparse Representation Approach,” IEEE Access 5, 5947–5964 (2017).
[Crossref]

B. M. Barnes, H. Zhou, M.-A. Henn, M. Y. Sohn, and R. M. Silver, “Optimizing image-based patterned defect inspection through FDTD simulations at multiple ultraviolet wavelengths,” Proc. SPIE 10330, 103300W (2017).
[Crossref]

B. M. Barnes, H. Zhou, M.-A. Henn, M. Y. Sohn, and R. M. Silver, “Assessing the wavelength extensibility of optical patterned defect inspection,” Proc. SPIE 10145, 1014516 (2017).
[Crossref]

2016 (2)

A. Wojdyla, A. Donoghue, M. P. Benk, P. P. Naulleau, and K. A. Goldberg, “Aerial imaging study of the mask-induced line-width roughness of euv lithography masks,” Proc. SPIE 9776, 97760H (2016).
[Crossref]

M. M. Waldrop, “The chips are down for Moore’s law,” Nature (London, U. K.) 530(7589), 144–147 (2016).
[Crossref]

2015 (4)

F. Adly, O. Alhussein, P. D. Yoo, Y. Al-Hammadi, K. Taha, S. Muhaidat, Y.-S. Jeong, U. Lee, and M. Ismail, “Simplified Subspaced Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Ind. Inf. 11(6), 1267–1276 (2015).
[Crossref]

F. Adly, P. D. Yoo, S. Muhaidat, Y. Al-Hammadi, U. Lee, and M. Ismail, “Randomized General Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Semicond. Manufact. 28(2), 145–152 (2015).
[Crossref]

B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolith. MEMS MOEMS 14(1), 014001 (2015).
[Crossref]

B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolithography, MEMS, MOEMS 14(1), 014001 (2015).
[Crossref]

2014 (1)

H. Gross, S. Heidenreich, M.-A. Henn, G. Dai, F. Scholze, and M. Bär, “Modelling line edge roughness in periodic line-space structures by fourier optics to improve scatterometry,” J. Eur. Opt. Soc. Publications 9, 14003 (2014).
[Crossref]

2013 (2)

2012 (2)

M.-A. Henn, S. Heidenreich, H. Gross, A. Rathsfeld, F. Scholze, and M. Bär, “Improved grating reconstruction by determination of line roughness in extreme ultraviolet scatterometry,” Opt. Lett. 37(24), 5229–5231 (2012).
[Crossref]

T. Harada, M. Nakasuji, A. Tokimasa, T. Watanabe, Y. Usui, and H. Kinoshita, “Defect characterization of an extreme-ultraviolet mask using a coherent extreme-ultraviolet scatterometry microscope,” Jpn. J. Appl. Phys. 51, 06FB08 (2012).
[Crossref]

2011 (3)

J. Koomey, S. Berard, M. Sanchez, and H. Wong, “Implications of historical trends in the electrical efficiency of computing,” IEEE Annals Hist. Comput. 33(3), 46–54 (2011).
[Crossref]

A. Raghunathan, S. Bennett, H. O. Stamper, J. G. Hartley, A. Arceo, M. Johnson, C. Deeb, D. Patel, and J. Nadeau, “13nm gate Intentional Defect Array (IDA) wafer patterning by e-beam lithography for defect metrology evaluation,” Microelectron. Eng. 88(8), 2729–2731 (2011).
[Crossref]

C. A. Mack, “Analytic form for the power spectral density in one, two, and three dimensions,” J. Micro/Nanolith. MEMS MOEMS 10(4), 040501 (2011).
[Crossref]

2010 (1)

R. M. Silver, B. M. Barnes, Y. Sohn, R. Quintanilha, H. Zhou, C. Deeb, M. Johnson, M. Goodwin, and D. Patel, “The limits and extensibility of optical patterned defect inspection,” Proc. SPIE 7638, 76380J (2010).
[Crossref]

2003 (2)

A. Yamaguchi and O. Komuro, “Characterization of line edge roughness in resist patterns by using fourier analysis and auto-correlation function,” Jpn. J. Appl. Phys. 42(Part 1), 3763–3770 (2003).
[Crossref]

N. Kubota, T. Hayashi, T. Iwai, H. Komano, and A. Kawai, “Advanced resist design using AFM analysis for ArF lithography,” J. Photopolym. Sci. Technol. 16(3), 467–474 (2003).
[Crossref]

2002 (1)

M. Yoshizawa and S. Moriya, “Study of the acid-diffusion effect on line edge roughness using the edge roughness evaluation method,” J. Vac. Sci. Technol. B 20(4), 1342 (2002).
[Crossref]

1998 (3)

S. C. Palmateer, S. G. Cann, J. E. Curtin, S. P. Doran, L. M. Eriksen, A. R. Forte, R. R. Kunz, T. M. Lyszczarz, M. B. Stern, and C. M. Nelson-Thomas, “Line-edge roughness in sub-0.18-$\mu$μm resist patterns,” Proc. SPIE 3333, 634 (1998).
[Crossref]

G. E. Moore, “Cramming more components onto integrated circuits,” Proc. IEEE 86(1), 82–85 (1998).
[Crossref]

J. E. Bjorkholm, “EUV lithography - the successor to optical lithography,” Intel Technol. J. 2, 1–8 (1998).

1995 (1)

I.-S. Tsai, C.-H. Lin, and J.-J. Lin, “Applying an artificial neural network to pattern recognition in fabric defects,” Text. Res. J. 65(3), 123–130 (1995).
[Crossref]

1992 (1)

M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. on Image Process. 1(2), 205–220 (1992).
[Crossref]

1980 (1)

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Trans. Electromagn. Compat. EMC-22(3), 191–202 (1980).
[Crossref]

Adly, F.

F. Adly, O. Alhussein, P. D. Yoo, Y. Al-Hammadi, K. Taha, S. Muhaidat, Y.-S. Jeong, U. Lee, and M. Ismail, “Simplified Subspaced Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Ind. Inf. 11(6), 1267–1276 (2015).
[Crossref]

F. Adly, P. D. Yoo, S. Muhaidat, Y. Al-Hammadi, U. Lee, and M. Ismail, “Randomized General Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Semicond. Manufact. 28(2), 145–152 (2015).
[Crossref]

Agostinelli, M.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Agresti, A.

A. Agresti, Categorical Data Analysis (John Wiley & Sons, 2003).

Akbar, S.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Al-Hammadi, Y.

G. Tello, O. Y. Al-Jarrah, P. D. Yoo, Y. Al-Hammadi, S. Muhaidat, and U. Lee, “Deep-Structured Machine Learning Model for the Recognition of Mixed-Defect Patterns in Semiconductor Fabrication Processes,” IEEE Trans. Semicond. Manufact. 31(2), 315–322 (2018).
[Crossref]

F. Adly, P. D. Yoo, S. Muhaidat, Y. Al-Hammadi, U. Lee, and M. Ismail, “Randomized General Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Semicond. Manufact. 28(2), 145–152 (2015).
[Crossref]

F. Adly, O. Alhussein, P. D. Yoo, Y. Al-Hammadi, K. Taha, S. Muhaidat, Y.-S. Jeong, U. Lee, and M. Ismail, “Simplified Subspaced Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Ind. Inf. 11(6), 1267–1276 (2015).
[Crossref]

Alhussein, O.

F. Adly, O. Alhussein, P. D. Yoo, Y. Al-Hammadi, K. Taha, S. Muhaidat, Y.-S. Jeong, U. Lee, and M. Ismail, “Simplified Subspaced Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Ind. Inf. 11(6), 1267–1276 (2015).
[Crossref]

Al-Jarrah, O. Y.

G. Tello, O. Y. Al-Jarrah, P. D. Yoo, Y. Al-Hammadi, S. Muhaidat, and U. Lee, “Deep-Structured Machine Learning Model for the Recognition of Mixed-Defect Patterns in Semiconductor Fabrication Processes,” IEEE Trans. Semicond. Manufact. 31(2), 315–322 (2018).
[Crossref]

Antonini, M.

M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. on Image Process. 1(2), 205–220 (1992).
[Crossref]

Arceo, A.

B. M. Barnes, M. Y. Sohn, F. Goasmat, H. Zhou, A. E. Vladár, R. M. Silver, and A. Arceo, “Three-dimensional deep sub-wavelength defect detection using $\lambda$λ= 193 nm optical microscopy,” Opt. Express 21(22), 26219–26226 (2013).
[Crossref]

A. Raghunathan, S. Bennett, H. O. Stamper, J. G. Hartley, A. Arceo, M. Johnson, C. Deeb, D. Patel, and J. Nadeau, “13nm gate Intentional Defect Array (IDA) wafer patterning by e-beam lithography for defect metrology evaluation,” Microelectron. Eng. 88(8), 2729–2731 (2011).
[Crossref]

Badaroglu, M.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Bär, M.

H. Gross, S. Heidenreich, M.-A. Henn, G. Dai, F. Scholze, and M. Bär, “Modelling line edge roughness in periodic line-space structures by fourier optics to improve scatterometry,” J. Eur. Opt. Soc. Publications 9, 14003 (2014).
[Crossref]

M.-A. Henn, S. Heidenreich, H. Gross, A. Rathsfeld, F. Scholze, and M. Bär, “Improved grating reconstruction by determination of line roughness in extreme ultraviolet scatterometry,” Opt. Lett. 37(24), 5229–5231 (2012).
[Crossref]

Barlaud, M.

M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. on Image Process. 1(2), 205–220 (1992).
[Crossref]

Barnes, B.

B. Barnes, “Geometries and material properties for simulating semiconductor patterned bridge defects using the finite-difference time-domain (FDTD) method,” (2018), https://doi.org/10.18434/T4/1500937.

Barnes, B. M.

M.-A. Henn, Z. Hui, R. M. Silver, and B. M. Barnes, “Applications of machine learning at the limits of form-dependent scattering for defect metrology,” Proc. SPIE 10959, 109590Z (2019).
[Crossref]

B. M. Barnes, M.-A. Henn, M. Y. Sohn, H. Zhou, and R. M. Silver, “Assessing form-dependent optical scattering at vacuum- and extreme-ultraviolet wavelengths off nanostructures with two-dimensional periodicity,” Phys. Rev. Appl. 11(6), 064056 (2019).
[Crossref]

M. Y. Sohn, B. M. Barnes, and R. M. Silver, “Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy,” Optik (Munich, Ger.) 156, 635–645 (2018).
[Crossref]

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

B. M. Barnes, H. Zhou, M.-A. Henn, M. Y. Sohn, and R. M. Silver, “Optimizing image-based patterned defect inspection through FDTD simulations at multiple ultraviolet wavelengths,” Proc. SPIE 10330, 103300W (2017).
[Crossref]

B. M. Barnes, H. Zhou, M.-A. Henn, M. Y. Sohn, and R. M. Silver, “Assessing the wavelength extensibility of optical patterned defect inspection,” Proc. SPIE 10145, 1014516 (2017).
[Crossref]

B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolithography, MEMS, MOEMS 14(1), 014001 (2015).
[Crossref]

B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolith. MEMS MOEMS 14(1), 014001 (2015).
[Crossref]

B. M. Barnes, M. Y. Sohn, F. Goasmat, H. Zhou, A. E. Vladár, R. M. Silver, and A. Arceo, “Three-dimensional deep sub-wavelength defect detection using $\lambda$λ= 193 nm optical microscopy,” Opt. Express 21(22), 26219–26226 (2013).
[Crossref]

R. M. Silver, B. M. Barnes, Y. Sohn, R. Quintanilha, H. Zhou, C. Deeb, M. Johnson, M. Goodwin, and D. Patel, “The limits and extensibility of optical patterned defect inspection,” Proc. SPIE 7638, 76380J (2010).
[Crossref]

B. M. Barnes, R. Quinthanilha, Y.-J. Sohn, H. Zhou, and R. M. Silver, “Optical illumination optimization for patterned defect inspection,” in Metrology, Inspection, and Process Control for Microlithography XXV, vol. 7971 (International Society for Optics and Photonics, 2011), p. 79710D

Beitia, C.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Bengio, Y.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning (MIT Press, 2016).

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning (MIT Press, 2016).

Benk, M. P.

A. Wojdyla, A. Donoghue, M. P. Benk, P. P. Naulleau, and K. A. Goldberg, “Aerial imaging study of the mask-induced line-width roughness of euv lithography masks,” Proc. SPIE 9776, 97760H (2016).
[Crossref]

Bennett, S.

A. Raghunathan, S. Bennett, H. O. Stamper, J. G. Hartley, A. Arceo, M. Johnson, C. Deeb, D. Patel, and J. Nadeau, “13nm gate Intentional Defect Array (IDA) wafer patterning by e-beam lithography for defect metrology evaluation,” Microelectron. Eng. 88(8), 2729–2731 (2011).
[Crossref]

Berard, S.

J. Koomey, S. Berard, M. Sanchez, and H. Wong, “Implications of historical trends in the electrical efficiency of computing,” IEEE Annals Hist. Comput. 33(3), 46–54 (2011).
[Crossref]

Bjorkholm, J. E.

J. E. Bjorkholm, “EUV lithography - the successor to optical lithography,” Intel Technol. J. 2, 1–8 (1998).

Bost, M.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Bowonder, A.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Bunday, B. D.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Cann, S. G.

S. C. Palmateer, S. G. Cann, J. E. Curtin, S. P. Doran, L. M. Eriksen, A. R. Forte, R. R. Kunz, T. M. Lyszczarz, M. B. Stern, and C. M. Nelson-Thomas, “Line-edge roughness in sub-0.18-$\mu$μm resist patterns,” Proc. SPIE 3333, 634 (1998).
[Crossref]

Celano, U.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Cepeda-Negrete, J.

R. A. Lizarraga-Morales, F. E. Correa-Tome, R. E. Sanchez-Yanez, and J. Cepeda-Negrete, “On the Use of Binary Features in a Rule-Based Approach for Defect on Patterned Textiles,” IEEE Access 7, 18042–18049 (2019).
[Crossref]

Chikarmane, V.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Chouksey, S.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Correa-Tome, F. E.

R. A. Lizarraga-Morales, F. E. Correa-Tome, R. E. Sanchez-Yanez, and J. Cepeda-Negrete, “On the Use of Binary Features in a Rule-Based Approach for Defect on Patterned Textiles,” IEEE Access 7, 18042–18049 (2019).
[Crossref]

Courville, A.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning (MIT Press, 2016).

Crimmins, T. F.

T. F. Crimmins, “Defect metrology challenges at the 11-nm node and beyond,” in Metrology, Inspection, and Process Control for Microlithography XXIV, vol. 7638 (International Society for Optics and Photonics, 2010), 76380H.

Croon, J.

J. Croon, G. Storms, S. Winkelmeier, I. Pollentier, M. Ercken, S. Decoutere, W. Sansen, and H. Maes, “Line edge roughness: characterization, modeling and impact on device behavior,” in Electron Devices Meeting, 2002. IEDM’02. International, (IEEE, 2002).

Curtin, J. E.

S. C. Palmateer, S. G. Cann, J. E. Curtin, S. P. Doran, L. M. Eriksen, A. R. Forte, R. R. Kunz, T. M. Lyszczarz, M. B. Stern, and C. M. Nelson-Thomas, “Line-edge roughness in sub-0.18-$\mu$μm resist patterns,” Proc. SPIE 3333, 634 (1998).
[Crossref]

Dai, G.

H. Gross, S. Heidenreich, M.-A. Henn, G. Dai, F. Scholze, and M. Bär, “Modelling line edge roughness in periodic line-space structures by fourier optics to improve scatterometry,” J. Eur. Opt. Soc. Publications 9, 14003 (2014).
[Crossref]

Danilewsky, A.

N. Gorji, B. Tanner, R. Vijayaraghavan, A. Danilewsky, and P. McNally, “Nondestructive, in situ mapping of die surface displacements in encapsulated ic chip packages using x-ray diffraction imaging techniques,” in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), (IEEE, 2017), pp. 520–525.

Dasgupta, A.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Daubechies, I.

M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. on Image Process. 1(2), 205–220 (1992).
[Crossref]

Decoutere, S.

J. Croon, G. Storms, S. Winkelmeier, I. Pollentier, M. Ercken, S. Decoutere, W. Sansen, and H. Maes, “Line edge roughness: characterization, modeling and impact on device behavior,” in Electron Devices Meeting, 2002. IEDM’02. International, (IEEE, 2002).

Deeb, C.

A. Raghunathan, S. Bennett, H. O. Stamper, J. G. Hartley, A. Arceo, M. Johnson, C. Deeb, D. Patel, and J. Nadeau, “13nm gate Intentional Defect Array (IDA) wafer patterning by e-beam lithography for defect metrology evaluation,” Microelectron. Eng. 88(8), 2729–2731 (2011).
[Crossref]

R. M. Silver, B. M. Barnes, Y. Sohn, R. Quintanilha, H. Zhou, C. Deeb, M. Johnson, M. Goodwin, and D. Patel, “The limits and extensibility of optical patterned defect inspection,” Proc. SPIE 7638, 76380J (2010).
[Crossref]

Donoghue, A.

A. Wojdyla, A. Donoghue, M. P. Benk, P. P. Naulleau, and K. A. Goldberg, “Aerial imaging study of the mask-induced line-width roughness of euv lithography masks,” Proc. SPIE 9776, 97760H (2016).
[Crossref]

Doran, S. P.

S. C. Palmateer, S. G. Cann, J. E. Curtin, S. P. Doran, L. M. Eriksen, A. R. Forte, R. R. Kunz, T. M. Lyszczarz, M. B. Stern, and C. M. Nelson-Thomas, “Line-edge roughness in sub-0.18-$\mu$μm resist patterns,” Proc. SPIE 3333, 634 (1998).
[Crossref]

Durrett, R.

R. Durrett, Probability: Theory and Examples (Cambridge Univ., 2010).

Ercken, M.

J. Croon, G. Storms, S. Winkelmeier, I. Pollentier, M. Ercken, S. Decoutere, W. Sansen, and H. Maes, “Line edge roughness: characterization, modeling and impact on device behavior,” in Electron Devices Meeting, 2002. IEDM’02. International, (IEEE, 2002).

Eriksen, L. M.

S. C. Palmateer, S. G. Cann, J. E. Curtin, S. P. Doran, L. M. Eriksen, A. R. Forte, R. R. Kunz, T. M. Lyszczarz, M. B. Stern, and C. M. Nelson-Thomas, “Line-edge roughness in sub-0.18-$\mu$μm resist patterns,” Proc. SPIE 3333, 634 (1998).
[Crossref]

Fischer, K.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Forte, A. R.

S. C. Palmateer, S. G. Cann, J. E. Curtin, S. P. Doran, L. M. Eriksen, A. R. Forte, R. R. Kunz, T. M. Lyszczarz, M. B. Stern, and C. M. Nelson-Thomas, “Line-edge roughness in sub-0.18-$\mu$μm resist patterns,” Proc. SPIE 3333, 634 (1998).
[Crossref]

Fu, Q.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Gao, G.

C. Li, G. Gao, Z. Liu, M. Yu, and D. Huang, “Fabric Defect Detection Based on Biological Vision Modeling,” IEEE Access 6, 27659–27670 (2018).
[Crossref]

Ghani, T.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Giles, M.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Goasmat, F.

B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolithography, MEMS, MOEMS 14(1), 014001 (2015).
[Crossref]

B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolith. MEMS MOEMS 14(1), 014001 (2015).
[Crossref]

B. M. Barnes, M. Y. Sohn, F. Goasmat, H. Zhou, A. E. Vladár, R. M. Silver, and A. Arceo, “Three-dimensional deep sub-wavelength defect detection using $\lambda$λ= 193 nm optical microscopy,” Opt. Express 21(22), 26219–26226 (2013).
[Crossref]

Goddard, L. L.

Goldberg, K. A.

A. Wojdyla, A. Donoghue, M. P. Benk, P. P. Naulleau, and K. A. Goldberg, “Aerial imaging study of the mask-induced line-width roughness of euv lithography masks,” Proc. SPIE 9776, 97760H (2016).
[Crossref]

Goodfellow, I.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning (MIT Press, 2016).

Goodwin, M.

R. M. Silver, B. M. Barnes, Y. Sohn, R. Quintanilha, H. Zhou, C. Deeb, M. Johnson, M. Goodwin, and D. Patel, “The limits and extensibility of optical patterned defect inspection,” Proc. SPIE 7638, 76380J (2010).
[Crossref]

Gorji, N.

N. Gorji, B. Tanner, R. Vijayaraghavan, A. Danilewsky, and P. McNally, “Nondestructive, in situ mapping of die surface displacements in encapsulated ic chip packages using x-ray diffraction imaging techniques,” in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), (IEEE, 2017), pp. 520–525.

Govindaraju, S.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Gross, H.

H. Gross, S. Heidenreich, M.-A. Henn, G. Dai, F. Scholze, and M. Bär, “Modelling line edge roughness in periodic line-space structures by fourier optics to improve scatterometry,” J. Eur. Opt. Soc. Publications 9, 14003 (2014).
[Crossref]

M.-A. Henn, S. Heidenreich, H. Gross, A. Rathsfeld, F. Scholze, and M. Bär, “Improved grating reconstruction by determination of line roughness in extreme ultraviolet scatterometry,” Opt. Lett. 37(24), 5229–5231 (2012).
[Crossref]

Grover, R.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Han, W.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Hanken, D.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Harada, T.

T. Harada, M. Nakasuji, A. Tokimasa, T. Watanabe, Y. Usui, and H. Kinoshita, “Defect characterization of an extreme-ultraviolet mask using a coherent extreme-ultraviolet scatterometry microscope,” Jpn. J. Appl. Phys. 51, 06FB08 (2012).
[Crossref]

Haralson, E.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Haran, M.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Hargrove, M.

P. Oldiges, Q. Lin, K. Petrillo, M. Sanchez, M. Ieong, and M. Hargrove, “Modeling line edge roughness effects in sub 100 nanometer gate length devices,” Simulation of Semiconductor Processes and Devices (2000).

Hartley, J. G.

A. Raghunathan, S. Bennett, H. O. Stamper, J. G. Hartley, A. Arceo, M. Johnson, C. Deeb, D. Patel, and J. Nadeau, “13nm gate Intentional Defect Array (IDA) wafer patterning by e-beam lithography for defect metrology evaluation,” Microelectron. Eng. 88(8), 2729–2731 (2011).
[Crossref]

Hayashi, T.

N. Kubota, T. Hayashi, T. Iwai, H. Komano, and A. Kawai, “Advanced resist design using AFM analysis for ArF lithography,” J. Photopolym. Sci. Technol. 16(3), 467–474 (2003).
[Crossref]

Heckscher, M.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Heidenreich, S.

H. Gross, S. Heidenreich, M.-A. Henn, G. Dai, F. Scholze, and M. Bär, “Modelling line edge roughness in periodic line-space structures by fourier optics to improve scatterometry,” J. Eur. Opt. Soc. Publications 9, 14003 (2014).
[Crossref]

M.-A. Henn, S. Heidenreich, H. Gross, A. Rathsfeld, F. Scholze, and M. Bär, “Improved grating reconstruction by determination of line roughness in extreme ultraviolet scatterometry,” Opt. Lett. 37(24), 5229–5231 (2012).
[Crossref]

Henn, M.-A.

M.-A. Henn, Z. Hui, R. M. Silver, and B. M. Barnes, “Applications of machine learning at the limits of form-dependent scattering for defect metrology,” Proc. SPIE 10959, 109590Z (2019).
[Crossref]

B. M. Barnes, M.-A. Henn, M. Y. Sohn, H. Zhou, and R. M. Silver, “Assessing form-dependent optical scattering at vacuum- and extreme-ultraviolet wavelengths off nanostructures with two-dimensional periodicity,” Phys. Rev. Appl. 11(6), 064056 (2019).
[Crossref]

B. M. Barnes, H. Zhou, M.-A. Henn, M. Y. Sohn, and R. M. Silver, “Optimizing image-based patterned defect inspection through FDTD simulations at multiple ultraviolet wavelengths,” Proc. SPIE 10330, 103300W (2017).
[Crossref]

B. M. Barnes, H. Zhou, M.-A. Henn, M. Y. Sohn, and R. M. Silver, “Assessing the wavelength extensibility of optical patterned defect inspection,” Proc. SPIE 10145, 1014516 (2017).
[Crossref]

H. Gross, S. Heidenreich, M.-A. Henn, G. Dai, F. Scholze, and M. Bär, “Modelling line edge roughness in periodic line-space structures by fourier optics to improve scatterometry,” J. Eur. Opt. Soc. Publications 9, 14003 (2014).
[Crossref]

M.-A. Henn, S. Heidenreich, H. Gross, A. Rathsfeld, F. Scholze, and M. Bär, “Improved grating reconstruction by determination of line roughness in extreme ultraviolet scatterometry,” Opt. Lett. 37(24), 5229–5231 (2012).
[Crossref]

Heussner, R.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Huang, D.

C. Li, G. Gao, Z. Liu, M. Yu, and D. Huang, “Fabric Defect Detection Based on Biological Vision Modeling,” IEEE Access 6, 27659–27670 (2018).
[Crossref]

Huber-Mörk, R.

D. Soukup and R. Huber-Mörk, “Convolutional neural networks for steel surface defect detection from photometric stereo images,” Int. Symp. on Vis. Comput. (2014).

Hui, Z.

M.-A. Henn, Z. Hui, R. M. Silver, and B. M. Barnes, “Applications of machine learning at the limits of form-dependent scattering for defect metrology,” Proc. SPIE 10959, 109590Z (2019).
[Crossref]

Ieong, M.

P. Oldiges, Q. Lin, K. Petrillo, M. Sanchez, M. Ieong, and M. Hargrove, “Modeling line edge roughness effects in sub 100 nanometer gate length devices,” Simulation of Semiconductor Processes and Devices (2000).

Ismail, M.

F. Adly, O. Alhussein, P. D. Yoo, Y. Al-Hammadi, K. Taha, S. Muhaidat, Y.-S. Jeong, U. Lee, and M. Ismail, “Simplified Subspaced Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Ind. Inf. 11(6), 1267–1276 (2015).
[Crossref]

F. Adly, P. D. Yoo, S. Muhaidat, Y. Al-Hammadi, U. Lee, and M. Ismail, “Randomized General Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Semicond. Manufact. 28(2), 145–152 (2015).
[Crossref]

Iwai, T.

N. Kubota, T. Hayashi, T. Iwai, H. Komano, and A. Kawai, “Advanced resist design using AFM analysis for ArF lithography,” J. Photopolym. Sci. Technol. 16(3), 467–474 (2003).
[Crossref]

Jain, P.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

James, R.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Jeong, Y.-S.

F. Adly, O. Alhussein, P. D. Yoo, Y. Al-Hammadi, K. Taha, S. Muhaidat, Y.-S. Jeong, U. Lee, and M. Ismail, “Simplified Subspaced Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Ind. Inf. 11(6), 1267–1276 (2015).
[Crossref]

Jhaveri, R.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Jin, I.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Jing, J.

K. Zhang, Y. Yan, P. Li, J. Jing, X. Liu, and Z. Wang, “Fabric Defect Detection Using Salience Metric for Color Dissimilarity and Positional Aggregation,” IEEE Access 6, 49170–49181 (2018).
[Crossref]

Johnson, M.

A. Raghunathan, S. Bennett, H. O. Stamper, J. G. Hartley, A. Arceo, M. Johnson, C. Deeb, D. Patel, and J. Nadeau, “13nm gate Intentional Defect Array (IDA) wafer patterning by e-beam lithography for defect metrology evaluation,” Microelectron. Eng. 88(8), 2729–2731 (2011).
[Crossref]

R. M. Silver, B. M. Barnes, Y. Sohn, R. Quintanilha, H. Zhou, C. Deeb, M. Johnson, M. Goodwin, and D. Patel, “The limits and extensibility of optical patterned defect inspection,” Proc. SPIE 7638, 76380J (2010).
[Crossref]

Kam, H.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Karl, E.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Kauppinen, H.

M. Niskanen, O. Silvén, and H. Kauppinen, “Color and texture based wood inspection with non-supervised clustering,” Proc. scandinavian Conf. on image analysis (2001).

Kawai, A.

N. Kubota, T. Hayashi, T. Iwai, H. Komano, and A. Kawai, “Advanced resist design using AFM analysis for ArF lithography,” J. Photopolym. Sci. Technol. 16(3), 467–474 (2003).
[Crossref]

Kenyon, C.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Kim, H.

K. Kyeong and H. Kim, “Classification of Mixed-Type Defect Patterns in Wafer Bin Maps Using Convolutional Neural Networks,” IEEE Trans. Semicond. Manufact. 31(3), 395–402 (2018).
[Crossref]

Kinoshita, H.

T. Harada, M. Nakasuji, A. Tokimasa, T. Watanabe, Y. Usui, and H. Kinoshita, “Defect characterization of an extreme-ultraviolet mask using a coherent extreme-ultraviolet scatterometry microscope,” Jpn. J. Appl. Phys. 51, 06FB08 (2012).
[Crossref]

Kline, R. J.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Komano, H.

N. Kubota, T. Hayashi, T. Iwai, H. Komano, and A. Kawai, “Advanced resist design using AFM analysis for ArF lithography,” J. Photopolym. Sci. Technol. 16(3), 467–474 (2003).
[Crossref]

Komuro, O.

A. Yamaguchi and O. Komuro, “Characterization of line edge roughness in resist patterns by using fourier analysis and auto-correlation function,” Jpn. J. Appl. Phys. 42(Part 1), 3763–3770 (2003).
[Crossref]

Koomey, J.

J. Koomey, S. Berard, M. Sanchez, and H. Wong, “Implications of historical trends in the electrical efficiency of computing,” IEEE Annals Hist. Comput. 33(3), 46–54 (2011).
[Crossref]

Kubota, N.

N. Kubota, T. Hayashi, T. Iwai, H. Komano, and A. Kawai, “Advanced resist design using AFM analysis for ArF lithography,” J. Photopolym. Sci. Technol. 16(3), 467–474 (2003).
[Crossref]

Kulkarni, D. V.

T. Nakazawa and D. V. Kulkarni, “Wafer Map Defect Pattern Classification and Image Retrieval Using Convolutional Neural Network,” IEEE Trans. Semicond. Manufact. 31(2), 309–314 (2018).
[Crossref]

Kunz, R. R.

S. C. Palmateer, S. G. Cann, J. E. Curtin, S. P. Doran, L. M. Eriksen, A. R. Forte, R. R. Kunz, T. M. Lyszczarz, M. B. Stern, and C. M. Nelson-Thomas, “Line-edge roughness in sub-0.18-$\mu$μm resist patterns,” Proc. SPIE 3333, 634 (1998).
[Crossref]

Kwong, C. K.

L. Tong, W. K. Wong, and C. K. Kwong, “Fabric Defect Detection for Apparel Industry: A Nonlocal Sparse Representation Approach,” IEEE Access 5, 5947–5964 (2017).
[Crossref]

Kyeong, K.

K. Kyeong and H. Kim, “Classification of Mixed-Type Defect Patterns in Wafer Bin Maps Using Convolutional Neural Networks,” IEEE Trans. Semicond. Manufact. 31(3), 395–402 (2018).
[Crossref]

Lee, U.

G. Tello, O. Y. Al-Jarrah, P. D. Yoo, Y. Al-Hammadi, S. Muhaidat, and U. Lee, “Deep-Structured Machine Learning Model for the Recognition of Mixed-Defect Patterns in Semiconductor Fabrication Processes,” IEEE Trans. Semicond. Manufact. 31(2), 315–322 (2018).
[Crossref]

F. Adly, O. Alhussein, P. D. Yoo, Y. Al-Hammadi, K. Taha, S. Muhaidat, Y.-S. Jeong, U. Lee, and M. Ismail, “Simplified Subspaced Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Ind. Inf. 11(6), 1267–1276 (2015).
[Crossref]

F. Adly, P. D. Yoo, S. Muhaidat, Y. Al-Hammadi, U. Lee, and M. Ismail, “Randomized General Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Semicond. Manufact. 28(2), 145–152 (2015).
[Crossref]

Li, C.

C. Li, G. Gao, Z. Liu, M. Yu, and D. Huang, “Fabric Defect Detection Based on Biological Vision Modeling,” IEEE Access 6, 27659–27670 (2018).
[Crossref]

Li, P.

K. Zhang, Y. Yan, P. Li, J. Jing, X. Liu, and Z. Wang, “Fabric Defect Detection Using Salience Metric for Color Dissimilarity and Positional Aggregation,” IEEE Access 6, 49170–49181 (2018).
[Crossref]

Lin, C.-H.

I.-S. Tsai, C.-H. Lin, and J.-J. Lin, “Applying an artificial neural network to pattern recognition in fabric defects,” Text. Res. J. 65(3), 123–130 (1995).
[Crossref]

Lin, J.-J.

I.-S. Tsai, C.-H. Lin, and J.-J. Lin, “Applying an artificial neural network to pattern recognition in fabric defects,” Text. Res. J. 65(3), 123–130 (1995).
[Crossref]

Lin, Q.

P. Oldiges, Q. Lin, K. Petrillo, M. Sanchez, M. Ieong, and M. Hargrove, “Modeling line edge roughness effects in sub 100 nanometer gate length devices,” Simulation of Semiconductor Processes and Devices (2000).

Liu, M.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Liu, X.

K. Zhang, Y. Yan, P. Li, J. Jing, X. Liu, and Z. Wang, “Fabric Defect Detection Using Salience Metric for Color Dissimilarity and Positional Aggregation,” IEEE Access 6, 49170–49181 (2018).
[Crossref]

Liu, Z.

C. Li, G. Gao, Z. Liu, M. Yu, and D. Huang, “Fabric Defect Detection Based on Biological Vision Modeling,” IEEE Access 6, 27659–27670 (2018).
[Crossref]

Lizarraga-Morales, R. A.

R. A. Lizarraga-Morales, F. E. Correa-Tome, R. E. Sanchez-Yanez, and J. Cepeda-Negrete, “On the Use of Binary Features in a Rule-Based Approach for Defect on Patterned Textiles,” IEEE Access 7, 18042–18049 (2019).
[Crossref]

Luo, Y.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Lyszczarz, T. M.

S. C. Palmateer, S. G. Cann, J. E. Curtin, S. P. Doran, L. M. Eriksen, A. R. Forte, R. R. Kunz, T. M. Lyszczarz, M. B. Stern, and C. M. Nelson-Thomas, “Line-edge roughness in sub-0.18-$\mu$μm resist patterns,” Proc. SPIE 3333, 634 (1998).
[Crossref]

Mack, C. A.

C. A. Mack, “Generating random rough edges, surfaces, and volumes,” Appl. Opt. 52(7), 1472 (2013).
[Crossref]

C. A. Mack, “Analytic form for the power spectral density in one, two, and three dimensions,” J. Micro/Nanolith. MEMS MOEMS 10(4), 040501 (2011).
[Crossref]

Maes, H.

J. Croon, G. Storms, S. Winkelmeier, I. Pollentier, M. Ercken, S. Decoutere, W. Sansen, and H. Maes, “Line edge roughness: characterization, modeling and impact on device behavior,” in Electron Devices Meeting, 2002. IEDM’02. International, (IEEE, 2002).

Mathieu, P.

M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. on Image Process. 1(2), 205–220 (1992).
[Crossref]

McNally, P.

N. Gorji, B. Tanner, R. Vijayaraghavan, A. Danilewsky, and P. McNally, “Nondestructive, in situ mapping of die surface displacements in encapsulated ic chip packages using x-ray diffraction imaging techniques,” in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), (IEEE, 2017), pp. 520–525.

Mizuoka, Y.

K. Nakata, R. Orihara, Y. Mizuoka, and K. Takagi, “A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing,” IEEE Trans. Semicond. Manufact. 30(4), 339–344 (2017).
[Crossref]

MKehandru, R.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Moore, G. E.

G. E. Moore, “Cramming more components onto integrated circuits,” Proc. IEEE 86(1), 82–85 (1998).
[Crossref]

Moriya, S.

M. Yoshizawa and S. Moriya, “Study of the acid-diffusion effect on line edge roughness using the edge roughness evaluation method,” J. Vac. Sci. Technol. B 20(4), 1342 (2002).
[Crossref]

Muhaidat, S.

G. Tello, O. Y. Al-Jarrah, P. D. Yoo, Y. Al-Hammadi, S. Muhaidat, and U. Lee, “Deep-Structured Machine Learning Model for the Recognition of Mixed-Defect Patterns in Semiconductor Fabrication Processes,” IEEE Trans. Semicond. Manufact. 31(2), 315–322 (2018).
[Crossref]

F. Adly, P. D. Yoo, S. Muhaidat, Y. Al-Hammadi, U. Lee, and M. Ismail, “Randomized General Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Semicond. Manufact. 28(2), 145–152 (2015).
[Crossref]

F. Adly, O. Alhussein, P. D. Yoo, Y. Al-Hammadi, K. Taha, S. Muhaidat, Y.-S. Jeong, U. Lee, and M. Ismail, “Simplified Subspaced Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Ind. Inf. 11(6), 1267–1276 (2015).
[Crossref]

Nadeau, J.

A. Raghunathan, S. Bennett, H. O. Stamper, J. G. Hartley, A. Arceo, M. Johnson, C. Deeb, D. Patel, and J. Nadeau, “13nm gate Intentional Defect Array (IDA) wafer patterning by e-beam lithography for defect metrology evaluation,” Microelectron. Eng. 88(8), 2729–2731 (2011).
[Crossref]

Nakasuji, M.

T. Harada, M. Nakasuji, A. Tokimasa, T. Watanabe, Y. Usui, and H. Kinoshita, “Defect characterization of an extreme-ultraviolet mask using a coherent extreme-ultraviolet scatterometry microscope,” Jpn. J. Appl. Phys. 51, 06FB08 (2012).
[Crossref]

Nakata, K.

K. Nakata, R. Orihara, Y. Mizuoka, and K. Takagi, “A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing,” IEEE Trans. Semicond. Manufact. 30(4), 339–344 (2017).
[Crossref]

Nakazawa, T.

T. Nakazawa and D. V. Kulkarni, “Wafer Map Defect Pattern Classification and Image Retrieval Using Convolutional Neural Network,” IEEE Trans. Semicond. Manufact. 31(2), 309–314 (2018).
[Crossref]

Natarajan, S.

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Naulleau, P. P.

A. Wojdyla, A. Donoghue, M. P. Benk, P. P. Naulleau, and K. A. Goldberg, “Aerial imaging study of the mask-induced line-width roughness of euv lithography masks,” Proc. SPIE 9776, 97760H (2016).
[Crossref]

Neisser, M.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Nelson-Thomas, C. M.

S. C. Palmateer, S. G. Cann, J. E. Curtin, S. P. Doran, L. M. Eriksen, A. R. Forte, R. R. Kunz, T. M. Lyszczarz, M. B. Stern, and C. M. Nelson-Thomas, “Line-edge roughness in sub-0.18-$\mu$μm resist patterns,” Proc. SPIE 3333, 634 (1998).
[Crossref]

Niskanen, M.

M. Niskanen, O. Silvén, and H. Kauppinen, “Color and texture based wood inspection with non-supervised clustering,” Proc. scandinavian Conf. on image analysis (2001).

Obeng, Y.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Oldiges, P.

P. Oldiges, Q. Lin, K. Petrillo, M. Sanchez, M. Ieong, and M. Hargrove, “Modeling line edge roughness effects in sub 100 nanometer gate length devices,” Simulation of Semiconductor Processes and Devices (2000).

Orihara, R.

K. Nakata, R. Orihara, Y. Mizuoka, and K. Takagi, “A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing,” IEEE Trans. Semicond. Manufact. 30(4), 339–344 (2017).
[Crossref]

Orji, N. G.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Palmateer, S. C.

S. C. Palmateer, S. G. Cann, J. E. Curtin, S. P. Doran, L. M. Eriksen, A. R. Forte, R. R. Kunz, T. M. Lyszczarz, M. B. Stern, and C. M. Nelson-Thomas, “Line-edge roughness in sub-0.18-$\mu$μm resist patterns,” Proc. SPIE 3333, 634 (1998).
[Crossref]

Patel, D.

A. Raghunathan, S. Bennett, H. O. Stamper, J. G. Hartley, A. Arceo, M. Johnson, C. Deeb, D. Patel, and J. Nadeau, “13nm gate Intentional Defect Array (IDA) wafer patterning by e-beam lithography for defect metrology evaluation,” Microelectron. Eng. 88(8), 2729–2731 (2011).
[Crossref]

R. M. Silver, B. M. Barnes, Y. Sohn, R. Quintanilha, H. Zhou, C. Deeb, M. Johnson, M. Goodwin, and D. Patel, “The limits and extensibility of optical patterned defect inspection,” Proc. SPIE 7638, 76380J (2010).
[Crossref]

Petrillo, K.

P. Oldiges, Q. Lin, K. Petrillo, M. Sanchez, M. Ieong, and M. Hargrove, “Modeling line edge roughness effects in sub 100 nanometer gate length devices,” Simulation of Semiconductor Processes and Devices (2000).

Pollentier, I.

J. Croon, G. Storms, S. Winkelmeier, I. Pollentier, M. Ercken, S. Decoutere, W. Sansen, and H. Maes, “Line edge roughness: characterization, modeling and impact on device behavior,” in Electron Devices Meeting, 2002. IEDM’02. International, (IEEE, 2002).

Popescu, G.

Purandare, S.

Quintanilha, R.

R. M. Silver, B. M. Barnes, Y. Sohn, R. Quintanilha, H. Zhou, C. Deeb, M. Johnson, M. Goodwin, and D. Patel, “The limits and extensibility of optical patterned defect inspection,” Proc. SPIE 7638, 76380J (2010).
[Crossref]

Quinthanilha, R.

B. M. Barnes, R. Quinthanilha, Y.-J. Sohn, H. Zhou, and R. M. Silver, “Optical illumination optimization for patterned defect inspection,” in Metrology, Inspection, and Process Control for Microlithography XXV, vol. 7971 (International Society for Optics and Photonics, 2011), p. 79710D

Raghunathan, A.

A. Raghunathan, S. Bennett, H. O. Stamper, J. G. Hartley, A. Arceo, M. Johnson, C. Deeb, D. Patel, and J. Nadeau, “13nm gate Intentional Defect Array (IDA) wafer patterning by e-beam lithography for defect metrology evaluation,” Microelectron. Eng. 88(8), 2729–2731 (2011).
[Crossref]

Rathsfeld, A.

Sanchez, M.

J. Koomey, S. Berard, M. Sanchez, and H. Wong, “Implications of historical trends in the electrical efficiency of computing,” IEEE Annals Hist. Comput. 33(3), 46–54 (2011).
[Crossref]

P. Oldiges, Q. Lin, K. Petrillo, M. Sanchez, M. Ieong, and M. Hargrove, “Modeling line edge roughness effects in sub 100 nanometer gate length devices,” Simulation of Semiconductor Processes and Devices (2000).

Sanchez-Yanez, R. E.

R. A. Lizarraga-Morales, F. E. Correa-Tome, R. E. Sanchez-Yanez, and J. Cepeda-Negrete, “On the Use of Binary Features in a Rule-Based Approach for Defect on Patterned Textiles,” IEEE Access 7, 18042–18049 (2019).
[Crossref]

Sansen, W.

J. Croon, G. Storms, S. Winkelmeier, I. Pollentier, M. Ercken, S. Decoutere, W. Sansen, and H. Maes, “Line edge roughness: characterization, modeling and impact on device behavior,” in Electron Devices Meeting, 2002. IEDM’02. International, (IEEE, 2002).

Scholze, F.

H. Gross, S. Heidenreich, M.-A. Henn, G. Dai, F. Scholze, and M. Bär, “Modelling line edge roughness in periodic line-space structures by fourier optics to improve scatterometry,” J. Eur. Opt. Soc. Publications 9, 14003 (2014).
[Crossref]

M.-A. Henn, S. Heidenreich, H. Gross, A. Rathsfeld, F. Scholze, and M. Bär, “Improved grating reconstruction by determination of line roughness in extreme ultraviolet scatterometry,” Opt. Lett. 37(24), 5229–5231 (2012).
[Crossref]

Schwing, A.

Silvén, O.

M. Niskanen, O. Silvén, and H. Kauppinen, “Color and texture based wood inspection with non-supervised clustering,” Proc. scandinavian Conf. on image analysis (2001).

Silver, R. M.

M.-A. Henn, Z. Hui, R. M. Silver, and B. M. Barnes, “Applications of machine learning at the limits of form-dependent scattering for defect metrology,” Proc. SPIE 10959, 109590Z (2019).
[Crossref]

B. M. Barnes, M.-A. Henn, M. Y. Sohn, H. Zhou, and R. M. Silver, “Assessing form-dependent optical scattering at vacuum- and extreme-ultraviolet wavelengths off nanostructures with two-dimensional periodicity,” Phys. Rev. Appl. 11(6), 064056 (2019).
[Crossref]

M. Y. Sohn, B. M. Barnes, and R. M. Silver, “Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy,” Optik (Munich, Ger.) 156, 635–645 (2018).
[Crossref]

B. M. Barnes, H. Zhou, M.-A. Henn, M. Y. Sohn, and R. M. Silver, “Assessing the wavelength extensibility of optical patterned defect inspection,” Proc. SPIE 10145, 1014516 (2017).
[Crossref]

B. M. Barnes, H. Zhou, M.-A. Henn, M. Y. Sohn, and R. M. Silver, “Optimizing image-based patterned defect inspection through FDTD simulations at multiple ultraviolet wavelengths,” Proc. SPIE 10330, 103300W (2017).
[Crossref]

B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolithography, MEMS, MOEMS 14(1), 014001 (2015).
[Crossref]

B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolith. MEMS MOEMS 14(1), 014001 (2015).
[Crossref]

B. M. Barnes, M. Y. Sohn, F. Goasmat, H. Zhou, A. E. Vladár, R. M. Silver, and A. Arceo, “Three-dimensional deep sub-wavelength defect detection using $\lambda$λ= 193 nm optical microscopy,” Opt. Express 21(22), 26219–26226 (2013).
[Crossref]

R. M. Silver, B. M. Barnes, Y. Sohn, R. Quintanilha, H. Zhou, C. Deeb, M. Johnson, M. Goodwin, and D. Patel, “The limits and extensibility of optical patterned defect inspection,” Proc. SPIE 7638, 76380J (2010).
[Crossref]

B. M. Barnes, R. Quinthanilha, Y.-J. Sohn, H. Zhou, and R. M. Silver, “Optical illumination optimization for patterned defect inspection,” in Metrology, Inspection, and Process Control for Microlithography XXV, vol. 7971 (International Society for Optics and Photonics, 2011), p. 79710D

Silverman, D.

D. Silverman, “Your smartphone is light years ahead of NASA computers that guided Apollo moon landings,” Houston Chronicle (11 April 2019).

Sohn, M. Y.

B. M. Barnes, M.-A. Henn, M. Y. Sohn, H. Zhou, and R. M. Silver, “Assessing form-dependent optical scattering at vacuum- and extreme-ultraviolet wavelengths off nanostructures with two-dimensional periodicity,” Phys. Rev. Appl. 11(6), 064056 (2019).
[Crossref]

M. Y. Sohn, B. M. Barnes, and R. M. Silver, “Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy,” Optik (Munich, Ger.) 156, 635–645 (2018).
[Crossref]

B. M. Barnes, H. Zhou, M.-A. Henn, M. Y. Sohn, and R. M. Silver, “Assessing the wavelength extensibility of optical patterned defect inspection,” Proc. SPIE 10145, 1014516 (2017).
[Crossref]

B. M. Barnes, H. Zhou, M.-A. Henn, M. Y. Sohn, and R. M. Silver, “Optimizing image-based patterned defect inspection through FDTD simulations at multiple ultraviolet wavelengths,” Proc. SPIE 10330, 103300W (2017).
[Crossref]

B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolithography, MEMS, MOEMS 14(1), 014001 (2015).
[Crossref]

B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolith. MEMS MOEMS 14(1), 014001 (2015).
[Crossref]

B. M. Barnes, M. Y. Sohn, F. Goasmat, H. Zhou, A. E. Vladár, R. M. Silver, and A. Arceo, “Three-dimensional deep sub-wavelength defect detection using $\lambda$λ= 193 nm optical microscopy,” Opt. Express 21(22), 26219–26226 (2013).
[Crossref]

Sohn, Y.

R. M. Silver, B. M. Barnes, Y. Sohn, R. Quintanilha, H. Zhou, C. Deeb, M. Johnson, M. Goodwin, and D. Patel, “The limits and extensibility of optical patterned defect inspection,” Proc. SPIE 7638, 76380J (2010).
[Crossref]

Sohn, Y.-J.

B. M. Barnes, R. Quinthanilha, Y.-J. Sohn, H. Zhou, and R. M. Silver, “Optical illumination optimization for patterned defect inspection,” in Metrology, Inspection, and Process Control for Microlithography XXV, vol. 7971 (International Society for Optics and Photonics, 2011), p. 79710D

Soukup, D.

D. Soukup and R. Huber-Mörk, “Convolutional neural networks for steel surface defect detection from photometric stereo images,” Int. Symp. on Vis. Comput. (2014).

Stamper, H. O.

A. Raghunathan, S. Bennett, H. O. Stamper, J. G. Hartley, A. Arceo, M. Johnson, C. Deeb, D. Patel, and J. Nadeau, “13nm gate Intentional Defect Array (IDA) wafer patterning by e-beam lithography for defect metrology evaluation,” Microelectron. Eng. 88(8), 2729–2731 (2011).
[Crossref]

Stern, M. B.

S. C. Palmateer, S. G. Cann, J. E. Curtin, S. P. Doran, L. M. Eriksen, A. R. Forte, R. R. Kunz, T. M. Lyszczarz, M. B. Stern, and C. M. Nelson-Thomas, “Line-edge roughness in sub-0.18-$\mu$μm resist patterns,” Proc. SPIE 3333, 634 (1998).
[Crossref]

Storms, G.

J. Croon, G. Storms, S. Winkelmeier, I. Pollentier, M. Ercken, S. Decoutere, W. Sansen, and H. Maes, “Line edge roughness: characterization, modeling and impact on device behavior,” in Electron Devices Meeting, 2002. IEDM’02. International, (IEEE, 2002).

Taflove, A.

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Trans. Electromagn. Compat. EMC-22(3), 191–202 (1980).
[Crossref]

Taha, K.

F. Adly, O. Alhussein, P. D. Yoo, Y. Al-Hammadi, K. Taha, S. Muhaidat, Y.-S. Jeong, U. Lee, and M. Ismail, “Simplified Subspaced Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Ind. Inf. 11(6), 1267–1276 (2015).
[Crossref]

Takagi, K.

K. Nakata, R. Orihara, Y. Mizuoka, and K. Takagi, “A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing,” IEEE Trans. Semicond. Manufact. 30(4), 339–344 (2017).
[Crossref]

Tanner, B.

N. Gorji, B. Tanner, R. Vijayaraghavan, A. Danilewsky, and P. McNally, “Nondestructive, in situ mapping of die surface displacements in encapsulated ic chip packages using x-ray diffraction imaging techniques,” in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), (IEEE, 2017), pp. 520–525.

Tello, G.

G. Tello, O. Y. Al-Jarrah, P. D. Yoo, Y. Al-Hammadi, S. Muhaidat, and U. Lee, “Deep-Structured Machine Learning Model for the Recognition of Mixed-Defect Patterns in Semiconductor Fabrication Processes,” IEEE Trans. Semicond. Manufact. 31(2), 315–322 (2018).
[Crossref]

Tokimasa, A.

T. Harada, M. Nakasuji, A. Tokimasa, T. Watanabe, Y. Usui, and H. Kinoshita, “Defect characterization of an extreme-ultraviolet mask using a coherent extreme-ultraviolet scatterometry microscope,” Jpn. J. Appl. Phys. 51, 06FB08 (2012).
[Crossref]

Tong, L.

L. Tong, W. K. Wong, and C. K. Kwong, “Fabric Defect Detection for Apparel Industry: A Nonlocal Sparse Representation Approach,” IEEE Access 5, 5947–5964 (2017).
[Crossref]

Tsai, I.-S.

I.-S. Tsai, C.-H. Lin, and J.-J. Lin, “Applying an artificial neural network to pattern recognition in fabric defects,” Text. Res. J. 65(3), 123–130 (1995).
[Crossref]

Usui, Y.

T. Harada, M. Nakasuji, A. Tokimasa, T. Watanabe, Y. Usui, and H. Kinoshita, “Defect characterization of an extreme-ultraviolet mask using a coherent extreme-ultraviolet scatterometry microscope,” Jpn. J. Appl. Phys. 51, 06FB08 (2012).
[Crossref]

Vijayaraghavan, R.

N. Gorji, B. Tanner, R. Vijayaraghavan, A. Danilewsky, and P. McNally, “Nondestructive, in situ mapping of die surface displacements in encapsulated ic chip packages using x-ray diffraction imaging techniques,” in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), (IEEE, 2017), pp. 520–525.

Vladar, A.

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Vladár, A. E.

B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolithography, MEMS, MOEMS 14(1), 014001 (2015).
[Crossref]

B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolith. MEMS MOEMS 14(1), 014001 (2015).
[Crossref]

B. M. Barnes, M. Y. Sohn, F. Goasmat, H. Zhou, A. E. Vladár, R. M. Silver, and A. Arceo, “Three-dimensional deep sub-wavelength defect detection using $\lambda$λ= 193 nm optical microscopy,” Opt. Express 21(22), 26219–26226 (2013).
[Crossref]

Waldrop, M. M.

M. M. Waldrop, “The chips are down for Moore’s law,” Nature (London, U. K.) 530(7589), 144–147 (2016).
[Crossref]

Wang, Z.

K. Zhang, Y. Yan, P. Li, J. Jing, X. Liu, and Z. Wang, “Fabric Defect Detection Using Salience Metric for Color Dissimilarity and Positional Aggregation,” IEEE Access 6, 49170–49181 (2018).
[Crossref]

Watanabe, T.

T. Harada, M. Nakasuji, A. Tokimasa, T. Watanabe, Y. Usui, and H. Kinoshita, “Defect characterization of an extreme-ultraviolet mask using a coherent extreme-ultraviolet scatterometry microscope,” Jpn. J. Appl. Phys. 51, 06FB08 (2012).
[Crossref]

Winkelmeier, S.

J. Croon, G. Storms, S. Winkelmeier, I. Pollentier, M. Ercken, S. Decoutere, W. Sansen, and H. Maes, “Line edge roughness: characterization, modeling and impact on device behavior,” in Electron Devices Meeting, 2002. IEDM’02. International, (IEEE, 2002).

Wojdyla, A.

A. Wojdyla, A. Donoghue, M. P. Benk, P. P. Naulleau, and K. A. Goldberg, “Aerial imaging study of the mask-induced line-width roughness of euv lithography masks,” Proc. SPIE 9776, 97760H (2016).
[Crossref]

Wong, H.

J. Koomey, S. Berard, M. Sanchez, and H. Wong, “Implications of historical trends in the electrical efficiency of computing,” IEEE Annals Hist. Comput. 33(3), 46–54 (2011).
[Crossref]

Wong, W. K.

L. Tong, W. K. Wong, and C. K. Kwong, “Fabric Defect Detection for Apparel Industry: A Nonlocal Sparse Representation Approach,” IEEE Access 5, 5947–5964 (2017).
[Crossref]

Yamaguchi, A.

A. Yamaguchi and O. Komuro, “Characterization of line edge roughness in resist patterns by using fourier analysis and auto-correlation function,” Jpn. J. Appl. Phys. 42(Part 1), 3763–3770 (2003).
[Crossref]

Yan, Y.

K. Zhang, Y. Yan, P. Li, J. Jing, X. Liu, and Z. Wang, “Fabric Defect Detection Using Salience Metric for Color Dissimilarity and Positional Aggregation,” IEEE Access 6, 49170–49181 (2018).
[Crossref]

Yoo, P. D.

G. Tello, O. Y. Al-Jarrah, P. D. Yoo, Y. Al-Hammadi, S. Muhaidat, and U. Lee, “Deep-Structured Machine Learning Model for the Recognition of Mixed-Defect Patterns in Semiconductor Fabrication Processes,” IEEE Trans. Semicond. Manufact. 31(2), 315–322 (2018).
[Crossref]

F. Adly, O. Alhussein, P. D. Yoo, Y. Al-Hammadi, K. Taha, S. Muhaidat, Y.-S. Jeong, U. Lee, and M. Ismail, “Simplified Subspaced Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Ind. Inf. 11(6), 1267–1276 (2015).
[Crossref]

F. Adly, P. D. Yoo, S. Muhaidat, Y. Al-Hammadi, U. Lee, and M. Ismail, “Randomized General Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Semicond. Manufact. 28(2), 145–152 (2015).
[Crossref]

Yoshizawa, M.

M. Yoshizawa and S. Moriya, “Study of the acid-diffusion effect on line edge roughness using the edge roughness evaluation method,” J. Vac. Sci. Technol. B 20(4), 1342 (2002).
[Crossref]

Yu, M.

C. Li, G. Gao, Z. Liu, M. Yu, and D. Huang, “Fabric Defect Detection Based on Biological Vision Modeling,” IEEE Access 6, 27659–27670 (2018).
[Crossref]

Zhang, K.

K. Zhang, Y. Yan, P. Li, J. Jing, X. Liu, and Z. Wang, “Fabric Defect Detection Using Salience Metric for Color Dissimilarity and Positional Aggregation,” IEEE Access 6, 49170–49181 (2018).
[Crossref]

Zhou, H.

B. M. Barnes, M.-A. Henn, M. Y. Sohn, H. Zhou, and R. M. Silver, “Assessing form-dependent optical scattering at vacuum- and extreme-ultraviolet wavelengths off nanostructures with two-dimensional periodicity,” Phys. Rev. Appl. 11(6), 064056 (2019).
[Crossref]

B. M. Barnes, H. Zhou, M.-A. Henn, M. Y. Sohn, and R. M. Silver, “Assessing the wavelength extensibility of optical patterned defect inspection,” Proc. SPIE 10145, 1014516 (2017).
[Crossref]

B. M. Barnes, H. Zhou, M.-A. Henn, M. Y. Sohn, and R. M. Silver, “Optimizing image-based patterned defect inspection through FDTD simulations at multiple ultraviolet wavelengths,” Proc. SPIE 10330, 103300W (2017).
[Crossref]

B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolithography, MEMS, MOEMS 14(1), 014001 (2015).
[Crossref]

B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolith. MEMS MOEMS 14(1), 014001 (2015).
[Crossref]

B. M. Barnes, M. Y. Sohn, F. Goasmat, H. Zhou, A. E. Vladár, R. M. Silver, and A. Arceo, “Three-dimensional deep sub-wavelength defect detection using $\lambda$λ= 193 nm optical microscopy,” Opt. Express 21(22), 26219–26226 (2013).
[Crossref]

R. M. Silver, B. M. Barnes, Y. Sohn, R. Quintanilha, H. Zhou, C. Deeb, M. Johnson, M. Goodwin, and D. Patel, “The limits and extensibility of optical patterned defect inspection,” Proc. SPIE 7638, 76380J (2010).
[Crossref]

B. M. Barnes, R. Quinthanilha, Y.-J. Sohn, H. Zhou, and R. M. Silver, “Optical illumination optimization for patterned defect inspection,” in Metrology, Inspection, and Process Control for Microlithography XXV, vol. 7971 (International Society for Optics and Photonics, 2011), p. 79710D

Zhou, R.

Zhu, J.

Appl. Opt. (1)

IEEE Access (4)

C. Li, G. Gao, Z. Liu, M. Yu, and D. Huang, “Fabric Defect Detection Based on Biological Vision Modeling,” IEEE Access 6, 27659–27670 (2018).
[Crossref]

K. Zhang, Y. Yan, P. Li, J. Jing, X. Liu, and Z. Wang, “Fabric Defect Detection Using Salience Metric for Color Dissimilarity and Positional Aggregation,” IEEE Access 6, 49170–49181 (2018).
[Crossref]

R. A. Lizarraga-Morales, F. E. Correa-Tome, R. E. Sanchez-Yanez, and J. Cepeda-Negrete, “On the Use of Binary Features in a Rule-Based Approach for Defect on Patterned Textiles,” IEEE Access 7, 18042–18049 (2019).
[Crossref]

L. Tong, W. K. Wong, and C. K. Kwong, “Fabric Defect Detection for Apparel Industry: A Nonlocal Sparse Representation Approach,” IEEE Access 5, 5947–5964 (2017).
[Crossref]

IEEE Annals Hist. Comput. (1)

J. Koomey, S. Berard, M. Sanchez, and H. Wong, “Implications of historical trends in the electrical efficiency of computing,” IEEE Annals Hist. Comput. 33(3), 46–54 (2011).
[Crossref]

IEEE Trans. Electromagn. Compat. (1)

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Trans. Electromagn. Compat. EMC-22(3), 191–202 (1980).
[Crossref]

IEEE Trans. Ind. Inf. (1)

F. Adly, O. Alhussein, P. D. Yoo, Y. Al-Hammadi, K. Taha, S. Muhaidat, Y.-S. Jeong, U. Lee, and M. Ismail, “Simplified Subspaced Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Ind. Inf. 11(6), 1267–1276 (2015).
[Crossref]

IEEE Trans. on Image Process. (1)

M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. on Image Process. 1(2), 205–220 (1992).
[Crossref]

IEEE Trans. Semicond. Manufact. (5)

F. Adly, P. D. Yoo, S. Muhaidat, Y. Al-Hammadi, U. Lee, and M. Ismail, “Randomized General Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps,” IEEE Trans. Semicond. Manufact. 28(2), 145–152 (2015).
[Crossref]

K. Nakata, R. Orihara, Y. Mizuoka, and K. Takagi, “A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing,” IEEE Trans. Semicond. Manufact. 30(4), 339–344 (2017).
[Crossref]

T. Nakazawa and D. V. Kulkarni, “Wafer Map Defect Pattern Classification and Image Retrieval Using Convolutional Neural Network,” IEEE Trans. Semicond. Manufact. 31(2), 309–314 (2018).
[Crossref]

G. Tello, O. Y. Al-Jarrah, P. D. Yoo, Y. Al-Hammadi, S. Muhaidat, and U. Lee, “Deep-Structured Machine Learning Model for the Recognition of Mixed-Defect Patterns in Semiconductor Fabrication Processes,” IEEE Trans. Semicond. Manufact. 31(2), 315–322 (2018).
[Crossref]

K. Kyeong and H. Kim, “Classification of Mixed-Type Defect Patterns in Wafer Bin Maps Using Convolutional Neural Networks,” IEEE Trans. Semicond. Manufact. 31(3), 395–402 (2018).
[Crossref]

Intel Technol. J. (1)

J. E. Bjorkholm, “EUV lithography - the successor to optical lithography,” Intel Technol. J. 2, 1–8 (1998).

J. Eur. Opt. Soc. Publications (1)

H. Gross, S. Heidenreich, M.-A. Henn, G. Dai, F. Scholze, and M. Bär, “Modelling line edge roughness in periodic line-space structures by fourier optics to improve scatterometry,” J. Eur. Opt. Soc. Publications 9, 14003 (2014).
[Crossref]

J. Micro/Nanolith. MEMS MOEMS (2)

C. A. Mack, “Analytic form for the power spectral density in one, two, and three dimensions,” J. Micro/Nanolith. MEMS MOEMS 10(4), 040501 (2011).
[Crossref]

B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolith. MEMS MOEMS 14(1), 014001 (2015).
[Crossref]

J. Micro/Nanolithography, MEMS, MOEMS (1)

B. M. Barnes, F. Goasmat, M. Y. Sohn, H. Zhou, A. E. Vladár, and R. M. Silver, “Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection,” J. Micro/Nanolithography, MEMS, MOEMS 14(1), 014001 (2015).
[Crossref]

J. Photopolym. Sci. Technol. (1)

N. Kubota, T. Hayashi, T. Iwai, H. Komano, and A. Kawai, “Advanced resist design using AFM analysis for ArF lithography,” J. Photopolym. Sci. Technol. 16(3), 467–474 (2003).
[Crossref]

J. Vac. Sci. Technol. B (1)

M. Yoshizawa and S. Moriya, “Study of the acid-diffusion effect on line edge roughness using the edge roughness evaluation method,” J. Vac. Sci. Technol. B 20(4), 1342 (2002).
[Crossref]

Jpn. J. Appl. Phys. (2)

T. Harada, M. Nakasuji, A. Tokimasa, T. Watanabe, Y. Usui, and H. Kinoshita, “Defect characterization of an extreme-ultraviolet mask using a coherent extreme-ultraviolet scatterometry microscope,” Jpn. J. Appl. Phys. 51, 06FB08 (2012).
[Crossref]

A. Yamaguchi and O. Komuro, “Characterization of line edge roughness in resist patterns by using fourier analysis and auto-correlation function,” Jpn. J. Appl. Phys. 42(Part 1), 3763–3770 (2003).
[Crossref]

Microelectron. Eng. (1)

A. Raghunathan, S. Bennett, H. O. Stamper, J. G. Hartley, A. Arceo, M. Johnson, C. Deeb, D. Patel, and J. Nadeau, “13nm gate Intentional Defect Array (IDA) wafer patterning by e-beam lithography for defect metrology evaluation,” Microelectron. Eng. 88(8), 2729–2731 (2011).
[Crossref]

Nat. Electron. (1)

N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. Vladar, “Metrology for the next generation of semiconductor devices,” Nat. Electron. 1(10), 532–547 (2018).
[Crossref]

Nature (London, U. K.) (1)

M. M. Waldrop, “The chips are down for Moore’s law,” Nature (London, U. K.) 530(7589), 144–147 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optik (Munich, Ger.) (1)

M. Y. Sohn, B. M. Barnes, and R. M. Silver, “Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy,” Optik (Munich, Ger.) 156, 635–645 (2018).
[Crossref]

Phys. Rev. Appl. (1)

B. M. Barnes, M.-A. Henn, M. Y. Sohn, H. Zhou, and R. M. Silver, “Assessing form-dependent optical scattering at vacuum- and extreme-ultraviolet wavelengths off nanostructures with two-dimensional periodicity,” Phys. Rev. Appl. 11(6), 064056 (2019).
[Crossref]

Proc. IEEE (1)

G. E. Moore, “Cramming more components onto integrated circuits,” Proc. IEEE 86(1), 82–85 (1998).
[Crossref]

Proc. SPIE (6)

A. Wojdyla, A. Donoghue, M. P. Benk, P. P. Naulleau, and K. A. Goldberg, “Aerial imaging study of the mask-induced line-width roughness of euv lithography masks,” Proc. SPIE 9776, 97760H (2016).
[Crossref]

B. M. Barnes, H. Zhou, M.-A. Henn, M. Y. Sohn, and R. M. Silver, “Assessing the wavelength extensibility of optical patterned defect inspection,” Proc. SPIE 10145, 1014516 (2017).
[Crossref]

S. C. Palmateer, S. G. Cann, J. E. Curtin, S. P. Doran, L. M. Eriksen, A. R. Forte, R. R. Kunz, T. M. Lyszczarz, M. B. Stern, and C. M. Nelson-Thomas, “Line-edge roughness in sub-0.18-$\mu$μm resist patterns,” Proc. SPIE 3333, 634 (1998).
[Crossref]

R. M. Silver, B. M. Barnes, Y. Sohn, R. Quintanilha, H. Zhou, C. Deeb, M. Johnson, M. Goodwin, and D. Patel, “The limits and extensibility of optical patterned defect inspection,” Proc. SPIE 7638, 76380J (2010).
[Crossref]

B. M. Barnes, H. Zhou, M.-A. Henn, M. Y. Sohn, and R. M. Silver, “Optimizing image-based patterned defect inspection through FDTD simulations at multiple ultraviolet wavelengths,” Proc. SPIE 10330, 103300W (2017).
[Crossref]

M.-A. Henn, Z. Hui, R. M. Silver, and B. M. Barnes, “Applications of machine learning at the limits of form-dependent scattering for defect metrology,” Proc. SPIE 10959, 109590Z (2019).
[Crossref]

Text. Res. J. (1)

I.-S. Tsai, C.-H. Lin, and J.-J. Lin, “Applying an artificial neural network to pattern recognition in fabric defects,” Text. Res. J. 65(3), 123–130 (1995).
[Crossref]

Other (15)

Google Brain, “TensorFlow,” (2015).

P. Oldiges, Q. Lin, K. Petrillo, M. Sanchez, M. Ieong, and M. Hargrove, “Modeling line edge roughness effects in sub 100 nanometer gate length devices,” Simulation of Semiconductor Processes and Devices (2000).

J. Croon, G. Storms, S. Winkelmeier, I. Pollentier, M. Ercken, S. Decoutere, W. Sansen, and H. Maes, “Line edge roughness: characterization, modeling and impact on device behavior,” in Electron Devices Meeting, 2002. IEDM’02. International, (IEEE, 2002).

A. Agresti, Categorical Data Analysis (John Wiley & Sons, 2003).

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning (MIT Press, 2016).

B. M. Barnes, R. Quinthanilha, Y.-J. Sohn, H. Zhou, and R. M. Silver, “Optical illumination optimization for patterned defect inspection,” in Metrology, Inspection, and Process Control for Microlithography XXV, vol. 7971 (International Society for Optics and Photonics, 2011), p. 79710D

R. Durrett, Probability: Theory and Examples (Cambridge Univ., 2010).

B. Barnes, “Geometries and material properties for simulating semiconductor patterned bridge defects using the finite-difference time-domain (FDTD) method,” (2018), https://doi.org/10.18434/T4/1500937.

D. Silverman, “Your smartphone is light years ahead of NASA computers that guided Apollo moon landings,” Houston Chronicle (11 April 2019).

Semiconductor Industry Association, “Annual semiconductor sales,” (2017).

T. F. Crimmins, “Defect metrology challenges at the 11-nm node and beyond,” in Metrology, Inspection, and Process Control for Microlithography XXIV, vol. 7638 (International Society for Optics and Photonics, 2010), 76380H.

N. Gorji, B. Tanner, R. Vijayaraghavan, A. Danilewsky, and P. McNally, “Nondestructive, in situ mapping of die surface displacements in encapsulated ic chip packages using x-ray diffraction imaging techniques,” in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), (IEEE, 2017), pp. 520–525.

D. Soukup and R. Huber-Mörk, “Convolutional neural networks for steel surface defect detection from photometric stereo images,” Int. Symp. on Vis. Comput. (2014).

M. Niskanen, O. Silvén, and H. Kauppinen, “Color and texture based wood inspection with non-supervised clustering,” Proc. scandinavian Conf. on image analysis (2001).

S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, and R. MKehandru, “A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 $\mu$μm 2 SRAM cell size,” Electron Devices Meeting (IEDM) (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic representation of a) ideal layout, b) Bx and c) By bridging defects, d) Cx and e) Cy line extension defects, and f) and g) key dimensions of the unit cell. The lighter color is simulated as crystalline silicon and the blue as amorphous silicon. For clarity two 2 nm thick conformal layers that coat the amorphous silicon are not shown. Geometry and materials details are available at [27].
Fig. 2.
Fig. 2. Example images with Poisson noise generated using photon densities from Tab. 1, (left) no defect, (center) defect, (right) AVDI. (top row) Bx defect, Y polarization, $\lambda =13~\mathrm {nm}$, (middle row) Cx defect, Y polarization, $\lambda =47~\mathrm {nm}$, (bottom row) By defect, X polarization, $\lambda =193~\mathrm {nm}$. While the longer wavelengths are able to identify the defect, it is almost indistinguishable from noise at $\lambda =13~\mathrm {nm}$.
Fig. 3.
Fig. 3. Histograms of pixel intensities as used as features in the linear classifier, $\rho _{\mathsf {ph}}\left (193~\mathrm {nm}\right )=10^5~\mathrm {nm}^{-2}$, $\rho _{\mathsf {ph}}\left (13~\mathrm {nm}\right )=100~\mathrm {nm}^{-2}$.
Fig. 4.
Fig. 4. CSRs as a function of photon density, capital letter after defect type denotes polarization of incident light, CNN denotes convolutional neural network, LC denotes linear classifier.
Fig. 5.
Fig. 5. Effect of compression and binning for the Cx defect (circled), $\lambda =47~\mathrm {nm}$, Y-polarization, $\rho _{\mathsf {ph}}=10~\mathrm {nm}^{-2}$, a) original AVDI, b) rebinned image, c)-e) wavelet-based compression for two, three, and four steps.
Fig. 6.
Fig. 6. Schematic representation of used CNN, the filter size for the convolution layers was set to $5\times 5$ pixels. For supplementary information see [53].
Fig. 7.
Fig. 7. Effect of compression on CSRs for $\lambda =13~\mathrm {nm}$.
Fig. 8.
Fig. 8. Defect AVDIs at $\lambda =193$ nm and $\rho_{\mathrm{ph}} =10000~\mathrm {nm}^{-2}$. While many defects are easily identified by eye, some defect and polarization combinations yield difference images that are visually similar.

Tables (2)

Tables Icon

Table 1. Benchmark photon densities $\rho_\mathrm{ph}$ from the literature [36,37] for the wavelengths used in this study.

Tables Icon

Table 2. Confusion matrix for $\lambda =193$ nm, $\rho_{\mathrm{ph}} =10000~\mathrm {nm}^{-2}$, X-polarization, CSR = 0.974 for multiple defect classification. As is apparent the random draw of 4000 test images did not precisely select 800 of each class.