Abstract

In this paper, we propose a honeycomb pure-silica-core fiber array associated with air hole cladding to realize both low inter-core coupling and high core density for high-resolution image transmission. The proposed fiber array structure easily achieves a high core-cladding contrast due to the high refractive index difference between silica and air, thus strengthening the light-confining ability of the cores. Numerical simulations demonstrate that, by optimizing the air-hole diameter and the lattice constant, a core spacing of 4.33µm and a power coupling ratio of lower than 1% between the adjacent cores can be obtained. We can further deduce that the optimum fiber array with 500µm diameter can achieve about 10,000 image pixels. Moreover, because of the uniform pure-silica-core structure, this fiber array would be easier to fabricate compared to other fiber bundles with either different sizes of cores or multiple kinds of doped-silica cores.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication and characterization of porous-core honeycomb bandgap THz fibers

Hualong Bao, Kristian Nielsen, Henrik K. Rasmussen, Peter Uhd Jepsen, and Ole Bang
Opt. Express 20(28) 29507-29517 (2012)

Silica–air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect

Stig E. Barkou, Jes Broeng, and Anders Bjarklev
Opt. Lett. 24(1) 46-48 (1999)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
    [Crossref]
  2. N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
    [Crossref]
  3. B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
    [Crossref]
  4. M. Hughes, T. P. Chang, and G. Z. Yang, “Fiber bundle endocytoscopy,” Biomed. Opt. Express 4(12), 2781–2784 (2013).
    [Crossref]
  5. J. M. Stone, H. A. C. Wood, K. Harrington, and T. A. Birks, “Low index contrast imaging fibers,” Opt. Lett. 42(8), 1484–1487 (2017).
    [Crossref]
  6. K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15(5), 2151–2165 (2007).
    [Crossref]
  7. K. L. Reichenbach and C. Xu, “Independent core propagation in two-core photonic crystal fibers resulting from structural nonuniformities,” Opt. Express 13(25), 10336–10348 (2005).
    [Crossref]
  8. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express 16(26), 21598–21607 (2008).
    [Crossref]
  9. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11(18), 2225–2230 (2003).
    [Crossref]
  10. J. Lousteau, N. White, A. Ventura, A. Masoudi, and F. Poletti, “Multimaterial mid-infrared transmitting fibre bundle for thermal imaging,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, Optical Society of America, Paper CE_9_3 (2017).
  11. H. A. C. Wood, K. Harrington, T. A. Birks, J. C. Knight, and J. M. Stone, “High-resolution air-clad imaging fibers,” Opt. Lett. 43(21), 5311–5314 (2018).
    [Crossref]
  12. Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26(8), 1335–1339 (1990).
    [Crossref]
  13. A. Barybin and V. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-wave Optics (Rinton Press, 2002).
  14. T. Kobayashi, T. Katagiri, and Y. Matsuura, “Multi-element hollow-core anti-resonant fiber for infrared thermal imaging,” Opt. Express 24(23), 26565–26547 (2016).
    [Crossref]
  15. M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol. 19(5), 482–485 (2013).
    [Crossref]
  16. J. Zhang, C. Lu, X. Li, H. J. Kim, and J. Wang, “A full convolutional network based on DenseNet for remote sensing scene classification,” Math. Biosci. Eng. 16(5), 3345–3367 (2019).
    [Crossref]
  17. J. Zhang, X. Jin, J. Sun, J. Wang, and K. Li, “Dual model learning combined with multiple feature selection for accurate visual tracking,” IEEE Access 7(1), 43956–43969 (2019).
    [Crossref]

2019 (2)

J. Zhang, C. Lu, X. Li, H. J. Kim, and J. Wang, “A full convolutional network based on DenseNet for remote sensing scene classification,” Math. Biosci. Eng. 16(5), 3345–3367 (2019).
[Crossref]

J. Zhang, X. Jin, J. Sun, J. Wang, and K. Li, “Dual model learning combined with multiple feature selection for accurate visual tracking,” IEEE Access 7(1), 43956–43969 (2019).
[Crossref]

2018 (1)

2017 (1)

2016 (2)

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref]

T. Kobayashi, T. Katagiri, and Y. Matsuura, “Multi-element hollow-core anti-resonant fiber for infrared thermal imaging,” Opt. Express 24(23), 26565–26547 (2016).
[Crossref]

2013 (2)

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol. 19(5), 482–485 (2013).
[Crossref]

M. Hughes, T. P. Chang, and G. Z. Yang, “Fiber bundle endocytoscopy,” Biomed. Opt. Express 4(12), 2781–2784 (2013).
[Crossref]

2012 (1)

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref]

2009 (1)

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
[Crossref]

2008 (1)

2007 (1)

2005 (1)

2003 (1)

1990 (1)

Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26(8), 1335–1339 (1990).
[Crossref]

Akram, A. R.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref]

Bartelt, H.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol. 19(5), 482–485 (2013).
[Crossref]

Barybin, A.

A. Barybin and V. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-wave Optics (Rinton Press, 2002).

Becker, M.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol. 19(5), 482–485 (2013).
[Crossref]

Birks, T. A.

Bixler, J. N.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref]

Bradley, M.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref]

Burns, L. D.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
[Crossref]

Chang, T. P.

Chen, X.

Choudhary, T. R.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref]

Chung, Y.

Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26(8), 1335–1339 (1990).
[Crossref]

Dagli, N.

Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26(8), 1335–1339 (1990).
[Crossref]

Dalgarno, P. A.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref]

Dhaliwal, K.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref]

Dmitriev, V.

A. Barybin and V. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-wave Optics (Rinton Press, 2002).

Esser, D.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol. 19(5), 482–485 (2013).
[Crossref]

Feng, X.

Finazzi, V.

Fitzau, O.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol. 19(5), 482–485 (2013).
[Crossref]

Ghosh, K. K.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
[Crossref]

Girkin, J. M.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref]

Harrington, K.

Hewak, D.

Hoffmann, D.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol. 19(5), 482–485 (2013).
[Crossref]

Hughes, M.

Jabbour, J. M.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref]

Jin, X.

J. Zhang, X. Jin, J. Sun, J. Wang, and K. Li, “Dual model learning combined with multiple feature selection for accurate visual tracking,” IEEE Access 7(1), 43956–43969 (2019).
[Crossref]

Katagiri, T.

Kim, H. J.

J. Zhang, C. Lu, X. Li, H. J. Kim, and J. Wang, “A full convolutional network based on DenseNet for remote sensing scene classification,” Math. Biosci. Eng. 16(5), 3345–3367 (2019).
[Crossref]

Knight, J. C.

Kobayashi, T.

Kobelke, J.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol. 19(5), 482–485 (2013).
[Crossref]

Krstajic, N.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref]

Li, K.

J. Zhang, X. Jin, J. Sun, J. Wang, and K. Li, “Dual model learning combined with multiple feature selection for accurate visual tracking,” IEEE Access 7(1), 43956–43969 (2019).
[Crossref]

Li, X.

J. Zhang, C. Lu, X. Li, H. J. Kim, and J. Wang, “A full convolutional network based on DenseNet for remote sensing scene classification,” Math. Biosci. Eng. 16(5), 3345–3367 (2019).
[Crossref]

Lorenz, A.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol. 19(5), 482–485 (2013).
[Crossref]

Lousteau, J.

J. Lousteau, N. White, A. Ventura, A. Masoudi, and F. Poletti, “Multimaterial mid-infrared transmitting fibre bundle for thermal imaging,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, Optical Society of America, Paper CE_9_3 (2017).

Lu, C.

J. Zhang, C. Lu, X. Li, H. J. Kim, and J. Wang, “A full convolutional network based on DenseNet for remote sensing scene classification,” Math. Biosci. Eng. 16(5), 3345–3367 (2019).
[Crossref]

Maitland, K. C.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref]

Masoudi, A.

J. Lousteau, N. White, A. Ventura, A. Masoudi, and F. Poletti, “Multimaterial mid-infrared transmitting fibre bundle for thermal imaging,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, Optical Society of America, Paper CE_9_3 (2017).

Matsuura, Y.

McDonald, N.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref]

Monro, T. M.

Moore, A.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref]

Mukamel, E. A.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
[Crossref]

Pedretti, E.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref]

Petropoulos, P.

Poletti, F.

J. Lousteau, N. White, A. Ventura, A. Masoudi, and F. Poletti, “Multimaterial mid-infrared transmitting fibre bundle for thermal imaging,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, Optical Society of America, Paper CE_9_3 (2017).

Reichenbach, K. L.

Rothhardt, M.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol. 19(5), 482–485 (2013).
[Crossref]

Saldua, M. A.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref]

Schnitzer, M. J.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
[Crossref]

Scholefield, E.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref]

Schuster, K.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol. 19(5), 482–485 (2013).
[Crossref]

Schwuchow, A.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol. 19(5), 482–485 (2013).
[Crossref]

Stone, J. M.

Sun, J.

J. Zhang, X. Jin, J. Sun, J. Wang, and K. Li, “Dual model learning combined with multiple feature selection for accurate visual tracking,” IEEE Access 7(1), 43956–43969 (2019).
[Crossref]

Tanner, M. G.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref]

Ventura, A.

J. Lousteau, N. White, A. Ventura, A. Masoudi, and F. Poletti, “Multimaterial mid-infrared transmitting fibre bundle for thermal imaging,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, Optical Society of America, Paper CE_9_3 (2017).

Wang, J.

J. Zhang, X. Jin, J. Sun, J. Wang, and K. Li, “Dual model learning combined with multiple feature selection for accurate visual tracking,” IEEE Access 7(1), 43956–43969 (2019).
[Crossref]

J. Zhang, C. Lu, X. Li, H. J. Kim, and J. Wang, “A full convolutional network based on DenseNet for remote sensing scene classification,” Math. Biosci. Eng. 16(5), 3345–3367 (2019).
[Crossref]

Wei Ho, E. T.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
[Crossref]

Werner, M.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol. 19(5), 482–485 (2013).
[Crossref]

White, N.

J. Lousteau, N. White, A. Ventura, A. Masoudi, and F. Poletti, “Multimaterial mid-infrared transmitting fibre bundle for thermal imaging,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, Optical Society of America, Paper CE_9_3 (2017).

Wilt, B. A.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
[Crossref]

Wood, H. A. C.

Xu, C.

Yang, G. Z.

Zhang, J.

J. Zhang, X. Jin, J. Sun, J. Wang, and K. Li, “Dual model learning combined with multiple feature selection for accurate visual tracking,” IEEE Access 7(1), 43956–43969 (2019).
[Crossref]

J. Zhang, C. Lu, X. Li, H. J. Kim, and J. Wang, “A full convolutional network based on DenseNet for remote sensing scene classification,” Math. Biosci. Eng. 16(5), 3345–3367 (2019).
[Crossref]

Ann. Biomed. Eng. (1)

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref]

Annu. Rev. Neurosci. (1)

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009).
[Crossref]

Biomed. Opt. Express (1)

IEEE Access (1)

J. Zhang, X. Jin, J. Sun, J. Wang, and K. Li, “Dual model learning combined with multiple feature selection for accurate visual tracking,” IEEE Access 7(1), 43956–43969 (2019).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26(8), 1335–1339 (1990).
[Crossref]

J. Biomed. Opt. (1)

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref]

Math. Biosci. Eng. (1)

J. Zhang, C. Lu, X. Li, H. J. Kim, and J. Wang, “A full convolutional network based on DenseNet for remote sensing scene classification,” Math. Biosci. Eng. 16(5), 3345–3367 (2019).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol. 19(5), 482–485 (2013).
[Crossref]

Opt. Lett. (2)

Other (2)

J. Lousteau, N. White, A. Ventura, A. Masoudi, and F. Poletti, “Multimaterial mid-infrared transmitting fibre bundle for thermal imaging,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, Optical Society of America, Paper CE_9_3 (2017).

A. Barybin and V. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-wave Optics (Rinton Press, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic cross section of the proposed honeycomb pure-silica-core fiber array. The white circles represent air-holes, and the gray part represents the background of pure silica. The parameters of d and Λ are air-hole diameter and the lattice constant. Note that the dark spots signify many air-holes and cores not shown. (b) A 24Λ×25Λ rectangle fiber array model used in the calculations.
Fig. 2.
Fig. 2. The monitored normalized power of the core1, core2 and core3 as a function of the propagation distance z for the fiber arrays with different air-hole diameters, (a) d = 0.7Λ, (b) d = 0.8Λ and (c) d = 0.9Λ, when the lattice constant Λ is fixed at 1.5µm.
Fig. 3.
Fig. 3. The monitored normalized power of the core1, core2 and core3 as a function of the propagation distance z for the fiber arrays with different Λ of (a) Λ=1.5µm, (b) Λ=2µm, (c) Λ=2.5µm and (d) Λ=3µm, when the air-hole filling ratio d/Λ is fixed at 0.9.
Fig. 4.
Fig. 4. The amplitude profiles of the three cores (core1, core2 and core3) for the fiber arrays with d/Λ=0.9 and (a) Λ=1.5µm, (b) Λ=2µm, (c) Λ=2.5µm and (d) Λ=3µm, when the value of the monitored power in the core2 first reaches a maximum.
Fig. 5.
Fig. 5. The transverse field distributions for the fiber arrays with d/Λ=0.9 and (a) Λ=1.5µm, z = 7 cm, (b) Λ=2.5µm, z = 3.8 cm.