Abstract

We experimentally characterize a fiber-based ring resonator constructed from two commercially available 2x2 polarization-maintaining directional couplers. This ring resonator has a maximum noise suppression of 25 dB and resonant transmission of 80% at 1550 nm. Its high transmission means this ring resonator is ideally suited for the spectral filtering of master oscillator power amplifier light sources in a robust, compact, and all-fiber package. The limits of such a ring resonator for use in gravitational-wave detectors are discussed, and we show how it could be used to filter the low-power amplifier section and reduce the noise suppression requirements for the final free-space mode-cleaner.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power

S. Höfer, A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, S. Unger, S. Jetschke, H.-R. Müller, and I. Freitag
Opt. Lett. 26(17) 1326-1328 (2001)

All-solid-state neodymium-based single-frequency master-oscillator fiber power-amplifier system emitting 5.5??W of radiation at 1064??nm

I. Zawischa, K. Plamann, C. Fallnich, H. Welling, H. Zellmer, and A. Tünnermann
Opt. Lett. 24(7) 469-471 (1999)

100-W single-frequency master-oscillator fiber power amplifier

A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann
Opt. Lett. 28(17) 1537-1539 (2003)

References

  • View by:
  • |
  • |
  • |

  1. G. W. Matthew O’Toole and D. B. Lindell, “Confocal non-line-of-sight imaging based on the light-cone transform,” Nature 555(7696), 338–341 (2018).
    [Crossref]
  2. H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302 (2015).
    [Crossref]
  3. H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surv. Tutorials 19(1), 57–96 (2017).
    [Crossref]
  4. E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
    [Crossref]
  5. M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
    [Crossref]
  6. N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, “Observation of Entangled States of a Fully Controlled 20-Qubit System,” Phys. Rev. X 8(2), 021012 (2018).
    [Crossref]
  7. Instrument Science White Paper, LIGO Document T1700231-v2.
  8. G. Guiraud, N. Traynor, and G. Santarelli, “High-power and low-intensity noise laser at 1064nm,” Opt. Lett. 41(17), 4040 (2016).
    [Crossref]
  9. S. Xu, Z. Yang, T. Liu, W. Zhang, Z. Feng, Q. Zhang, and Z. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 $\mu$μm,” Opt. Express 18(2), 1249 (2010).
    [Crossref]
  10. S. Saraf, S. Sinha, A. K. Sridharan, and R. L. Byer, “100 w, single frequency, low-noise, diffraction-limited beam from an nd:yag end-pumped slab mopa for ligo,” Advanced Solid-State Photonics, Optical Society of America, 2004, p. PDP15.
  11. Pre-Stabilized Laser Design, LIGO Document T050036-00-P.
  12. B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and R. L. Savage, “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry–Perot ring-cavity premode cleaner,” Opt. Lett. 23(21), 1704 (1998).
    [Crossref]
  13. J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B: Lasers Opt. 124(6), 114 (2018).
    [Crossref]
  14. P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke, “Stabilized high-power laser system for the gravitational wave detector advanced LIGO,” Opt. Express 20(10), 10617 (2012).
    [Crossref]
  15. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394 (2006).
    [Crossref]
  16. J. H. Chow, D. E. McClelland, M. B. Gray, and I. C. Littler, “Demonstration of a passive subpicostrain fiber strain sensor,” Opt. Lett. 30(15), 1923 (2005).
    [Crossref]
  17. F. Zhang and J. W. Lit, “Direct-coupling single-mode fiber ring resonator,” J. Opt. Soc. Am. A 5(8), 1347 (1988).
    [Crossref]
  18. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7(6), 288 (1982).
    [Crossref]
  19. R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Lett. 8(12), 644 (1983).
    [Crossref]
  20. D. B. H. Ming and H. Yu, “Low Loss Fiber Ring Resonator,” Proc. SPIE 0478, 104 (1984).
    [Crossref]
  21. P. Urquhart, “Compound optical-fiber-based resonators,” J. Opt. Soc. Am. A 5(6), 803–812 (1988).
    [Crossref]
  22. Y. H. Ja, “Generalized theory of optical fiber loop and ring resonators with multiple couplers. 2: General characteristics,” Appl. Opt. 29(24), 3524–3529 (1990).
    [Crossref]
  23. P. H. Merrer, O. Llopis, and G. Cibiel, “Laser Stabilization on a Fiber Ring Resonatorand Application to RF Filtering,” IEEE Photonics Technol. Lett. 20(16), 1399–1401 (2008).
    [Crossref]
  24. K. Saleh, J. Millo, B. Marechal, B. Dubois, A. Bakir, A. Didier, C. Lâcroute, and Y. Kersalé, “Photonic Generation of High Power, Ultrastable Microwave Signals by Vernier Effect in a Femtosecond Laser Frequency Comb,” Sci. Rep. 8(1), 1997 (2018).
    [Crossref]
  25. N. Hodgson and H. Weber, The Fabry Perot Resonator (Springer, 1997) pp. 137–162.
  26. T. Feng, D. Ding, F. Yan, Z. Zhao, H. Su, and X. S. Yao, “Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method,” Opt. Express 24(17), 19760–19768 (2016).
    [Crossref]
  27. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [Crossref]
  28. R. Boyd, Nonlinear Optics (Elsevier Science, 2003).
  29. M. W. Zmda, “Stimulated Brillouin Scattering (SBS) Suppression Techniques,” Technical Report, Airforce Research Laboratory AFRL-DE-PS-TR-2007-1127 (2007).
  30. Y. Wang, C.-Q. Xu, and H. Po, “Thermal effects in kilowatt fiber lasers,” IEEE Photonics Technol. Lett. 16(1), 63–65 (2004).
    [Crossref]
  31. S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. Ruffin, J. A. Demeritt, and L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency,” IEEE J. Sel. Top. Quantum Electron. 15(1), 37–46 (2009).
    [Crossref]
  32. Y. Imai and N. Shimada, Dependence of Gain Spectrum and Threshold in SBS on Temperature Distribution in Fibers (Springer, US, 1995).
  33. S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. DeMeritt, and L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15(25), 17044 (2007).
    [Crossref]
  34. Instrument Science White Paper, LIGO Document P1400177-v5.
  35. J. Aasi et al., “Advanced LIGO,” Classical Quantum Gravity 32(7), 074001 (2015).
    [Crossref]
  36. T. S. Priest, K. T. Jones, G. B. Scelsi, and G. A. Woolsey, “Thermal Coefficients of Refractive Index and Expansion in Optical Fibre Sensing,” Proc. 12th Int. Conf. Opt. Fiber Sensors, OWC41, (1997).
  37. J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
    [Crossref]
  38. A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibres,” J. Lightwave Technol. 6(1), 17–20 (1988).
    [Crossref]
  39. M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2(1), 174 (2011).
    [Crossref]
  40. F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli, “A fully guided-wave squeezing experiment for fiber quantum networks,” Optica 3(4), 362 (2016).
    [Crossref]
  41. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31(8), 5244–5252 (1985).
    [Crossref]
  42. F. X. Kärtner, D. J. Dougherty, H. A. Haus, and E. P. Ippen, “Raman noise and soliton squeezing,” J. Opt. Soc. Am. B 11(7), 1267 (1994).
    [Crossref]

2018 (4)

G. W. Matthew O’Toole and D. B. Lindell, “Confocal non-line-of-sight imaging based on the light-cone transform,” Nature 555(7696), 338–341 (2018).
[Crossref]

N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, “Observation of Entangled States of a Fully Controlled 20-Qubit System,” Phys. Rev. X 8(2), 021012 (2018).
[Crossref]

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B: Lasers Opt. 124(6), 114 (2018).
[Crossref]

K. Saleh, J. Millo, B. Marechal, B. Dubois, A. Bakir, A. Didier, C. Lâcroute, and Y. Kersalé, “Photonic Generation of High Power, Ultrastable Microwave Signals by Vernier Effect in a Femtosecond Laser Frequency Comb,” Sci. Rep. 8(1), 1997 (2018).
[Crossref]

2017 (1)

H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surv. Tutorials 19(1), 57–96 (2017).
[Crossref]

2016 (5)

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

G. Guiraud, N. Traynor, and G. Santarelli, “High-power and low-intensity noise laser at 1064nm,” Opt. Lett. 41(17), 4040 (2016).
[Crossref]

T. Feng, D. Ding, F. Yan, Z. Zhao, H. Su, and X. S. Yao, “Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method,” Opt. Express 24(17), 19760–19768 (2016).
[Crossref]

F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli, “A fully guided-wave squeezing experiment for fiber quantum networks,” Optica 3(4), 362 (2016).
[Crossref]

2015 (2)

2012 (1)

2011 (1)

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2(1), 174 (2011).
[Crossref]

2010 (1)

2009 (1)

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. Ruffin, J. A. Demeritt, and L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency,” IEEE J. Sel. Top. Quantum Electron. 15(1), 37–46 (2009).
[Crossref]

2008 (1)

P. H. Merrer, O. Llopis, and G. Cibiel, “Laser Stabilization on a Fiber Ring Resonatorand Application to RF Filtering,” IEEE Photonics Technol. Lett. 20(16), 1399–1401 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

2004 (1)

Y. Wang, C.-Q. Xu, and H. Po, “Thermal effects in kilowatt fiber lasers,” IEEE Photonics Technol. Lett. 16(1), 63–65 (2004).
[Crossref]

2001 (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

1998 (1)

1996 (1)

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]

1994 (1)

1990 (1)

1988 (3)

P. Urquhart, “Compound optical-fiber-based resonators,” J. Opt. Soc. Am. A 5(6), 803–812 (1988).
[Crossref]

F. Zhang and J. W. Lit, “Direct-coupling single-mode fiber ring resonator,” J. Opt. Soc. Am. A 5(8), 1347 (1988).
[Crossref]

A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibres,” J. Lightwave Technol. 6(1), 17–20 (1988).
[Crossref]

1985 (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31(8), 5244–5252 (1985).
[Crossref]

1984 (1)

D. B. H. Ming and H. Yu, “Low Loss Fiber Ring Resonator,” Proc. SPIE 0478, 104 (1984).
[Crossref]

1983 (1)

1982 (1)

Aasi, J.

J. Aasi et al., “Advanced LIGO,” Classical Quantum Gravity 32(7), 074001 (2015).
[Crossref]

Agrell, E.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Alouini, M.-S.

Andrés, M. V.

Bakir, A.

K. Saleh, J. Millo, B. Marechal, B. Dubois, A. Bakir, A. Didier, C. Lâcroute, and Y. Kersalé, “Photonic Generation of High Power, Ultrastable Microwave Signals by Vernier Effect in a Femtosecond Laser Frequency Comb,” Sci. Rep. 8(1), 1997 (2018).
[Crossref]

Barmenkov, Y. O.

Bayer, P. W.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31(8), 5244–5252 (1985).
[Crossref]

Bertholds, A.

A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibres,” J. Lightwave Technol. 6(1), 17–20 (1988).
[Crossref]

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Blatt, R.

N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, “Observation of Entangled States of a Fully Controlled 20-Qubit System,” Phys. Rev. X 8(2), 021012 (2018).
[Crossref]

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Bogan, C.

Boullet, J.

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B: Lasers Opt. 124(6), 114 (2018).
[Crossref]

Bowers, J. E.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Boyd, R.

R. Boyd, Nonlinear Optics (Elsevier Science, 2003).

Brandl, M. F.

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Brandt-Pearce, M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Buchler, B.

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2(1), 174 (2011).
[Crossref]

Byer, R. L.

B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and R. L. Savage, “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry–Perot ring-cavity premode cleaner,” Opt. Lett. 23(21), 1704 (1998).
[Crossref]

S. Saraf, S. Sinha, A. K. Sridharan, and R. L. Byer, “100 w, single frequency, low-noise, diffraction-limited beam from an nd:yag end-pumped slab mopa for ligo,” Advanced Solid-State Photonics, Optical Society of America, 2004, p. PDP15.

Campbell, G.

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2(1), 174 (2011).
[Crossref]

Casanova, A.

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B: Lasers Opt. 124(6), 114 (2018).
[Crossref]

Chaibi, W.

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B: Lasers Opt. 124(6), 114 (2018).
[Crossref]

Chen, X.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. Ruffin, J. A. Demeritt, and L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency,” IEEE J. Sel. Top. Quantum Electron. 15(1), 37–46 (2009).
[Crossref]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. DeMeritt, and L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15(25), 17044 (2007).
[Crossref]

Chi, Y.-C.

Chodorow, M.

Chow, J. H.

Chraplyvy, A. R.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Cibiel, G.

P. H. Merrer, O. Llopis, and G. Cibiel, “Laser Stabilization on a Fiber Ring Resonatorand Application to RF Filtering,” IEEE Photonics Technol. Lett. 20(16), 1399–1401 (2008).
[Crossref]

Clements, W. R. L.

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]

Cruz, J. L.

D’Auria, V.

Dandliker, R.

A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibres,” J. Lightwave Technol. 6(1), 17–20 (1988).
[Crossref]

Daniilidis, N.

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Danzmann, K.

Demeritt, J. A.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. Ruffin, J. A. Demeritt, and L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency,” IEEE J. Sel. Top. Quantum Electron. 15(1), 37–46 (2009).
[Crossref]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. DeMeritt, and L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15(25), 17044 (2007).
[Crossref]

Didier, A.

K. Saleh, J. Millo, B. Marechal, B. Dubois, A. Bakir, A. Didier, C. Lâcroute, and Y. Kersalé, “Photonic Generation of High Power, Ultrastable Microwave Signals by Vernier Effect in a Femtosecond Laser Frequency Comb,” Sci. Rep. 8(1), 1997 (2018).
[Crossref]

Ding, D.

Dougherty, D. J.

Dubois, B.

K. Saleh, J. Millo, B. Marechal, B. Dubois, A. Bakir, A. Didier, C. Lâcroute, and Y. Kersalé, “Photonic Generation of High Power, Ultrastable Microwave Signals by Vernier Effect in a Femtosecond Laser Frequency Comb,” Sci. Rep. 8(1), 1997 (2018).
[Crossref]

Duran, J. R.

Eggleton, B. J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Ezekiel, S.

Fedrici, B.

Feng, T.

Feng, Z.

Fischer, J. K.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Floissat, F.

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B: Lasers Opt. 124(6), 114 (2018).
[Crossref]

Frede, M.

Friis, N.

N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, “Observation of Entangled States of a Fully Controlled 20-Qubit System,” Phys. Rev. X 8(2), 021012 (2018).
[Crossref]

Gisin, N.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Gray, M. B.

Gray, S.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. Ruffin, J. A. Demeritt, and L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency,” IEEE J. Sel. Top. Quantum Electron. 15(1), 37–46 (2009).
[Crossref]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. DeMeritt, and L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15(25), 17044 (2007).
[Crossref]

Guiraud, G.

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B: Lasers Opt. 124(6), 114 (2018).
[Crossref]

G. Guiraud, N. Traynor, and G. Santarelli, “High-power and low-intensity noise laser at 1064nm,” Opt. Lett. 41(17), 4040 (2016).
[Crossref]

Gustafson, E. K.

Häffner, H.

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Haus, H. A.

He, J.-H.

Hempel, C.

N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, “Observation of Entangled States of a Fully Controlled 20-Qubit System,” Phys. Rev. X 8(2), 021012 (2018).
[Crossref]

Hodgson, N.

N. Hodgson and H. Weber, The Fabry Perot Resonator (Springer, 1997) pp. 137–162.

Holzäpfel, M.

N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, “Observation of Entangled States of a Fully Controlled 20-Qubit System,” Phys. Rev. X 8(2), 021012 (2018).
[Crossref]

Hosseini, M.

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2(1), 174 (2011).
[Crossref]

Hreibi, A.

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B: Lasers Opt. 124(6), 114 (2018).
[Crossref]

Huber, M.

N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, “Observation of Entangled States of a Fully Controlled 20-Qubit System,” Phys. Rev. X 8(2), 021012 (2018).
[Crossref]

Imai, Y.

Y. Imai and N. Shimada, Dependence of Gain Spectrum and Threshold in SBS on Temperature Distribution in Fibers (Springer, US, 1995).

Ippen, E. P.

Ja, Y. H.

Janjua, B.

Jiang, Z.

Jones, K. T.

T. S. Priest, K. T. Jones, G. B. Scelsi, and G. A. Woolsey, “Thermal Coefficients of Refractive Index and Expansion in Optical Fibre Sensing,” Proc. 12th Int. Conf. Opt. Fiber Sensors, OWC41, (1997).

Jurcevic, P.

N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, “Observation of Entangled States of a Fully Controlled 20-Qubit System,” Phys. Rev. X 8(2), 021012 (2018).
[Crossref]

Kaddoum, G.

H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surv. Tutorials 19(1), 57–96 (2017).
[Crossref]

Kaiser, F.

Karlsson, M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Kärtner, F. X.

Kaufmann, H.

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Kaushal, H.

H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surv. Tutorials 19(1), 57–96 (2017).
[Crossref]

Kaushal, V.

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Kersalé, Y.

K. Saleh, J. Millo, B. Marechal, B. Dubois, A. Bakir, A. Didier, C. Lâcroute, and Y. Kersalé, “Photonic Generation of High Power, Ultrastable Microwave Signals by Vernier Effect in a Femtosecond Laser Frequency Comb,” Sci. Rep. 8(1), 1997 (2018).
[Crossref]

Kim, H.

King, P.

King, P. J.

Krummrich, P. M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Kschischang, F. R.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Kuo, H.-C.

Kwee, P.

Lâcroute, C.

K. Saleh, J. Millo, B. Marechal, B. Dubois, A. Bakir, A. Didier, C. Lâcroute, and Y. Kersalé, “Photonic Generation of High Power, Ultrastable Microwave Signals by Vernier Effect in a Femtosecond Laser Frequency Comb,” Sci. Rep. 8(1), 1997 (2018).
[Crossref]

Lakhmanskiy, K.

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Lam, P. K.

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2(1), 174 (2011).
[Crossref]

Lanyon, B.

N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, “Observation of Entangled States of a Fully Controlled 20-Qubit System,” Phys. Rev. X 8(2), 021012 (2018).
[Crossref]

Levenson, M. D.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31(8), 5244–5252 (1985).
[Crossref]

Li, M.-J.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. Ruffin, J. A. Demeritt, and L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency,” IEEE J. Sel. Top. Quantum Electron. 15(1), 37–46 (2009).
[Crossref]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. DeMeritt, and L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15(25), 17044 (2007).
[Crossref]

Lin, G.-R.

Lindell, D. B.

G. W. Matthew O’Toole and D. B. Lindell, “Confocal non-line-of-sight imaging based on the light-cone transform,” Nature 555(7696), 338–341 (2018).
[Crossref]

Lit, J. W.

Lit, J. W. Y.

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]

Littler, I. C.

Liu, A.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. Ruffin, J. A. Demeritt, and L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency,” IEEE J. Sel. Top. Quantum Electron. 15(1), 37–46 (2009).
[Crossref]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. DeMeritt, and L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15(25), 17044 (2007).
[Crossref]

Liu, T.

Llopis, O.

P. H. Merrer, O. Llopis, and G. Cibiel, “Laser Stabilization on a Fiber Ring Resonatorand Application to RF Filtering,” IEEE Photonics Technol. Lett. 20(16), 1399–1401 (2008).
[Crossref]

Lord, A.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Maier, C.

N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, “Observation of Entangled States of a Fully Controlled 20-Qubit System,” Phys. Rev. X 8(2), 021012 (2018).
[Crossref]

Marechal, B.

K. Saleh, J. Millo, B. Marechal, B. Dubois, A. Bakir, A. Didier, C. Lâcroute, and Y. Kersalé, “Photonic Generation of High Power, Ultrastable Microwave Signals by Vernier Effect in a Femtosecond Laser Frequency Comb,” Sci. Rep. 8(1), 1997 (2018).
[Crossref]

Marty, O.

N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, “Observation of Entangled States of a Fully Controlled 20-Qubit System,” Phys. Rev. X 8(2), 021012 (2018).
[Crossref]

Matthew O’Toole, G. W.

G. W. Matthew O’Toole and D. B. Lindell, “Confocal non-line-of-sight imaging based on the light-cone transform,” Nature 555(7696), 338–341 (2018).
[Crossref]

McClelland, D. E.

Merrer, P. H.

P. H. Merrer, O. Llopis, and G. Cibiel, “Laser Stabilization on a Fiber Ring Resonatorand Application to RF Filtering,” IEEE Photonics Technol. Lett. 20(16), 1399–1401 (2008).
[Crossref]

Meyer, R. E.

Millo, J.

K. Saleh, J. Millo, B. Marechal, B. Dubois, A. Bakir, A. Didier, C. Lâcroute, and Y. Kersalé, “Photonic Generation of High Power, Ultrastable Microwave Signals by Vernier Effect in a Femtosecond Laser Frequency Comb,” Sci. Rep. 8(1), 1997 (2018).
[Crossref]

Ming, D. B. H.

D. B. H. Ming and H. Yu, “Low Loss Fiber Ring Resonator,” Proc. SPIE 0478, 104 (1984).
[Crossref]

Möller, S.

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Monz, T.

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Ng, T. K.

Nolf, A.

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Ooi, B. S.

Oubei, H. M.

Paiva, R. R.

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Pierre, C.

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B: Lasers Opt. 124(6), 114 (2018).
[Crossref]

Plenio, M. B.

N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, “Observation of Entangled States of a Fully Controlled 20-Qubit System,” Phys. Rev. X 8(2), 021012 (2018).
[Crossref]

Po, H.

Y. Wang, C.-Q. Xu, and H. Po, “Thermal effects in kilowatt fiber lasers,” IEEE Photonics Technol. Lett. 16(1), 63–65 (2004).
[Crossref]

Pöld, J.

Poschinger, U. G.

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Postler, L.

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Prat, J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Priest, T. S.

T. S. Priest, K. T. Jones, G. B. Scelsi, and G. A. Woolsey, “Thermal Coefficients of Refractive Index and Expansion in Optical Fibre Sensing,” Proc. 12th Int. Conf. Opt. Fiber Sensors, OWC41, (1997).

Puncken, O.

Richardson, D. J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Roberts, K.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Roos, C.

N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, “Observation of Entangled States of a Fully Controlled 20-Qubit System,” Phys. Rev. X 8(2), 021012 (2018).
[Crossref]

Ruffin, A.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. Ruffin, J. A. Demeritt, and L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency,” IEEE J. Sel. Top. Quantum Electron. 15(1), 37–46 (2009).
[Crossref]

Ruffin, A. B.

Ruster, T.

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Saleh, K.

K. Saleh, J. Millo, B. Marechal, B. Dubois, A. Bakir, A. Didier, C. Lâcroute, and Y. Kersalé, “Photonic Generation of High Power, Ultrastable Microwave Signals by Vernier Effect in a Femtosecond Laser Frequency Comb,” Sci. Rep. 8(1), 1997 (2018).
[Crossref]

Santarelli, G.

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B: Lasers Opt. 124(6), 114 (2018).
[Crossref]

G. Guiraud, N. Traynor, and G. Santarelli, “High-power and low-intensity noise laser at 1064nm,” Opt. Lett. 41(17), 4040 (2016).
[Crossref]

Saraf, S.

S. Saraf, S. Sinha, A. K. Sridharan, and R. L. Byer, “100 w, single frequency, low-noise, diffraction-limited beam from an nd:yag end-pumped slab mopa for ligo,” Advanced Solid-State Photonics, Optical Society of America, 2004, p. PDP15.

Savage, R. L.

Savory, S. J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Scelsi, G. B.

T. S. Priest, K. T. Jones, G. B. Scelsi, and G. A. Woolsey, “Thermal Coefficients of Refractive Index and Expansion in Optical Fibre Sensing,” Proc. 12th Int. Conf. Opt. Fiber Sensors, OWC41, (1997).

Schindler, P.

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Schinn, G. W.

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]

Schmidt-Kaler, F.

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Secondini, M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Seel, S. U.

Seifert, F.

Shaw, H. J.

Shelby, R. M.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31(8), 5244–5252 (1985).
[Crossref]

Shimada, N.

Y. Imai and N. Shimada, Dependence of Gain Spectrum and Threshold in SBS on Temperature Distribution in Fibers (Springer, US, 1995).

Sinha, S.

S. Saraf, S. Sinha, A. K. Sridharan, and R. L. Byer, “100 w, single frequency, low-noise, diffraction-limited beam from an nd:yag end-pumped slab mopa for ligo,” Advanced Solid-State Photonics, Optical Society of America, 2004, p. PDP15.

Sparkes, B. M.

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2(1), 174 (2011).
[Crossref]

Sridharan, A. K.

S. Saraf, S. Sinha, A. K. Sridharan, and R. L. Byer, “100 w, single frequency, low-noise, diffraction-limited beam from an nd:yag end-pumped slab mopa for ligo,” Advanced Solid-State Photonics, Optical Society of America, 2004, p. PDP15.

Srinivasan, S.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Stokes, L. F.

Stowe, D. W.

Su, H.

Tanzilli, S.

Tekippe, V. J.

Tomkos, I.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Torres-Peiró, S.

Traynor, N.

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B: Lasers Opt. 124(6), 114 (2018).
[Crossref]

G. Guiraud, N. Traynor, and G. Santarelli, “High-power and low-intensity noise laser at 1064nm,” Opt. Lett. 41(17), 4040 (2016).
[Crossref]

Tsai, C.-T.

Uehara, N.

Urquhart, P.

van Mourik, M. W.

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Walton, D. T.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. Ruffin, J. A. Demeritt, and L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency,” IEEE J. Sel. Top. Quantum Electron. 15(1), 37–46 (2009).
[Crossref]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. DeMeritt, and L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15(25), 17044 (2007).
[Crossref]

Wang, H.-Y.

Wang, J.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. Ruffin, J. A. Demeritt, and L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency,” IEEE J. Sel. Top. Quantum Electron. 15(1), 37–46 (2009).
[Crossref]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. DeMeritt, and L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15(25), 17044 (2007).
[Crossref]

Wang, Y.

Y. Wang, C.-Q. Xu, and H. Po, “Thermal effects in kilowatt fiber lasers,” IEEE Photonics Technol. Lett. 16(1), 63–65 (2004).
[Crossref]

Warschburger, C.

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Weber, H.

N. Hodgson and H. Weber, The Fabry Perot Resonator (Springer, 1997) pp. 137–162.

Wessels, P.

Willke, B.

Winkelmann, L.

Winzer, P.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Woolsey, G. A.

T. S. Priest, K. T. Jones, G. B. Scelsi, and G. A. Woolsey, “Thermal Coefficients of Refractive Index and Expansion in Optical Fibre Sensing,” Proc. 12th Int. Conf. Opt. Fiber Sensors, OWC41, (1997).

Xu, C.-Q.

Y. Wang, C.-Q. Xu, and H. Po, “Thermal effects in kilowatt fiber lasers,” IEEE Photonics Technol. Lett. 16(1), 63–65 (2004).
[Crossref]

Xu, S.

Yan, F.

Yang, Z.

Yao, X. S.

Yu, H.

D. B. H. Ming and H. Yu, “Low Loss Fiber Ring Resonator,” Proc. SPIE 0478, 104 (1984).
[Crossref]

Yue, C.-Y.

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]

Zalvidea, D.

Zavatta, A.

Zenteno, L. A.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. Ruffin, J. A. Demeritt, and L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency,” IEEE J. Sel. Top. Quantum Electron. 15(1), 37–46 (2009).
[Crossref]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. DeMeritt, and L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15(25), 17044 (2007).
[Crossref]

Zhang, F.

Zhang, J.

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]

Zhang, Q.

Zhang, W.

Zhao, J.

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B: Lasers Opt. 124(6), 114 (2018).
[Crossref]

Zhao, Z.

Zmda, M. W.

M. W. Zmda, “Stimulated Brillouin Scattering (SBS) Suppression Techniques,” Technical Report, Airforce Research Laboratory AFRL-DE-PS-TR-2007-1127 (2007).

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B: Lasers Opt. 124(6), 114 (2018).
[Crossref]

Classical Quantum Gravity (1)

J. Aasi et al., “Advanced LIGO,” Classical Quantum Gravity 32(7), 074001 (2015).
[Crossref]

IEEE Commun. Surv. Tutorials (1)

H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surv. Tutorials 19(1), 57–96 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. Ruffin, J. A. Demeritt, and L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency,” IEEE J. Sel. Top. Quantum Electron. 15(1), 37–46 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (2)

P. H. Merrer, O. Llopis, and G. Cibiel, “Laser Stabilization on a Fiber Ring Resonatorand Application to RF Filtering,” IEEE Photonics Technol. Lett. 20(16), 1399–1401 (2008).
[Crossref]

Y. Wang, C.-Q. Xu, and H. Po, “Thermal effects in kilowatt fiber lasers,” IEEE Photonics Technol. Lett. 16(1), 63–65 (2004).
[Crossref]

J. Lightwave Technol. (2)

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]

A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibres,” J. Lightwave Technol. 6(1), 17–20 (1988).
[Crossref]

J. Opt. (1)

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2(1), 174 (2011).
[Crossref]

Nature (1)

G. W. Matthew O’Toole and D. B. Lindell, “Confocal non-line-of-sight imaging based on the light-cone transform,” Nature 555(7696), 338–341 (2018).
[Crossref]

Opt. Express (6)

T. Feng, D. Ding, F. Yan, Z. Zhao, H. Su, and X. S. Yao, “Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method,” Opt. Express 24(17), 19760–19768 (2016).
[Crossref]

Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394 (2006).
[Crossref]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. DeMeritt, and L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15(25), 17044 (2007).
[Crossref]

S. Xu, Z. Yang, T. Liu, W. Zhang, Z. Feng, Q. Zhang, and Z. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 $\mu$μm,” Opt. Express 18(2), 1249 (2010).
[Crossref]

P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke, “Stabilized high-power laser system for the gravitational wave detector advanced LIGO,” Opt. Express 20(10), 10617 (2012).
[Crossref]

H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302 (2015).
[Crossref]

Opt. Lett. (5)

Optica (1)

Phys. Rev. B (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31(8), 5244–5252 (1985).
[Crossref]

Phys. Rev. X (1)

N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, “Observation of Entangled States of a Fully Controlled 20-Qubit System,” Phys. Rev. X 8(2), 021012 (2018).
[Crossref]

Proc. SPIE (1)

D. B. H. Ming and H. Yu, “Low Loss Fiber Ring Resonator,” Proc. SPIE 0478, 104 (1984).
[Crossref]

Rev. Sci. Instrum. (1)

M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R. Blatt, “Cryogenic setup for trapped ion quantum computing,” Rev. Sci. Instrum. 87(11), 113103 (2016).
[Crossref]

Sci. Rep. (1)

K. Saleh, J. Millo, B. Marechal, B. Dubois, A. Bakir, A. Didier, C. Lâcroute, and Y. Kersalé, “Photonic Generation of High Power, Ultrastable Microwave Signals by Vernier Effect in a Femtosecond Laser Frequency Comb,” Sci. Rep. 8(1), 1997 (2018).
[Crossref]

Other (9)

N. Hodgson and H. Weber, The Fabry Perot Resonator (Springer, 1997) pp. 137–162.

R. Boyd, Nonlinear Optics (Elsevier Science, 2003).

M. W. Zmda, “Stimulated Brillouin Scattering (SBS) Suppression Techniques,” Technical Report, Airforce Research Laboratory AFRL-DE-PS-TR-2007-1127 (2007).

Y. Imai and N. Shimada, Dependence of Gain Spectrum and Threshold in SBS on Temperature Distribution in Fibers (Springer, US, 1995).

Instrument Science White Paper, LIGO Document P1400177-v5.

T. S. Priest, K. T. Jones, G. B. Scelsi, and G. A. Woolsey, “Thermal Coefficients of Refractive Index and Expansion in Optical Fibre Sensing,” Proc. 12th Int. Conf. Opt. Fiber Sensors, OWC41, (1997).

Instrument Science White Paper, LIGO Document T1700231-v2.

S. Saraf, S. Sinha, A. K. Sridharan, and R. L. Byer, “100 w, single frequency, low-noise, diffraction-limited beam from an nd:yag end-pumped slab mopa for ligo,” Advanced Solid-State Photonics, Optical Society of America, 2004, p. PDP15.

Pre-Stabilized Laser Design, LIGO Document T050036-00-P.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Operation of (i) a three-mirror Fabry-Perot mode-cleaner and (ii) an equivalent all-fiber ring resonator made from two directional couplers (ports numbered). (b) Illustration of chaining MOPA systems with optical filtering occurring after each step to remove ASE noise.
Fig. 2.
Fig. 2. (a) Transmitted (blue) and reflected (red) intensity of the laser as its frequency is scanned, showing a maximum transmission of 81% through the ring resonator and a finesse of 22. P$_2$ refers to the second polarization mode passing through the ring resonator. (b) Close up on a single resonance peak. From fitting to the data using Eqs. 1 and 2 with no other free parameters, a value of $\mathcal {V} = 0.987$ is extracted. Points correspond to data and dashed lines correspond to a fit with Eqs. 1 and 2, with the intensity normalised to maximum reflection.
Fig. 3.
Fig. 3. (a) Experimental apparatus for characterising the noise suppression properties of the ring resonator. DC = Directional coupler; FC-AOM = Fiber-coupled acousto-optic modulator; FC-EOM = Fiber-coupled electro-optic modulator; PID = Proportional-Integral-Derivative controller; LPF = low-pass filter; WN = White noise; PD = Photo diode; BN = Beat note; 50:50 = Non-polarizing fiber beam splitter. (b) Noise spectra of the laser before (blue) and after (red) transmission through the ring resonator centred about the 55 MHz beat frequency. The 10 MHz peaks are a result of the locking modulation. Dark noise (black) and residual amplitude modulation (green) are also shown. (c) Suppression through the ring resonator calculated from experimental data (blue), and from Eq. 2 with $\mathcal {V} = 0.987$ (red).
Fig. 4.
Fig. 4. (a) Chaining arrangement required to suppress noise at key GW detection frequencies using two fibre ring resonators with free-spectral ranges of (i) 18 MHz and (ii) 72 MHz. Percentages show amount of the input light at each point in the chain. (b) Calculated suppression through ring resonators (i) and (ii), as well as (iii) the total suppression for the system. Colored bands show key GW control frequencies with corresponding amount of suppression.
Fig. 5.
Fig. 5. (a) Simulated ring resonator peak transmission and (b) finesse (solid lines) and maximum suppression (dashed line) as a function of DC reflectivity for a number of different DC loss values. Arrows indicate corresponding axes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I r e f l e c t e d = R ( 1 V ) 2 + 4 R V sin 2 ( k p ) ( 1 R V ) 2 + 4 R V sin 2 ( k p )
I t r a n s m i t t e d = ( 1 R ) 2 V ( 1 R V ) 2 + 4 R V sin 2 ( k p )