Abstract

This paper demonstrates a phase-only liquid crystal on silicon (LCOS) device with improved total optical efficiency. A multi-layer dielectric mirror coating was carefully designed with an aim to maximise its reflectance and fabrication tolerance while minimising its thickness. The coated backplane improves the reflectance of the LCOS device from ∼80% to >96%. Although the dielectric mirror may lead to an enhanced fringing field effect and therefore a reduction in the diffraction efficiency, a straightforward optimisation on the driving waveform has been demonstrated to maintain the diffraction efficiency at a similar level. As a result, the total optical efficiency of the LCOS device with the coated silicon backplane is 12%–18% higher than that of the standard LCOS device, for different beam steering angles.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phase flicker optimisation in digital liquid crystal on silicon devices

H. Yang and D. P. Chu
Opt. Express 27(17) 24556-24567 (2019)

Beyond the display: phase-only liquid crystal on Silicon devices and their applications in photonics [Invited]

Grigory Lazarev, Po-Ju Chen, Johannes Strauss, Nicolas Fontaine, and Andrew Forbes
Opt. Express 27(11) 16206-16249 (2019)

Pixel-level fringing-effect model to describe the phase profile and diffraction efficiency of a liquid crystal on silicon device

Tianxin Lu, Mike Pivnenko, Brian Robertson, and Daping Chu
Appl. Opt. 54(19) 5903-5910 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Vettese, “Microdisplays: liquid crystal on silicon,” Nat. Photonics 4(11), 752–754 (2010).
    [Crossref]
  2. Z. Zhang, Z. You, and D. P. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light: Sci. Appl. 3(10), e213 (2014).
    [Crossref]
  3. N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28(22), 4740–4747 (1989).
    [Crossref]
  4. https://uk.jvc.com/projectors/4k/DLA-Z1/
  5. https://www.sony.com/electronics/projector/vpl-vw995es
  6. https://www.microsoft.com/en-us/hololens
  7. Y. Huang, Z. He, and S. T. Wu, “Fast-response liquid crystal phase modulators for augmented reality displays,” Opt. Express 25(26), 32757–32766 (2017).
    [Crossref]
  8. N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Trans. Graph. 36(4), 1–14 (2017).
    [Crossref]
  9. G. Hass, “Microdisplays for Augmented and Virtual Reality,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49(1), 506–509 (2018).
    [Crossref]
  10. S. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ‘drop and continue’ functionality in a wavelength selective switch,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2006), paper PDP14.
  11. T. A. Strasser and J. L. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1150–1157 (2010).
    [Crossref]
  12. S. T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23(21), 3911–3915 (1984).
    [Crossref]
  13. Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High Quality Assembly of Phase-Only Liquid Crystal on Silicon (LCOS) Devices,” J. Disp. Technol. 7(3), 120–126 (2011).
    [Crossref]
  14. J. L. Fergason, “Display devices utilizing liquid crystal light modulation,” US Patent US3731986; (1973).
  15. S. T. Wu and D. K. Yang, Fundamentals of Liquid Crystal Devices(John Wiley & Sons, 2006).
  16. E. Hällstig, T. Martin, L. Sjöqvist, and M. Lindgren, “Polarization properties of a nematic liquid-crystal spatial light modulator for phase modulation,” J. Opt. Soc. Am. A 22(1), 177–184 (2005).
    [Crossref]
  17. L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4(1), 7441 (2015).
    [Crossref]
  18. F. Yaras, M. Kovachev, R. Ilieva, M. Agour, and L. Onural, “Holographic Reconstructions Using Phase-Only Spatial Light Modulators,” 2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, Istanbul, pp. PD-1-PD-4, (2008).
  19. J. L. M. Fuentes and I. Moreno, “Random technique to encode complex valued holograms with on axis reconstruction onto phase-only displays,” Opt. Express 26(5), 5875–5893 (2018).
    [Crossref]
  20. G. Lazarev, F. Kerbstadt, and J. Luberek, “High-resolution high-reflective LCOS spatial light modulator for beam manipulation beyond visible spectrum,” Proc. SPIE 10090, 100900T (2017).
    [Crossref]
  21. E. Hällstig, J. Stigwall, T. Martin, L. Sjöqvist, and M. Lindgren, “Fringing fields in a liquid crystal spatial light modulator for beam steering,” J. Mod. Opt. 51(8), 1233–1247 (2004).
    [Crossref]
  22. U. Efron, B. Apter, and E. Bahat-Treidel, “Fringing-field effect in liquid-crystal beam-steering devices: an approximate analytical model,” J. Opt. Soc. Am. A 21(10), 1996–2008 (2004).
    [Crossref]
  23. A. Marquez, J. Campos, M. J. Yzuel, I. S. Moreno, J. A. Davis, C. C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39(12), 3301 (2000).
    [Crossref]
  24. https://www.jasperdisplay.com/products/wafer/jd2552-sp55/
  25. J. W. Goodman, Introduction to Fourier Optics, 4th ed. (W.H. Freeman, 2017).
  26. Z. He, T. Nose, and S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35(Part 1), 3529–3530 (1996).
    [Crossref]
  27. S. R. Harris, “Polarization effects in nematic liquid crystal optical phased arrays,” Proc. SPIE 5213, 26–39 (2003).
    [Crossref]
  28. R. W. Gerchber and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  29. M. A. Cibula and D. H. McIntyre, “General algorithm to optimize the diffraction efficiency of a phase-type spatial light modulator,” Opt. Lett. 38(15), 2767–2769 (2013).
    [Crossref]
  30. P. W. M. Tsang, Y. T. Chow, and T.-C. Poon, “Generation of patterned-phase-only holograms (PPOHs),” Opt. Express 25(8), 9088–9093 (2017).
    [Crossref]
  31. M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
    [Crossref]

2018 (2)

2017 (5)

G. Lazarev, F. Kerbstadt, and J. Luberek, “High-resolution high-reflective LCOS spatial light modulator for beam manipulation beyond visible spectrum,” Proc. SPIE 10090, 100900T (2017).
[Crossref]

Y. Huang, Z. He, and S. T. Wu, “Fast-response liquid crystal phase modulators for augmented reality displays,” Opt. Express 25(26), 32757–32766 (2017).
[Crossref]

N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Trans. Graph. 36(4), 1–14 (2017).
[Crossref]

P. W. M. Tsang, Y. T. Chow, and T.-C. Poon, “Generation of patterned-phase-only holograms (PPOHs),” Opt. Express 25(8), 9088–9093 (2017).
[Crossref]

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

2015 (1)

L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4(1), 7441 (2015).
[Crossref]

2014 (1)

Z. Zhang, Z. You, and D. P. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light: Sci. Appl. 3(10), e213 (2014).
[Crossref]

2013 (1)

2011 (1)

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High Quality Assembly of Phase-Only Liquid Crystal on Silicon (LCOS) Devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

2010 (2)

T. A. Strasser and J. L. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1150–1157 (2010).
[Crossref]

D. Vettese, “Microdisplays: liquid crystal on silicon,” Nat. Photonics 4(11), 752–754 (2010).
[Crossref]

2005 (1)

2004 (2)

E. Hällstig, J. Stigwall, T. Martin, L. Sjöqvist, and M. Lindgren, “Fringing fields in a liquid crystal spatial light modulator for beam steering,” J. Mod. Opt. 51(8), 1233–1247 (2004).
[Crossref]

U. Efron, B. Apter, and E. Bahat-Treidel, “Fringing-field effect in liquid-crystal beam-steering devices: an approximate analytical model,” J. Opt. Soc. Am. A 21(10), 1996–2008 (2004).
[Crossref]

2003 (1)

S. R. Harris, “Polarization effects in nematic liquid crystal optical phased arrays,” Proc. SPIE 5213, 26–39 (2003).
[Crossref]

2000 (1)

A. Marquez, J. Campos, M. J. Yzuel, I. S. Moreno, J. A. Davis, C. C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39(12), 3301 (2000).
[Crossref]

1996 (1)

Z. He, T. Nose, and S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35(Part 1), 3529–3530 (1996).
[Crossref]

1989 (1)

1984 (1)

1972 (1)

R. W. Gerchber and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Abakoumov, D.

S. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ‘drop and continue’ functionality in a wavelength selective switch,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2006), paper PDP14.

Agour, M.

F. Yaras, M. Kovachev, R. Ilieva, M. Agour, and L. Onural, “Holographic Reconstructions Using Phase-Only Spatial Light Modulators,” 2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, Istanbul, pp. PD-1-PD-4, (2008).

Apter, B.

Ayliffe, P. J.

Bahat-Treidel, E.

Baxter, G.

S. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ‘drop and continue’ functionality in a wavelength selective switch,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2006), paper PDP14.

Campos, J.

A. Marquez, J. Campos, M. J. Yzuel, I. S. Moreno, J. A. Davis, C. C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39(12), 3301 (2000).
[Crossref]

Chow, Y. T.

Chu, D. P.

Z. Zhang, Z. You, and D. P. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light: Sci. Appl. 3(10), e213 (2014).
[Crossref]

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High Quality Assembly of Phase-Only Liquid Crystal on Silicon (LCOS) Devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

Cibula, M. A.

Collings, N.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High Quality Assembly of Phase-Only Liquid Crystal on Silicon (LCOS) Devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28(22), 4740–4747 (1989).
[Crossref]

Crossland, B.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High Quality Assembly of Phase-Only Liquid Crystal on Silicon (LCOS) Devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

Crossland, W. A.

Davis, J. A.

A. Marquez, J. Campos, M. J. Yzuel, I. S. Moreno, J. A. Davis, C. C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39(12), 3301 (2000).
[Crossref]

Efron, U.

Ereifej, H.

S. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ‘drop and continue’ functionality in a wavelength selective switch,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2006), paper PDP14.

Fergason, J. L.

J. L. Fergason, “Display devices utilizing liquid crystal light modulation,” US Patent US3731986; (1973).

Fix, A.

N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Trans. Graph. 36(4), 1–14 (2017).
[Crossref]

Frisken, S.

S. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ‘drop and continue’ functionality in a wavelength selective switch,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2006), paper PDP14.

Fuentes, J. L. M.

Gerchber, R. W.

R. W. Gerchber and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 4th ed. (W.H. Freeman, 2017).

Hallemeier, P.

S. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ‘drop and continue’ functionality in a wavelength selective switch,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2006), paper PDP14.

Hällstig, E.

E. Hällstig, T. Martin, L. Sjöqvist, and M. Lindgren, “Polarization properties of a nematic liquid-crystal spatial light modulator for phase modulation,” J. Opt. Soc. Am. A 22(1), 177–184 (2005).
[Crossref]

E. Hällstig, J. Stigwall, T. Martin, L. Sjöqvist, and M. Lindgren, “Fringing fields in a liquid crystal spatial light modulator for beam steering,” J. Mod. Opt. 51(8), 1233–1247 (2004).
[Crossref]

Harris, S. R.

S. R. Harris, “Polarization effects in nematic liquid crystal optical phased arrays,” Proc. SPIE 5213, 26–39 (2003).
[Crossref]

Hass, G.

G. Hass, “Microdisplays for Augmented and Virtual Reality,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49(1), 506–509 (2018).
[Crossref]

He, Z.

Y. Huang, Z. He, and S. T. Wu, “Fast-response liquid crystal phase modulators for augmented reality displays,” Opt. Express 25(26), 32757–32766 (2017).
[Crossref]

Z. He, T. Nose, and S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35(Part 1), 3529–3530 (1996).
[Crossref]

Hess, L. D.

Huang, Y.

Iemmi, C. C.

A. Marquez, J. Campos, M. J. Yzuel, I. S. Moreno, J. A. Davis, C. C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39(12), 3301 (2000).
[Crossref]

Ilieva, R.

F. Yaras, M. Kovachev, R. Ilieva, M. Agour, and L. Onural, “Holographic Reconstructions Using Phase-Only Spatial Light Modulators,” 2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, Istanbul, pp. PD-1-PD-4, (2008).

Jeziorska-Chapman, A. M.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High Quality Assembly of Phase-Only Liquid Crystal on Silicon (LCOS) Devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

Kerbstadt, F.

G. Lazarev, F. Kerbstadt, and J. Luberek, “High-resolution high-reflective LCOS spatial light modulator for beam manipulation beyond visible spectrum,” Proc. SPIE 10090, 100900T (2017).
[Crossref]

Kovachev, M.

F. Yaras, M. Kovachev, R. Ilieva, M. Agour, and L. Onural, “Holographic Reconstructions Using Phase-Only Spatial Light Modulators,” 2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, Istanbul, pp. PD-1-PD-4, (2008).

Lanman, D.

N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Trans. Graph. 36(4), 1–14 (2017).
[Crossref]

Lazarev, G.

G. Lazarev, F. Kerbstadt, and J. Luberek, “High-resolution high-reflective LCOS spatial light modulator for beam manipulation beyond visible spectrum,” Proc. SPIE 10090, 100900T (2017).
[Crossref]

Lindgren, M.

E. Hällstig, T. Martin, L. Sjöqvist, and M. Lindgren, “Polarization properties of a nematic liquid-crystal spatial light modulator for phase modulation,” J. Opt. Soc. Am. A 22(1), 177–184 (2005).
[Crossref]

E. Hällstig, J. Stigwall, T. Martin, L. Sjöqvist, and M. Lindgren, “Fringing fields in a liquid crystal spatial light modulator for beam steering,” J. Mod. Opt. 51(8), 1233–1247 (2004).
[Crossref]

Luberek, J.

G. Lazarev, F. Kerbstadt, and J. Luberek, “High-resolution high-reflective LCOS spatial light modulator for beam manipulation beyond visible spectrum,” Proc. SPIE 10090, 100900T (2017).
[Crossref]

Mao, L.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

Marquez, A.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

A. Marquez, J. Campos, M. J. Yzuel, I. S. Moreno, J. A. Davis, C. C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39(12), 3301 (2000).
[Crossref]

Martin, T.

E. Hällstig, T. Martin, L. Sjöqvist, and M. Lindgren, “Polarization properties of a nematic liquid-crystal spatial light modulator for phase modulation,” J. Opt. Soc. Am. A 22(1), 177–184 (2005).
[Crossref]

E. Hällstig, J. Stigwall, T. Martin, L. Sjöqvist, and M. Lindgren, “Fringing fields in a liquid crystal spatial light modulator for beam steering,” J. Mod. Opt. 51(8), 1233–1247 (2004).
[Crossref]

Matsuda, N.

N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Trans. Graph. 36(4), 1–14 (2017).
[Crossref]

McIntyre, D. H.

Milne, B.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High Quality Assembly of Phase-Only Liquid Crystal on Silicon (LCOS) Devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

Moore, J.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High Quality Assembly of Phase-Only Liquid Crystal on Silicon (LCOS) Devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

Moreno, A.

A. Marquez, J. Campos, M. J. Yzuel, I. S. Moreno, J. A. Davis, C. C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39(12), 3301 (2000).
[Crossref]

Moreno, I.

Moreno, I. S.

A. Marquez, J. Campos, M. J. Yzuel, I. S. Moreno, J. A. Davis, C. C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39(12), 3301 (2000).
[Crossref]

Nose, T.

Z. He, T. Nose, and S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35(Part 1), 3529–3530 (1996).
[Crossref]

Onural, L.

F. Yaras, M. Kovachev, R. Ilieva, M. Agour, and L. Onural, “Holographic Reconstructions Using Phase-Only Spatial Light Modulators,” 2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, Istanbul, pp. PD-1-PD-4, (2008).

Pivnenko, M.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High Quality Assembly of Phase-Only Liquid Crystal on Silicon (LCOS) Devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

Poole, S.

S. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ‘drop and continue’ functionality in a wavelength selective switch,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2006), paper PDP14.

Poon, T.-C.

Robert, A.

A. Marquez, J. Campos, M. J. Yzuel, I. S. Moreno, J. A. Davis, C. C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39(12), 3301 (2000).
[Crossref]

Sato, S.

Z. He, T. Nose, and S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35(Part 1), 3529–3530 (1996).
[Crossref]

Saxton, W. O.

R. W. Gerchber and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Sjöqvist, L.

E. Hällstig, T. Martin, L. Sjöqvist, and M. Lindgren, “Polarization properties of a nematic liquid-crystal spatial light modulator for phase modulation,” J. Opt. Soc. Am. A 22(1), 177–184 (2005).
[Crossref]

E. Hällstig, J. Stigwall, T. Martin, L. Sjöqvist, and M. Lindgren, “Fringing fields in a liquid crystal spatial light modulator for beam steering,” J. Mod. Opt. 51(8), 1233–1247 (2004).
[Crossref]

Stigwall, J.

E. Hällstig, J. Stigwall, T. Martin, L. Sjöqvist, and M. Lindgren, “Fringing fields in a liquid crystal spatial light modulator for beam steering,” J. Mod. Opt. 51(8), 1233–1247 (2004).
[Crossref]

Strasser, T. A.

T. A. Strasser and J. L. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1150–1157 (2010).
[Crossref]

Tsang, P. W. M.

Underwood, I.

Vaquero Caballero, F.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

Vass, D. G.

Vettese, D.

D. Vettese, “Microdisplays: liquid crystal on silicon,” Nat. Photonics 4(11), 752–754 (2010).
[Crossref]

Wagener, J. L.

T. A. Strasser and J. L. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1150–1157 (2010).
[Crossref]

Wang, J.

L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4(1), 7441 (2015).
[Crossref]

Wang, M.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

Wu, S. T.

Yang, D. K.

S. T. Wu and D. K. Yang, Fundamentals of Liquid Crystal Devices(John Wiley & Sons, 2006).

Yaras, F.

F. Yaras, M. Kovachev, R. Ilieva, M. Agour, and L. Onural, “Holographic Reconstructions Using Phase-Only Spatial Light Modulators,” 2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, Istanbul, pp. PD-1-PD-4, (2008).

Ye, Y.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

You, Z.

Z. Zhang, Z. You, and D. P. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light: Sci. Appl. 3(10), e213 (2014).
[Crossref]

Yzuel, M. J.

A. Marquez, J. Campos, M. J. Yzuel, I. S. Moreno, J. A. Davis, C. C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39(12), 3301 (2000).
[Crossref]

Zhang, Z.

Z. Zhang, Z. You, and D. P. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light: Sci. Appl. 3(10), e213 (2014).
[Crossref]

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High Quality Assembly of Phase-Only Liquid Crystal on Silicon (LCOS) Devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

Zhao, H.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

Zhou, H.

S. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ‘drop and continue’ functionality in a wavelength selective switch,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2006), paper PDP14.

Zhu, L.

L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4(1), 7441 (2015).
[Crossref]

Zong, L.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

ACM Trans. Graph. (1)

N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Trans. Graph. 36(4), 1–14 (2017).
[Crossref]

Appl. Opt. (2)

Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. (1)

G. Hass, “Microdisplays for Augmented and Virtual Reality,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 49(1), 506–509 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. A. Strasser and J. L. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1150–1157 (2010).
[Crossref]

J. Disp. Technol. (1)

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High Quality Assembly of Phase-Only Liquid Crystal on Silicon (LCOS) Devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

J. Mod. Opt. (1)

E. Hällstig, J. Stigwall, T. Martin, L. Sjöqvist, and M. Lindgren, “Fringing fields in a liquid crystal spatial light modulator for beam steering,” J. Mod. Opt. 51(8), 1233–1247 (2004).
[Crossref]

J. Opt. Soc. Am. A (2)

Jpn. J. Appl. Phys. (1)

Z. He, T. Nose, and S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35(Part 1), 3529–3530 (1996).
[Crossref]

Light: Sci. Appl. (1)

Z. Zhang, Z. You, and D. P. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light: Sci. Appl. 3(10), e213 (2014).
[Crossref]

Nat. Photonics (1)

D. Vettese, “Microdisplays: liquid crystal on silicon,” Nat. Photonics 4(11), 752–754 (2010).
[Crossref]

Opt. Eng. (1)

A. Marquez, J. Campos, M. J. Yzuel, I. S. Moreno, J. A. Davis, C. C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39(12), 3301 (2000).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optik (1)

R. W. Gerchber and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Photonics (1)

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. Vaquero Caballero, “LCoS SLM Study and Its Application in Wavelength Selective Switch,” Photonics 4(4), 22 (2017).
[Crossref]

Proc. SPIE (2)

G. Lazarev, F. Kerbstadt, and J. Luberek, “High-resolution high-reflective LCOS spatial light modulator for beam manipulation beyond visible spectrum,” Proc. SPIE 10090, 100900T (2017).
[Crossref]

S. R. Harris, “Polarization effects in nematic liquid crystal optical phased arrays,” Proc. SPIE 5213, 26–39 (2003).
[Crossref]

Sci. Rep. (1)

L. Zhu and J. Wang, “Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators,” Sci. Rep. 4(1), 7441 (2015).
[Crossref]

Other (9)

F. Yaras, M. Kovachev, R. Ilieva, M. Agour, and L. Onural, “Holographic Reconstructions Using Phase-Only Spatial Light Modulators,” 2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, Istanbul, pp. PD-1-PD-4, (2008).

J. L. Fergason, “Display devices utilizing liquid crystal light modulation,” US Patent US3731986; (1973).

S. T. Wu and D. K. Yang, Fundamentals of Liquid Crystal Devices(John Wiley & Sons, 2006).

S. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ‘drop and continue’ functionality in a wavelength selective switch,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2006), paper PDP14.

https://uk.jvc.com/projectors/4k/DLA-Z1/

https://www.sony.com/electronics/projector/vpl-vw995es

https://www.microsoft.com/en-us/hololens

https://www.jasperdisplay.com/products/wafer/jd2552-sp55/

J. W. Goodman, Introduction to Fourier Optics, 4th ed. (W.H. Freeman, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. Side view of a LCOS silicon backplane.
Fig. 2.
Fig. 2. (a) optical setup; (b) the diffraction pattern captured by a camera.
Fig. 3.
Fig. 3. The silicon backplane reflectance as a function of φ and r.
Fig. 4.
Fig. 4. The dielectric mirror coating structure based on (0.5H L 0.5H) stack: (a) a single (0.5H L 0.5H) element; (b) 4-repetition (0.5H L 0.5H) stack; (c) the equivalent 9-layer drawing.
Fig. 5.
Fig. 5. The relationship between the reflectance and the number of (0.5H L 0.5H) stack repetitions in the dielectric mirror for the silicon and aluminium substrates.
Fig. 6.
Fig. 6. The reflectance of the dielectric mirror across the test wavelength range for the silicon substrate.
Fig. 7.
Fig. 7. Sensitivity to the incident angle of the designed coating on a silicon substrate.
Fig. 8.
Fig. 8. The measured and fitted data points in the ellipsometric measurement.
Fig. 9.
Fig. 9. The reflectance of an uncoated LCOS backplane and a coated LCOS backplane.
Fig. 10.
Fig. 10. (a) the measured VI curve and (b) the derived resistivity of the dielectric mirror structure.
Fig. 11.
Fig. 11. A comparison between the reflectance of LCOS devices based on an uncoated backplane and a coated backplane.
Fig. 12.
Fig. 12. The relationship between the RMS voltage levels and the normalised power of the 1st diffraction order.
Fig. 13.
Fig. 13. The relationship between the RMS voltage levels and the phase depths as well as the phase flicker.
Fig. 14.
Fig. 14. Fringing field effect in an LCOS device.
Fig. 15.
Fig. 15. Diffraction efficiencies of the LCOS device operating on different sets of waveforms.
Fig. 16.
Fig. 16. The total optical efficiencies of LCOS devices with and without the dielectric mirror coated backplane.

Tables (2)

Tables Icon

Table 1. The 7-repetition stack design and the fitted layer thickness based on the ellipsometry

Tables Icon

Table 2. The voltage levels for the on pulse and off pulse in the test waveform sets.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I s = sin ( 2 Ψ ) sin ( Δ )
I c = sin ( 2 Ψ ) cos ( Δ )
PR = sin 1 ( ( P 1 ) 0.5 ) × 2