Abstract

In this paper, we proposed and demonstrated a new design of marine signal light based on a phosphor-converted white light emitting diode. The light pattern was shaped in the vertical and horizontal directions, respectively, by a collimating total internal reflection lens with cylindrical lens array and a slanted shoulder to fit the requirement in the regulation. The vertical intensity distribution was collimated to 9° through an appropriate volume of the total internal reflection lens to fit the etendue of the light source. The horizontal intensity distribution was shaped with a cylindrical lens array to enlarge the horizontal to the divergent angle, and a specially-designed slanted shoulder to reduce the total internal reflection loss and extend the divergent angle from 45° to 67° with a flat-top shaping light pattern. As a result, only five pieces of the light emitting diode module around 6W is enough to build up a marine signal light to reach a distance of 8 nautical miles.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of a compact modified total internal reflection lens for high angular color uniformity

Shuiming Li, Fei Chen, Kai Wang, Shuang Zhao, Zhili Zhao, and Sheng Liu
Appl. Opt. 51(36) 8557-8562 (2012)

Design of compact LED free-form optical system for aeronautical illumination

Haobo Cheng, Chunyun Xu, Xiaoli Jing, and Hon-Yuen Tam
Appl. Opt. 54(25) 7632-7639 (2015)

Optical design of dental light with high performance and low power based on white LEDs

Ching-Cherng Sun, Hsin-Yang Ho, Jhih-You Cai, Shuang-Chao Chung, Yu-Yu Chang, and Tsung-Hsun Yang
Appl. Opt. 54(28) E171-E175 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. J. Kendall, “Let There Be Light: The History of Lighthouse Illuminants,” in The Keeper’s Log (Spring1997), p. 22–29.
  2. N. Narendran, N. Maliyagoda, A. Bierman, R. Pysar, and M. Overington, “Characterizing white LEDs for general illumination application,” Proc. SPIE 3938, 240–248 (2000).
    [Crossref]
  3. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
    [Crossref]
  4. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
    [Crossref]
  5. F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
    [Crossref]
  6. J. Y. Tsao, S. Nakamura, and A. V. Nurmikko, Eds., Light Emitting Diodes (LEDs) for General Illumination: AN OIDA Technology Roadmap Update 2002, Optoelectron. Ind. Development Assoc. (OIDA): Washington, DC, USA, 2002.
  7. A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-State Lighting (John Wiley & Sons, 2002).
  8. N. G. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
    [Crossref]
  9. Y. Xu, L. Chen, Y. Li, G. Song, Y. Wang, W. Zhuang, and Z. Long, “Phosphor-conversion white light using InGaN ultraviolet laser diode,” Appl. Phys. Lett. 92(2), 021129 (2008).
    [Crossref]
  10. S. Shionoya, W. M. Yen, and T. Hase, Phosphor Handbook (CRC Press, 1999).
  11. International Association of Marine Aids to Navigation and Lighthouse Authorities, NAVGUIDE 8th Edition.
  12. The Colour & Vision Research Laboratory, http://www.cvrl.org/ .
  13. Cree XLamp XP-G, https://www.cree.com/led-components/media/documents/XLampXPG.pdf
  14. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31(14), 2193–2195 (2006).
    [Crossref]
  15. W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express 15(12), 7572–7577 (2007).
    [Crossref]
  16. C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17(16), 13918–13927 (2009).
    [Crossref]
  17. J. Y. Cai, Y. C. Lo, S. T. Feng, and C. C. Sun, “Design of high-efficient LED-based bike head lamp with additional ground illumination,” Light. Res. Technol. 46(6), 747–753 (2014).
    [Crossref]
  18. C. C. Sun, Y. Y. Chang, Y. H. Wang, C. Y. Chen, Y. C. Lo, and H. H. Cheng, “Precise Spatial-Color Optical Modeling in Phosphor-Converted White LEDs,” J. Disp. Technol. 11(3), 261–265 (2015).
    [Crossref]
  19. For example, J. P. Lewis, in Vision Interface 95 (Canadian Image Processing and Pattern Recognition Society, 1995), p. 120.
  20. W. A. Parkyn and D. G. Pelka, “New TIR lens applications for light-emitting diodes,” Proc. SPIE 3139, 135–140 (1997).
    [Crossref]
  21. W. A. Parkyn, P. L. Gleckman, and D. G. Pelka, “Converging TIR lens for nonimaging concentration of light from compact incoherent sources,” Proc. SPIE 2016, 78–86 (1993).
    [Crossref]
  22. A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
    [Crossref]
  23. J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” Opt. Eng. 49(9), 093001 (2010).
    [Crossref]
  24. R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Academic Press, 2004).
  25. X. H. Lee, J. L. Tsai, S. H. Ma, and C. C. Sun, “Surface-structured diffuser by iterative down-size molding with glass sintering technology,” Opt. Express 20(6), 6135–6145 (2012).
    [Crossref]
  26. M. S. Tsai, C. C. Sun, T. H. Yang, C. S. Wu, S. K. Lin, and X. H. Lee, “Robust optical design for high-contrast cut-off line in vehicle forward lighting,” OSA Continuum 2(4), 1080–1088 (2019).
    [Crossref]

2019 (1)

2015 (1)

C. C. Sun, Y. Y. Chang, Y. H. Wang, C. Y. Chen, Y. C. Lo, and H. H. Cheng, “Precise Spatial-Color Optical Modeling in Phosphor-Converted White LEDs,” J. Disp. Technol. 11(3), 261–265 (2015).
[Crossref]

2014 (1)

J. Y. Cai, Y. C. Lo, S. T. Feng, and C. C. Sun, “Design of high-efficient LED-based bike head lamp with additional ground illumination,” Light. Res. Technol. 46(6), 747–753 (2014).
[Crossref]

2013 (1)

N. G. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[Crossref]

2012 (1)

2010 (1)

J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” Opt. Eng. 49(9), 093001 (2010).
[Crossref]

2009 (1)

2008 (2)

Y. Xu, L. Chen, Y. Li, G. Song, Y. Wang, W. Zhuang, and Z. Long, “Phosphor-conversion white light using InGaN ultraviolet laser diode,” Appl. Phys. Lett. 92(2), 021129 (2008).
[Crossref]

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (2)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref]

F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[Crossref]

2002 (1)

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

2000 (1)

N. Narendran, N. Maliyagoda, A. Bierman, R. Pysar, and M. Overington, “Characterizing white LEDs for general illumination application,” Proc. SPIE 3938, 240–248 (2000).
[Crossref]

1997 (1)

W. A. Parkyn and D. G. Pelka, “New TIR lens applications for light-emitting diodes,” Proc. SPIE 3139, 135–140 (1997).
[Crossref]

1993 (1)

W. A. Parkyn, P. L. Gleckman, and D. G. Pelka, “Converging TIR lens for nonimaging concentration of light from compact incoherent sources,” Proc. SPIE 2016, 78–86 (1993).
[Crossref]

Benitez, P.

R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Academic Press, 2004).

Bhat, J. C.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Bierman, A.

N. Narendran, N. Maliyagoda, A. Bierman, R. Pysar, and M. Overington, “Characterizing white LEDs for general illumination application,” Proc. SPIE 3938, 240–248 (2000).
[Crossref]

Cai, J. Y.

J. Y. Cai, Y. C. Lo, S. T. Feng, and C. C. Sun, “Design of high-efficient LED-based bike head lamp with additional ground illumination,” Light. Res. Technol. 46(6), 747–753 (2014).
[Crossref]

Caska, R.

A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-State Lighting (John Wiley & Sons, 2002).

Chang, Y. Y.

C. C. Sun, Y. Y. Chang, Y. H. Wang, C. Y. Chen, Y. C. Lo, and H. H. Cheng, “Precise Spatial-Color Optical Modeling in Phosphor-Converted White LEDs,” J. Disp. Technol. 11(3), 261–265 (2015).
[Crossref]

Chen, C. Y.

C. C. Sun, Y. Y. Chang, Y. H. Wang, C. Y. Chen, Y. C. Lo, and H. H. Cheng, “Precise Spatial-Color Optical Modeling in Phosphor-Converted White LEDs,” J. Disp. Technol. 11(3), 261–265 (2015).
[Crossref]

Chen, J. J.

J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” Opt. Eng. 49(9), 093001 (2010).
[Crossref]

Chen, L.

Y. Xu, L. Chen, Y. Li, G. Song, Y. Wang, W. Zhuang, and Z. Long, “Phosphor-conversion white light using InGaN ultraviolet laser diode,” Appl. Phys. Lett. 92(2), 021129 (2008).
[Crossref]

Cheng, H. H.

C. C. Sun, Y. Y. Chang, Y. H. Wang, C. Y. Chen, Y. C. Lo, and H. H. Cheng, “Precise Spatial-Color Optical Modeling in Phosphor-Converted White LEDs,” J. Disp. Technol. 11(3), 261–265 (2015).
[Crossref]

Chien, W. T.

Collins, D.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Denault, K. A.

N. G. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[Crossref]

Domhardt, A.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[Crossref]

Feng, S. T.

J. Y. Cai, Y. C. Lo, S. T. Feng, and C. C. Sun, “Design of high-efficient LED-based bike head lamp with additional ground illumination,” Light. Res. Technol. 46(6), 747–753 (2014).
[Crossref]

Fletcher, R. M.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

George, N. G.

N. G. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[Crossref]

Gleckman, P. L.

W. A. Parkyn, P. L. Gleckman, and D. G. Pelka, “Converging TIR lens for nonimaging concentration of light from compact incoherent sources,” Proc. SPIE 2016, 78–86 (1993).
[Crossref]

Hase, T.

S. Shionoya, W. M. Yen, and T. Hase, Phosphor Handbook (CRC Press, 1999).

Holcomb, M. O.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Hsieh, C. C.

Huang, S. M.

Kendall, C. J.

C. J. Kendall, “Let There Be Light: The History of Lighthouse Illuminants,” in The Keeper’s Log (Spring1997), p. 22–29.

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref]

Laski, J.

F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[Crossref]

Lee, T. X.

Lee, X. H.

Lee, Y. L.

Lemmer, U.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[Crossref]

Lewis, J. P.

For example, J. P. Lewis, in Vision Interface 95 (Canadian Image Processing and Pattern Recognition Society, 1995), p. 120.

Li, Y.

Y. Xu, L. Chen, Y. Li, G. Song, Y. Wang, W. Zhuang, and Z. Long, “Phosphor-conversion white light using InGaN ultraviolet laser diode,” Appl. Phys. Lett. 92(2), 021129 (2008).
[Crossref]

Lin, C. T.

J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” Opt. Eng. 49(9), 093001 (2010).
[Crossref]

Lin, S. K.

Lo, Y. C.

C. C. Sun, Y. Y. Chang, Y. H. Wang, C. Y. Chen, Y. C. Lo, and H. H. Cheng, “Precise Spatial-Color Optical Modeling in Phosphor-Converted White LEDs,” J. Disp. Technol. 11(3), 261–265 (2015).
[Crossref]

J. Y. Cai, Y. C. Lo, S. T. Feng, and C. C. Sun, “Design of high-efficient LED-based bike head lamp with additional ground illumination,” Light. Res. Technol. 46(6), 747–753 (2014).
[Crossref]

C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17(16), 13918–13927 (2009).
[Crossref]

Long, Z.

Y. Xu, L. Chen, Y. Li, G. Song, Y. Wang, W. Zhuang, and Z. Long, “Phosphor-conversion white light using InGaN ultraviolet laser diode,” Appl. Phys. Lett. 92(2), 021129 (2008).
[Crossref]

Ludowise, M. J.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Ma, S. H.

Maliyagoda, N.

N. Narendran, N. Maliyagoda, A. Bierman, R. Pysar, and M. Overington, “Characterizing white LEDs for general illumination application,” Proc. SPIE 3938, 240–248 (2000).
[Crossref]

Martin, P. S.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Minano, J. C.

R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Academic Press, 2004).

Moreno, I.

Nakamura, S.

J. Y. Tsao, S. Nakamura, and A. V. Nurmikko, Eds., Light Emitting Diodes (LEDs) for General Illumination: AN OIDA Technology Roadmap Update 2002, Optoelectron. Ind. Development Assoc. (OIDA): Washington, DC, USA, 2002.

Narendran, N.

N. Narendran, N. Maliyagoda, A. Bierman, R. Pysar, and M. Overington, “Characterizing white LEDs for general illumination application,” Proc. SPIE 3938, 240–248 (2000).
[Crossref]

Nguyen, F.

F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[Crossref]

Nurmikko, A. V.

J. Y. Tsao, S. Nakamura, and A. V. Nurmikko, Eds., Light Emitting Diodes (LEDs) for General Illumination: AN OIDA Technology Roadmap Update 2002, Optoelectron. Ind. Development Assoc. (OIDA): Washington, DC, USA, 2002.

Overington, M.

N. Narendran, N. Maliyagoda, A. Bierman, R. Pysar, and M. Overington, “Characterizing white LEDs for general illumination application,” Proc. SPIE 3938, 240–248 (2000).
[Crossref]

Parkyn, W. A.

W. A. Parkyn and D. G. Pelka, “New TIR lens applications for light-emitting diodes,” Proc. SPIE 3139, 135–140 (1997).
[Crossref]

W. A. Parkyn, P. L. Gleckman, and D. G. Pelka, “Converging TIR lens for nonimaging concentration of light from compact incoherent sources,” Proc. SPIE 2016, 78–86 (1993).
[Crossref]

Pelka, D. G.

W. A. Parkyn and D. G. Pelka, “New TIR lens applications for light-emitting diodes,” Proc. SPIE 3139, 135–140 (1997).
[Crossref]

W. A. Parkyn, P. L. Gleckman, and D. G. Pelka, “Converging TIR lens for nonimaging concentration of light from compact incoherent sources,” Proc. SPIE 2016, 78–86 (1993).
[Crossref]

Pysar, R.

N. Narendran, N. Maliyagoda, A. Bierman, R. Pysar, and M. Overington, “Characterizing white LEDs for general illumination application,” Proc. SPIE 3938, 240–248 (2000).
[Crossref]

Rohlfing, U.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[Crossref]

Rudaz, S. L.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref]

Seshadri, R.

N. G. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[Crossref]

Shionoya, S.

S. Shionoya, W. M. Yen, and T. Hase, Phosphor Handbook (CRC Press, 1999).

Shur, M. S.

A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-State Lighting (John Wiley & Sons, 2002).

Song, G.

Y. Xu, L. Chen, Y. Li, G. Song, Y. Wang, W. Zhuang, and Z. Long, “Phosphor-conversion white light using InGaN ultraviolet laser diode,” Appl. Phys. Lett. 92(2), 021129 (2008).
[Crossref]

Steigerwald, D. A.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Sun, C. C.

Terao, B.

F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[Crossref]

Tsai, J. L.

Tsai, M. S.

Tsao, J. Y.

J. Y. Tsao, S. Nakamura, and A. V. Nurmikko, Eds., Light Emitting Diodes (LEDs) for General Illumination: AN OIDA Technology Roadmap Update 2002, Optoelectron. Ind. Development Assoc. (OIDA): Washington, DC, USA, 2002.

Wang, Y.

Y. Xu, L. Chen, Y. Li, G. Song, Y. Wang, W. Zhuang, and Z. Long, “Phosphor-conversion white light using InGaN ultraviolet laser diode,” Appl. Phys. Lett. 92(2), 021129 (2008).
[Crossref]

Wang, Y. H.

C. C. Sun, Y. Y. Chang, Y. H. Wang, C. Y. Chen, Y. C. Lo, and H. H. Cheng, “Precise Spatial-Color Optical Modeling in Phosphor-Converted White LEDs,” J. Disp. Technol. 11(3), 261–265 (2015).
[Crossref]

Weingaertner, S.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[Crossref]

Winston, R.

R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Academic Press, 2004).

Wu, C. S.

Xu, Y.

Y. Xu, L. Chen, Y. Li, G. Song, Y. Wang, W. Zhuang, and Z. Long, “Phosphor-conversion white light using InGaN ultraviolet laser diode,” Appl. Phys. Lett. 92(2), 021129 (2008).
[Crossref]

Yang, T. H.

Yen, W. M.

S. Shionoya, W. M. Yen, and T. Hase, Phosphor Handbook (CRC Press, 1999).

Zhuang, W.

Y. Xu, L. Chen, Y. Li, G. Song, Y. Wang, W. Zhuang, and Z. Long, “Phosphor-conversion white light using InGaN ultraviolet laser diode,” Appl. Phys. Lett. 92(2), 021129 (2008).
[Crossref]

Zukauskas, A.

A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-State Lighting (John Wiley & Sons, 2002).

Annu. Rev. Mater. Res. (1)

N. G. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[Crossref]

Appl. Phys. Lett. (1)

Y. Xu, L. Chen, Y. Li, G. Song, Y. Wang, W. Zhuang, and Z. Long, “Phosphor-conversion white light using InGaN ultraviolet laser diode,” Appl. Phys. Lett. 92(2), 021129 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

J. Disp. Technol. (1)

C. C. Sun, Y. Y. Chang, Y. H. Wang, C. Y. Chen, Y. C. Lo, and H. H. Cheng, “Precise Spatial-Color Optical Modeling in Phosphor-Converted White LEDs,” J. Disp. Technol. 11(3), 261–265 (2015).
[Crossref]

Light. Res. Technol. (1)

J. Y. Cai, Y. C. Lo, S. T. Feng, and C. C. Sun, “Design of high-efficient LED-based bike head lamp with additional ground illumination,” Light. Res. Technol. 46(6), 747–753 (2014).
[Crossref]

Opt. Eng. (1)

J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” Opt. Eng. 49(9), 093001 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

OSA Continuum (1)

Proc. SPIE (5)

W. A. Parkyn and D. G. Pelka, “New TIR lens applications for light-emitting diodes,” Proc. SPIE 3139, 135–140 (1997).
[Crossref]

W. A. Parkyn, P. L. Gleckman, and D. G. Pelka, “Converging TIR lens for nonimaging concentration of light from compact incoherent sources,” Proc. SPIE 2016, 78–86 (1993).
[Crossref]

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for non-rotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[Crossref]

F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[Crossref]

N. Narendran, N. Maliyagoda, A. Bierman, R. Pysar, and M. Overington, “Characterizing white LEDs for general illumination application,” Proc. SPIE 3938, 240–248 (2000).
[Crossref]

Science (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref]

Other (9)

C. J. Kendall, “Let There Be Light: The History of Lighthouse Illuminants,” in The Keeper’s Log (Spring1997), p. 22–29.

S. Shionoya, W. M. Yen, and T. Hase, Phosphor Handbook (CRC Press, 1999).

International Association of Marine Aids to Navigation and Lighthouse Authorities, NAVGUIDE 8th Edition.

The Colour & Vision Research Laboratory, http://www.cvrl.org/ .

Cree XLamp XP-G, https://www.cree.com/led-components/media/documents/XLampXPG.pdf

J. Y. Tsao, S. Nakamura, and A. V. Nurmikko, Eds., Light Emitting Diodes (LEDs) for General Illumination: AN OIDA Technology Roadmap Update 2002, Optoelectron. Ind. Development Assoc. (OIDA): Washington, DC, USA, 2002.

A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-State Lighting (John Wiley & Sons, 2002).

For example, J. P. Lewis, in Vision Interface 95 (Canadian Image Processing and Pattern Recognition Society, 1995), p. 120.

R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Academic Press, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. The color range definition of the IALA E-200-1 Marine Signal Lights marked in 1931 CIE chromaticity diagram [12].
Fig. 2.
Fig. 2. (a) A photo of Cree XP-G2 LED, and (b) the corresponding structure.
Fig. 3.
Fig. 3. The measurement and the corresponding simulated intensity distribution at the mid-field range of (a) 15 mm, (b) 30 mm and (c) 50 mm.
Fig. 4.
Fig. 4. Comparison of the horizontal intensity distribution for light patterns with and without vertical–squeezing lens based on a Lambertian light source.
Fig. 5.
Fig. 5. (a) The structure of the collimating TIR lens, (b) the design concept, and (c) the vertical intensity distribution.
Fig. 6.
Fig. 6. The simulated intensity distribution in the vertical (red line) and horizontal (back line) directions of the CLA-TIR lens with the cylindrical lens height of (a) 1 mm, (b) 1.28 mm, (c) 1.44 mm and (d) 1.6 mm.
Fig. 7.
Fig. 7. Comparisons of the geometry, the ray fans, and the divergent angles between the CLA-TIR lens (a), (c), (e) and the CLAS-TIR lens (b), (d), (f).
Fig. 8.
Fig. 8. (a) The structure of the CDAS-TIR lens and (b) the corresponding sample by CNC machining.
Fig. 9.
Fig. 9. The measurement set up of (a) front view, and (b) side view.
Fig. 10.
Fig. 10. The rotation direction, measured intensity and normalized intensity distribution of the CLAS-TIR lens in the measurement along horizontal direction shown in (a), (b), (c) and vertical direction shown in (d), (e), (f).
Fig. 11.
Fig. 11. (a) in the design, the marine signal light contains five LED modules. (b) Comparison between the light pattern in the simulation and the experiment, where the luminous flux of each pcW-LED is 172.8 lm in the simulation, and 185.8 lm in the experiment. (c) Comparison between the light pattern using 5 pcs and 6 pcs CLAS-TIR lenses in the simulation. Obviously, 6 pcs LED will cause peak intensity and loss uniformity.

Tables (1)

Tables Icon

Table 1. The chromatic coordinates for the ranges in all acceptable colors.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T = E ( d U ) E vacuum ( d U ) ,
E ( d ) = I T M d / d U d 2 ,
E ( d ) = I T M d ( 1852 metres nauticalmile × d ) 2 = I ( 3.43 × 10 6 ) T M d d 2 ,
V = ln 0.05 ln T M × d U .
I = ( 3.43 × 10 6 ) E t D 2 ( 0.05 ) D V ,
E t = ( 0.242 × 10 6 ) × ( 1 + 0.4 L ) 2 .