Abstract

Photon counting lidar based on a single-photon detector has ultrahigh sensitivity and ranging accuracy, and thus it is widely used in remote detection with extremely weak received signal (even less than one photon in each received pulse). In this paper, a novel improved photon counting lidar is proposed and demonstrated. This improved system uses a piecewise statistical method and is able to acquire radial range, velocity, and acceleration of the target without increasing system hardware complexity. An experimental system of principle verification is constructed, and a reflector attached to an electrically controlled transmission belt is used to simulate a moving target. The experimental results show the acquisition of radial range, velocity, and acceleration simultaneously in the case of photon starved scenes.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical ranging performance model and range walk error correction for photon-counting lidars with multiple detectors

Yue Ma, Song Li, Wenhao Zhang, Zhiyu Zhang, Rui Liu, and Xiao Hua Wang
Opt. Express 26(12) 15924-15934 (2018)

Moving target ranging method for a photon-counting system

Wei Xue, Li Liu, Xiangyang Dai, and Yan Luo
Opt. Express 26(26) 34161-34178 (2018)

Analyzing the performance of pseudo-random single photon counting ranging Lidar

Yang Yu, Bo Liu, and Zhen Chen
Appl. Opt. 57(27) 7733-7739 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Stipčević, “Active quenching circuit for single-photon detection with Geiger mode avalanche photodiodes,” Appl. Opt. 48(9), 1705–1714 (2009).
    [Crossref]
  2. P. Gatt, S. Johnson, and T. Nichols, “Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics,” Appl. Opt. 48(17), 3261–3276 (2009).
    [Crossref]
  3. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
    [Crossref]
  4. H. J. Kong, T. H. Kim, S. E. Jo, and M. S. Oh, “Smart three-dimensional imaging ladar using two Geiger-mode avalanche photodiodes,” Opt. Express 19(20), 19323–19329 (2011).
    [Crossref]
  5. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32(15), 2266–2268 (2007).
    [Crossref]
  6. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
    [Crossref]
  7. G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
    [Crossref]
  8. L. Sjöqvist, M. Henriksson, P. Jonsson, and O. Steinvall, “Time-correlated single-photon counting range profiling and reflectance tomographic imaging,” Adv. Opt. Technol. 3(2), 187–197 (2014).
    [Crossref]
  9. B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13(2), 335–349 (2002).
  10. M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).
  11. A. McCarthy, X. Ren, A. D. Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
    [Crossref]
  12. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
    [Crossref]
  13. H. Xia, M. Shangguan, C. Wang, G. Shentu, J. Qiu, Q. Zhang, X. Dou, and J. W. Pan, “Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer,” Opt. Lett. 41(22), 5218–5221 (2016).
    [Crossref]
  14. M. Shangguan, H. Xia, C. Wang, J. Qiu, S. Lin, X. Dou, Q. Zhang, and J. W. Pan, “Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector,” Opt. Lett. 42(18), 3541–3544 (2017).
    [Crossref]
  15. J. Qiu, H. Xia, M. Shangguan, X. Dou, M. Li, C. Wang, X. Shang, S. Lin, and J. Liu, “Micro-pulse polarization lidar at 1.5 µm using a single superconducting nanowire single-photon detector,” Opt. Lett. 42(21), 4454–4457 (2017).
    [Crossref]
  16. S. Johnson, P. Gatt, and T. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE 5086, 359–369 (2003).
    [Crossref]

2017 (2)

2016 (1)

2014 (1)

L. Sjöqvist, M. Henriksson, P. Jonsson, and O. Steinvall, “Time-correlated single-photon counting range profiling and reflectance tomographic imaging,” Adv. Opt. Technol. 3(2), 187–197 (2014).
[Crossref]

2013 (3)

2011 (1)

2009 (3)

2007 (2)

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32(15), 2266–2268 (2007).
[Crossref]

2003 (1)

S. Johnson, P. Gatt, and T. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE 5086, 359–369 (2003).
[Crossref]

2002 (2)

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13(2), 335–349 (2002).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Albota, M. A.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Aull, B. F.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13(2), 335–349 (2002).

Buller, G.

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

Buller, G. S.

Collins, R. J.

Daniels, P. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13(2), 335–349 (2002).

Dauler, E. A.

Dorenbos, S. N.

Dou, X.

Felton, B. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13(2), 335–349 (2002).

Fernández, V.

Fouche, D. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Frera, A. D.

Gatt, P.

Gemmell, N. R.

Hadfield, R. H.

Heinrichs, R. M.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13(2), 335–349 (2002).

Henriksson, M.

L. Sjöqvist, M. Henriksson, P. Jonsson, and O. Steinvall, “Time-correlated single-photon counting range profiling and reflectance tomographic imaging,” Adv. Opt. Technol. 3(2), 187–197 (2014).
[Crossref]

Hernandez-Marin, S.

Jo, S. E.

Johnson, S.

Jonsson, P.

L. Sjöqvist, M. Henriksson, P. Jonsson, and O. Steinvall, “Time-correlated single-photon counting range profiling and reflectance tomographic imaging,” Adv. Opt. Technol. 3(2), 187–197 (2014).
[Crossref]

Kerman, A. J.

Kim, T. H.

Kocher, D. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Kong, H. J.

Krichel, N. J.

Landers, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13(2), 335–349 (2002).

Li, M.

Lin, S.

Liu, J.

Loomis, A. H.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13(2), 335–349 (2002).

Marino, R. M.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

McCarthy, A.

Molnar, R. J.

Mooney, J. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Nam, S. W.

Newbury, N. R.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Nichols, T.

O’Brien, M. E.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Oh, M. S.

Pan, J. W.

Player, B. E.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Qiu, J.

Ren, X.

Rosenberg, D.

Ruggeri, A.

Scarcella, C.

Shang, X.

Shangguan, M.

Shentu, G.

Sjöqvist, L.

L. Sjöqvist, M. Henriksson, P. Jonsson, and O. Steinvall, “Time-correlated single-photon counting range profiling and reflectance tomographic imaging,” Adv. Opt. Technol. 3(2), 187–197 (2014).
[Crossref]

Steinvall, O.

L. Sjöqvist, M. Henriksson, P. Jonsson, and O. Steinvall, “Time-correlated single-photon counting range profiling and reflectance tomographic imaging,” Adv. Opt. Technol. 3(2), 187–197 (2014).
[Crossref]

Stipcevic, M.

Tanner, M. G.

Tosi, A.

Wallace, A.

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

Wallace, A. M.

Wang, C.

Warburton, R. E.

Willard, B. C.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Xia, H.

Young, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13(2), 335–349 (2002).

Zayhowski, J. J.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Zhang, Q.

Zwiller, V.

Adv. Opt. Technol. (1)

L. Sjöqvist, M. Henriksson, P. Jonsson, and O. Steinvall, “Time-correlated single-photon counting range profiling and reflectance tomographic imaging,” Adv. Opt. Technol. 3(2), 187–197 (2014).
[Crossref]

Appl. Opt. (3)

IEEE J. Sel. Top. Quantum Electron. (1)

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

Linc. Lab. J. (2)

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Linc. Lab. J. 13(2), 335–349 (2002).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Opt. Express (4)

Opt. Lett. (4)

Proc. SPIE (1)

S. Johnson, P. Gatt, and T. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE 5086, 359–369 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Working principle of the improved photon counting lidar. (a) System diagram of the improved photon counting lidar. (b) Schematic diagram of emitted and received signals. (c) Schematic diagram of radial range, velocity and acceleration estimation.
Fig. 2.
Fig. 2. The photo of the experiment system of the improved photon counting lidar.
Fig. 3.
Fig. 3. Experimental results and analysis. (a) the signal peak of stationary target with conventional photon counting statistics of 0.5s; (b) the signal peak of motion target (radial velocity $v = 1\,\textrm{m/s}$ and acceleration $a = 1\,\textrm{m/}{\textrm{s}^2}$) with conventional photon counting statistics of 0.5s; (c) the signal peak of motion target (radial velocity $v = 1\,\textrm{m/s}$ and acceleration $a = 1\,\textrm{m/}{\textrm{s}^2}$) using our improved piecewise statistics of 0.5s, which includes 50 statistical segments with 0.01s for each statistical segment; (d) radial range R, velocity v and acceleration a of the target is estimated simultaneously by the curve fitting method.
Fig. 4.
Fig. 4. Accuracy analysis. (a) Range accuracy. (b) Velocity accuracy. (c) Acceleration accuracy.