Abstract

We present a photo-excited complementary chiral metamaterial (CCMM), which could realize a broadband dynamically switchable linear polarization conversion and asymmetric transmission (AT) effect for terahertz (THz) waves. The unit-cell structure of the photo-excited CCMM is composed of a bi-layer twisted complementary cut-wire (CCW) structure integrated with semiconductor photoconductive silicon (Si). The electric response of the photoconductive Si filled in the slot of the CCW structure can be tuned by the different pump optical power. The simulation results indicate that normal incident x(y)-polarization wave propagation along the -z (+z) axis direction pass through the CCMM without pump beam is converted into the y(x)-polarization wave, and the polarization conversion ratio (PCR) of over 90% and AT parameter of over 0.8 in the frequency range of 0.69-0.82 THz can be obtained. Furthermore, the broadband PCR and AT parameter can be tuned dynamically with the variation of Si conductivity by adjusting the pump power. Moreover, the surface current distributions of the unit-cell structure with different Si conductivity at the resonance frequency are discussed to illustrate its physics mechanism. Therefore, this work could offer a new platform for exploring dynamically tunable THz polarization controlling devices with photoconductive materials and have great prospects in various areas, such as terahertz imaging and wireless communication

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-band and high-efficiency circular polarization conversion via asymmetric transmission with anisotropic metamaterial in the terahertz region

Yongzhi Cheng, Junpeng Fan, Hui Luo, Fu Chen, Naixing Feng, Xuesong Mao, and Rongzhou Gong
Opt. Mater. Express 9(3) 1365-1376 (2019)

Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials

Rui Xia, Xufeng Jing, Xincui Gui, Ying Tian, and Zhi Hong
Opt. Mater. Express 7(3) 977-988 (2017)

Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial

Jianfeng Zhu, Shufang Li, Li Deng, Chen Zhang, Yang Yang, and Hongbo Zhu
Opt. Mater. Express 8(5) 1164-1173 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).
  2. C. Y. Chen, T. R. Tsai, C. L. Pan, and R. P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
    [Crossref]
  3. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers withmicrometer-pitch Al gratings,” Opt. Lett. 34(3), 274–276 (2009).
    [Crossref]
  4. A. E. Akosman, E. Ozbay, and M. Mutlu, “Broadband circular polarizer based on high-contrast gratings,” Opt. Lett. 37(11), 2094 (2012).
    [Crossref]
  5. K. Wiesauer and C. Jördens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared, Millimeter, Terahertz Waves 34(11), 663–681 (2013).
    [Crossref]
  6. L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
    [Crossref]
  7. L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
    [Crossref]
  8. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref]
  9. Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
    [Crossref]
  10. M. B. Pu, P. Chen, Y. Q. Wang, Z. Y. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
    [Crossref]
  11. K. Song, Y. H. Liu, C. R. Luo, and X. P. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D: Appl. Phys. 47(50), 505104 (2014).
    [Crossref]
  12. L. Zhang, P. Zhou, H. Lu, H. Cheng, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas and Wireless Propag. Lett. 14, 1157–1160 (2015).
    [Crossref]
  13. Z. Y. Song, L. Zhang, and Q. H. Liu, “High-efficiency broadband cross polarization converter for near-Infrared light based on anisotropic plasmonic metasurfaces,” Plasmonics 11(1), 61–64 (2016).
    [Crossref]
  14. Y. Z. Cheng, J. C. Zhao, X. S. Mao, and R. Z. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagn. Res. 160, 89–101 (2017).
    [Crossref]
  15. L. Stephen, N. Yogesh, and V. Subramanian, “Broadband asymmetric transmission of linearly polarized electromagnetic waves based on chiral metamaterial,” J. Appl. Phys. 123(3), 033103 (2018).
    [Crossref]
  16. J. Y. Tang, Z. Y. Xiao, K. K. Xu, X. L. Ma, D. J. Liu, and Z. H. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum Electron. 48(1), 1–11 (2016).
    [Crossref]
  17. Y. Z. Cheng, R. Z. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite Metamaterial for Terahertz Waves,” Plasmonics 12(4), 1113–1120 (2017).
    [Crossref]
  18. Z. Y. Song, Q. Q. Chu, X. P. Shen, and Q. H. Liu, “Wideband high-efficient linear polarization rotators,” Front. Phys. 13(5), 137803 (2018).
    [Crossref]
  19. Z. Y. Song, J. F. Zhu, C. H. Zhu, Z. Yu, and Q. H. Liu, “Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays,” Mater. Lett. 159, 269–272 (2015).
    [Crossref]
  20. Z. Y. Song, X. Li, J. M. Hao, S. Y. Xiao, M. Qiu, Q. He, S. J. Ma, and L. Zhou, “Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping,” Opt. Express 21(15), 18178–18187 (2013).
    [Crossref]
  21. X. F. Zang, S. J. Liu, H. H. Gong, Y. J. Wang, and Y. M. Zhu, “Dual-band superposition induced broadband terahertz linear-to-circular polarization converter,” J. Opt. Soc. Am. B 35(4), 950–957 (2018).
    [Crossref]
  22. W. Aroua, F. Abdelmalek, S. Haxha, S. Tesfa, and H. Bouchriha, “Mode converter optical isolator based on dual negative refraction photonic crystal,” IEEE J. Quantum Electron. 50(8), 633–638 (2014).
    [Crossref]
  23. E. J. Lenferink, G. Wei, and N. P. Stern, “Coherent optical non-reciprocity in axisymmetric resonators,” Opt. Express 22(13), 16099–16111 (2014).
    [Crossref]
  24. Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral grapheme metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
    [Crossref]
  25. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230–27239 (2015).
    [Crossref]
  26. Y. Y. Ji, F. Fan, X. H. Wang, and S. J. Chang, “Broadband controllable terahertz quarter wave plate based on graphene gratings with liquid crystals,” Opt. Express 26(10), 12852–12862 (2018).
    [Crossref]
  27. J. F. Zhu, S. F. Li, L. Deng, C. Zhang, Y. Yang, and H. B. Zhu, “Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial,” Opt. Mater. Express 8(5), 1164–1173 (2018).
    [Crossref]
  28. Y. Zhang, Y. J. Feng, T. Jiang, J. Cao, J. M. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
    [Crossref]
  29. H. L. Zou, Z. Y. Xiao, W. Li, and C. Li, “Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region,” Appl. Phys. A: Mater. Sci. Process. 124(4), 322 (2018).
    [Crossref]
  30. Z. Xiao, H. Zou, X. Zheng, X. Ling, and L. Wang, “A tunable reflective polarization converter based on hybrid metamaterial,” Opt. Quantum Electron. 49(1), 12 (2017).
    [Crossref]
  31. X. Zheng, Z. Xiao, and X. Ling, “A Tunable Hybrid Metamaterial Reflective Polarization Converter Based on Vanadium Oxide Film,” Plasmonics 13(1), 287–291 (2018).
    [Crossref]
  32. S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
    [Crossref]
  33. J. C. Zhao, Y. Z. Cheng, and Z. Z. Cheng, “Design of a Photo-Excited Switchable Broadband Reflective Linear Polarization Conversion Metasurface for Terahertz Waves,” IEEE Photonics J. 10(1), 1–10 (2018).
    [Crossref]
  34. J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
    [Crossref]
  35. Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Liu, and Y. G. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
    [Crossref]
  36. Z. Y. Song, Z. S. Wang, and M. L. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
    [Crossref]
  37. N. H. Shen, M. Massaouti, M. Gokkavas, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
    [Crossref]
  38. H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
    [Crossref]
  39. Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
    [Crossref]
  40. Y. Z. Cheng, R. Z. Gong, and Z. Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
    [Crossref]
  41. Y. Z. Cheng, Y. Nie, X. Wang, and R. Z. Gong, “An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator,” Appl. Phys. A: Mater. Sci. Process. 111(1), 209–215 (2013).
    [Crossref]
  42. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
    [Crossref]
  43. H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246(7), 1397–1406 (2009).
    [Crossref]
  44. N. Liu and H. Giessen, “Coupling Effects in Optical Metamaterials,” Angew. Chem., Int. Ed. 49(51), 9838–9852 (2010).
    [Crossref]
  45. Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
    [Crossref]
  46. Y. Z. Cheng, J. P. Fan, H. Luo, F. Chen, N. X. Feng, X. S. Mao, and R. Z. Gong, “Dual-band and high-efficiency circular polarization conversion via asymmetric transmission with anisotropic metamaterial in the terahertz region,” Opt. Mater. Express 9(3), 1365–1376 (2019).
    [Crossref]

2019 (4)

Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Liu, and Y. G. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Z. Y. Song, Z. S. Wang, and M. L. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

Y. Z. Cheng, J. P. Fan, H. Luo, F. Chen, N. X. Feng, X. S. Mao, and R. Z. Gong, “Dual-band and high-efficiency circular polarization conversion via asymmetric transmission with anisotropic metamaterial in the terahertz region,” Opt. Mater. Express 9(3), 1365–1376 (2019).
[Crossref]

2018 (10)

X. F. Zang, S. J. Liu, H. H. Gong, Y. J. Wang, and Y. M. Zhu, “Dual-band superposition induced broadband terahertz linear-to-circular polarization converter,” J. Opt. Soc. Am. B 35(4), 950–957 (2018).
[Crossref]

J. F. Zhu, S. F. Li, L. Deng, C. Zhang, Y. Yang, and H. B. Zhu, “Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial,” Opt. Mater. Express 8(5), 1164–1173 (2018).
[Crossref]

Y. Y. Ji, F. Fan, X. H. Wang, and S. J. Chang, “Broadband controllable terahertz quarter wave plate based on graphene gratings with liquid crystals,” Opt. Express 26(10), 12852–12862 (2018).
[Crossref]

X. Zheng, Z. Xiao, and X. Ling, “A Tunable Hybrid Metamaterial Reflective Polarization Converter Based on Vanadium Oxide Film,” Plasmonics 13(1), 287–291 (2018).
[Crossref]

J. C. Zhao, Y. Z. Cheng, and Z. Z. Cheng, “Design of a Photo-Excited Switchable Broadband Reflective Linear Polarization Conversion Metasurface for Terahertz Waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
[Crossref]

L. Stephen, N. Yogesh, and V. Subramanian, “Broadband asymmetric transmission of linearly polarized electromagnetic waves based on chiral metamaterial,” J. Appl. Phys. 123(3), 033103 (2018).
[Crossref]

Z. Y. Song, Q. Q. Chu, X. P. Shen, and Q. H. Liu, “Wideband high-efficient linear polarization rotators,” Front. Phys. 13(5), 137803 (2018).
[Crossref]

Y. Zhang, Y. J. Feng, T. Jiang, J. Cao, J. M. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

H. L. Zou, Z. Y. Xiao, W. Li, and C. Li, “Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region,” Appl. Phys. A: Mater. Sci. Process. 124(4), 322 (2018).
[Crossref]

2017 (4)

Z. Xiao, H. Zou, X. Zheng, X. Ling, and L. Wang, “A tunable reflective polarization converter based on hybrid metamaterial,” Opt. Quantum Electron. 49(1), 12 (2017).
[Crossref]

Y. Z. Cheng, J. C. Zhao, X. S. Mao, and R. Z. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagn. Res. 160, 89–101 (2017).
[Crossref]

Y. Z. Cheng, R. Z. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite Metamaterial for Terahertz Waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral grapheme metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

2016 (5)

Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

Y. Z. Cheng, R. Z. Gong, and Z. Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Z. Y. Song, L. Zhang, and Q. H. Liu, “High-efficiency broadband cross polarization converter for near-Infrared light based on anisotropic plasmonic metasurfaces,” Plasmonics 11(1), 61–64 (2016).
[Crossref]

J. Y. Tang, Z. Y. Xiao, K. K. Xu, X. L. Ma, D. J. Liu, and Z. H. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum Electron. 48(1), 1–11 (2016).
[Crossref]

2015 (3)

Z. Y. Song, J. F. Zhu, C. H. Zhu, Z. Yu, and Q. H. Liu, “Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays,” Mater. Lett. 159, 269–272 (2015).
[Crossref]

L. Zhang, P. Zhou, H. Lu, H. Cheng, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas and Wireless Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230–27239 (2015).
[Crossref]

2014 (4)

W. Aroua, F. Abdelmalek, S. Haxha, S. Tesfa, and H. Bouchriha, “Mode converter optical isolator based on dual negative refraction photonic crystal,” IEEE J. Quantum Electron. 50(8), 633–638 (2014).
[Crossref]

E. J. Lenferink, G. Wei, and N. P. Stern, “Coherent optical non-reciprocity in axisymmetric resonators,” Opt. Express 22(13), 16099–16111 (2014).
[Crossref]

K. Song, Y. H. Liu, C. R. Luo, and X. P. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D: Appl. Phys. 47(50), 505104 (2014).
[Crossref]

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

2013 (6)

Y. Z. Cheng, Y. Nie, X. Wang, and R. Z. Gong, “An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator,” Appl. Phys. A: Mater. Sci. Process. 111(1), 209–215 (2013).
[Crossref]

M. B. Pu, P. Chen, Y. Q. Wang, Z. Y. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

K. Wiesauer and C. Jördens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared, Millimeter, Terahertz Waves 34(11), 663–681 (2013).
[Crossref]

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Z. Y. Song, X. Li, J. M. Hao, S. Y. Xiao, M. Qiu, Q. He, S. J. Ma, and L. Zhou, “Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping,” Opt. Express 21(15), 18178–18187 (2013).
[Crossref]

2012 (3)

A. E. Akosman, E. Ozbay, and M. Mutlu, “Broadband circular polarizer based on high-contrast gratings,” Opt. Lett. 37(11), 2094 (2012).
[Crossref]

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref]

2011 (1)

N. H. Shen, M. Massaouti, M. Gokkavas, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

2010 (1)

N. Liu and H. Giessen, “Coupling Effects in Optical Metamaterials,” Angew. Chem., Int. Ed. 49(51), 9838–9852 (2010).
[Crossref]

2009 (2)

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246(7), 1397–1406 (2009).
[Crossref]

I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers withmicrometer-pitch Al gratings,” Opt. Lett. 34(3), 274–276 (2009).
[Crossref]

2008 (1)

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[Crossref]

2003 (1)

C. Y. Chen, T. R. Tsai, C. L. Pan, and R. P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Abdelmalek, F.

W. Aroua, F. Abdelmalek, S. Haxha, S. Tesfa, and H. Bouchriha, “Mode converter optical isolator based on dual negative refraction photonic crystal,” IEEE J. Quantum Electron. 50(8), 633–638 (2014).
[Crossref]

Akosman, A. E.

Aroua, W.

W. Aroua, F. Abdelmalek, S. Haxha, S. Tesfa, and H. Bouchriha, “Mode converter optical isolator based on dual negative refraction photonic crystal,” IEEE J. Quantum Electron. 50(8), 633–638 (2014).
[Crossref]

Averitt, R. D.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).

Bouchriha, H.

W. Aroua, F. Abdelmalek, S. Haxha, S. Tesfa, and H. Bouchriha, “Mode converter optical isolator based on dual negative refraction photonic crystal,” IEEE J. Quantum Electron. 50(8), 633–638 (2014).
[Crossref]

Cai, G. X.

Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Liu, and Y. G. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Cao, J.

Y. Zhang, Y. J. Feng, T. Jiang, J. Cao, J. M. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

Cao, L.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Cao, W.

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Chang, S. J.

Chen, C. Y.

C. Y. Chen, T. R. Tsai, C. L. Pan, and R. P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Chen, F.

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref]

Chen, P.

M. B. Pu, P. Chen, Y. Q. Wang, Z. Y. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Cheng, H.

L. Zhang, P. Zhou, H. Lu, H. Cheng, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas and Wireless Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

Cheng, Y. Z.

Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

Y. Z. Cheng, J. P. Fan, H. Luo, F. Chen, N. X. Feng, X. S. Mao, and R. Z. Gong, “Dual-band and high-efficiency circular polarization conversion via asymmetric transmission with anisotropic metamaterial in the terahertz region,” Opt. Mater. Express 9(3), 1365–1376 (2019).
[Crossref]

J. C. Zhao, Y. Z. Cheng, and Z. Z. Cheng, “Design of a Photo-Excited Switchable Broadband Reflective Linear Polarization Conversion Metasurface for Terahertz Waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Y. Z. Cheng, J. C. Zhao, X. S. Mao, and R. Z. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagn. Res. 160, 89–101 (2017).
[Crossref]

Y. Z. Cheng, R. Z. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite Metamaterial for Terahertz Waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

Y. Z. Cheng, R. Z. Gong, and Z. Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Y. Z. Cheng, Y. Nie, X. Wang, and R. Z. Gong, “An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator,” Appl. Phys. A: Mater. Sci. Process. 111(1), 209–215 (2013).
[Crossref]

Cheng, Z. Z.

Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

J. C. Zhao, Y. Z. Cheng, and Z. Z. Cheng, “Design of a Photo-Excited Switchable Broadband Reflective Linear Polarization Conversion Metasurface for Terahertz Waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Y. Z. Cheng, R. Z. Gong, and Z. Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Chu, Q. Q.

Z. Y. Song, Q. Q. Chu, X. P. Shen, and Q. H. Liu, “Wideband high-efficient linear polarization rotators,” Front. Phys. 13(5), 137803 (2018).
[Crossref]

Cong, L.

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Cong, L. Q.

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Deng, L.

J. F. Zhu, S. F. Li, L. Deng, C. Zhang, Y. Yang, and H. B. Zhu, “Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial,” Opt. Mater. Express 8(5), 1164–1173 (2018).
[Crossref]

L. Zhang, P. Zhou, H. Lu, H. Cheng, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas and Wireless Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

Fan, F.

Fan, J. P.

Fan, K.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Feng, N. X.

Feng, Y.

Feng, Y. J.

Y. Zhang, Y. J. Feng, T. Jiang, J. Cao, J. M. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

Giessen, H.

N. Liu and H. Giessen, “Coupling Effects in Optical Metamaterials,” Angew. Chem., Int. Ed. 49(51), 9838–9852 (2010).
[Crossref]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[Crossref]

Gokkavas, M.

N. H. Shen, M. Massaouti, M. Gokkavas, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Gong, H. H.

Gong, R. Z.

Y. Z. Cheng, J. P. Fan, H. Luo, F. Chen, N. X. Feng, X. S. Mao, and R. Z. Gong, “Dual-band and high-efficiency circular polarization conversion via asymmetric transmission with anisotropic metamaterial in the terahertz region,” Opt. Mater. Express 9(3), 1365–1376 (2019).
[Crossref]

Y. Z. Cheng, J. C. Zhao, X. S. Mao, and R. Z. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagn. Res. 160, 89–101 (2017).
[Crossref]

Y. Z. Cheng, R. Z. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite Metamaterial for Terahertz Waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

Y. Z. Cheng, R. Z. Gong, and Z. Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Y. Z. Cheng, Y. Nie, X. Wang, and R. Z. Gong, “An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator,” Appl. Phys. A: Mater. Sci. Process. 111(1), 209–215 (2013).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Gu, J.

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Gu, J. Q.

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Han, J.

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Han, J. G.

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Hangyo, M.

Hao, J. M.

Haxha, S.

W. Aroua, F. Abdelmalek, S. Haxha, S. Tesfa, and H. Bouchriha, “Mode converter optical isolator based on dual negative refraction photonic crystal,” IEEE J. Quantum Electron. 50(8), 633–638 (2014).
[Crossref]

He, Q.

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Hu, F.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral grapheme metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Huang, C.

M. B. Pu, P. Chen, Y. Q. Wang, Z. Y. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Huang, Y.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral grapheme metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Ji, Y. Y.

Jiang, T.

Y. Zhang, Y. J. Feng, T. Jiang, J. Cao, J. M. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230–27239 (2015).
[Crossref]

Jin, Y.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral grapheme metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Jördens, C.

K. Wiesauer and C. Jördens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared, Millimeter, Terahertz Waves 34(11), 663–681 (2013).
[Crossref]

Kafesaki, M.

N. H. Shen, M. Massaouti, M. Gokkavas, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Kaiser, S.

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[Crossref]

Keiser, G. R.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Koschny, T.

N. H. Shen, M. Massaouti, M. Gokkavas, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Lenferink, E. J.

Li, C.

H. L. Zou, Z. Y. Xiao, W. Li, and C. Li, “Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region,” Appl. Phys. A: Mater. Sci. Process. 124(4), 322 (2018).
[Crossref]

Li, S.

J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
[Crossref]

Li, S. F.

Li, T.

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246(7), 1397–1406 (2009).
[Crossref]

Li, W.

H. L. Zou, Z. Y. Xiao, W. Li, and C. Li, “Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region,” Appl. Phys. A: Mater. Sci. Process. 124(4), 322 (2018).
[Crossref]

Li, X.

Ling, X.

X. Zheng, Z. Xiao, and X. Ling, “A Tunable Hybrid Metamaterial Reflective Polarization Converter Based on Vanadium Oxide Film,” Plasmonics 13(1), 287–291 (2018).
[Crossref]

Z. Xiao, H. Zou, X. Zheng, X. Ling, and L. Wang, “A tunable reflective polarization converter based on hybrid metamaterial,” Opt. Quantum Electron. 49(1), 12 (2017).
[Crossref]

Liu, C.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral grapheme metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Liu, D. J.

J. Y. Tang, Z. Y. Xiao, K. K. Xu, X. L. Ma, D. J. Liu, and Z. H. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum Electron. 48(1), 1–11 (2016).
[Crossref]

Liu, H.

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246(7), 1397–1406 (2009).
[Crossref]

Liu, N.

N. Liu and H. Giessen, “Coupling Effects in Optical Metamaterials,” Angew. Chem., Int. Ed. 49(51), 9838–9852 (2010).
[Crossref]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[Crossref]

Liu, Q. H.

Z. Y. Song, Q. Q. Chu, X. P. Shen, and Q. H. Liu, “Wideband high-efficient linear polarization rotators,” Front. Phys. 13(5), 137803 (2018).
[Crossref]

Z. Y. Song, L. Zhang, and Q. H. Liu, “High-efficiency broadband cross polarization converter for near-Infrared light based on anisotropic plasmonic metasurfaces,” Plasmonics 11(1), 61–64 (2016).
[Crossref]

Z. Y. Song, J. F. Zhu, C. H. Zhu, Z. Yu, and Q. H. Liu, “Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays,” Mater. Lett. 159, 269–272 (2015).
[Crossref]

Liu, S. J.

Liu, Y. H.

K. Song, Y. H. Liu, C. R. Luo, and X. P. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D: Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Liu, Y. M.

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246(7), 1397–1406 (2009).
[Crossref]

Liu, Y. N.

Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Liu, and Y. G. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Lu, H.

L. Zhang, P. Zhou, H. Lu, H. Cheng, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas and Wireless Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

Luo, C. R.

K. Song, Y. H. Liu, C. R. Luo, and X. P. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D: Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Luo, H.

Luo, X.

M. B. Pu, P. Chen, Y. Q. Wang, Z. Y. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Ma, S. J.

Ma, X.

M. B. Pu, P. Chen, Y. Q. Wang, Z. Y. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Ma, X. L.

J. Y. Tang, Z. Y. Xiao, K. K. Xu, X. L. Ma, D. J. Liu, and Z. H. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum Electron. 48(1), 1–11 (2016).
[Crossref]

Mao, X. S.

Y. Z. Cheng, J. P. Fan, H. Luo, F. Chen, N. X. Feng, X. S. Mao, and R. Z. Gong, “Dual-band and high-efficiency circular polarization conversion via asymmetric transmission with anisotropic metamaterial in the terahertz region,” Opt. Mater. Express 9(3), 1365–1376 (2019).
[Crossref]

Y. Z. Cheng, J. C. Zhao, X. S. Mao, and R. Z. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagn. Res. 160, 89–101 (2017).
[Crossref]

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Massaouti, M.

N. H. Shen, M. Massaouti, M. Gokkavas, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Metcalfe, G. D.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Mutlu, M.

Nam, S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref]

Nie, Y.

Y. Z. Cheng, Y. Nie, X. Wang, and R. Z. Gong, “An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator,” Appl. Phys. A: Mater. Sci. Process. 111(1), 209–215 (2013).
[Crossref]

Ozbay, E.

A. E. Akosman, E. Ozbay, and M. Mutlu, “Broadband circular polarizer based on high-contrast gratings,” Opt. Lett. 37(11), 2094 (2012).
[Crossref]

N. H. Shen, M. Massaouti, M. Gokkavas, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Pan, C. L.

C. Y. Chen, T. R. Tsai, C. L. Pan, and R. P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Pan, R. P.

C. Y. Chen, T. R. Tsai, C. L. Pan, and R. P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Park, Y. S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref]

Pu, M. B.

M. B. Pu, P. Chen, Y. Q. Wang, Z. Y. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Qiu, M.

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Rho, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref]

Saito, M.

Seren, H. R.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Shen, N. H.

N. H. Shen, M. Massaouti, M. Gokkavas, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Shen, X. P.

Z. Y. Song, Q. Q. Chu, X. P. Shen, and Q. H. Liu, “Wideband high-efficient linear polarization rotators,” Front. Phys. 13(5), 137803 (2018).
[Crossref]

Singh, R.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref]

Singh, R. J.

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Song, K.

K. Song, Y. H. Liu, C. R. Luo, and X. P. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D: Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Song, Z. Y.

Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Liu, and Y. G. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Z. Y. Song, Z. S. Wang, and M. L. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

Z. Y. Song, Q. Q. Chu, X. P. Shen, and Q. H. Liu, “Wideband high-efficient linear polarization rotators,” Front. Phys. 13(5), 137803 (2018).
[Crossref]

Z. Y. Song, L. Zhang, and Q. H. Liu, “High-efficiency broadband cross polarization converter for near-Infrared light based on anisotropic plasmonic metasurfaces,” Plasmonics 11(1), 61–64 (2016).
[Crossref]

Z. Y. Song, J. F. Zhu, C. H. Zhu, Z. Yu, and Q. H. Liu, “Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays,” Mater. Lett. 159, 269–272 (2015).
[Crossref]

Z. Y. Song, X. Li, J. M. Hao, S. Y. Xiao, M. Qiu, Q. He, S. J. Ma, and L. Zhou, “Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping,” Opt. Express 21(15), 18178–18187 (2013).
[Crossref]

Soukoulis, C. M.

N. H. Shen, M. Massaouti, M. Gokkavas, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Stephen, L.

L. Stephen, N. Yogesh, and V. Subramanian, “Broadband asymmetric transmission of linearly polarized electromagnetic waves based on chiral metamaterial,” J. Appl. Phys. 123(3), 033103 (2018).
[Crossref]

Stern, N. P.

Strikwerda, A. C.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Subramanian, V.

L. Stephen, N. Yogesh, and V. Subramanian, “Broadband asymmetric transmission of linearly polarized electromagnetic waves based on chiral metamaterial,” J. Appl. Phys. 123(3), 033103 (2018).
[Crossref]

Takano, K.

Tang, J. Y.

J. Y. Tang, Z. Y. Xiao, K. K. Xu, X. L. Ma, D. J. Liu, and Z. H. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum Electron. 48(1), 1–11 (2016).
[Crossref]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref]

Tesfa, S.

W. Aroua, F. Abdelmalek, S. Haxha, S. Tesfa, and H. Bouchriha, “Mode converter optical isolator based on dual negative refraction photonic crystal,” IEEE J. Quantum Electron. 50(8), 633–638 (2014).
[Crossref]

Tian, Z.

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Tsai, T. R.

C. Y. Chen, T. R. Tsai, C. L. Pan, and R. P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Tzortzakis, S.

N. H. Shen, M. Massaouti, M. Gokkavas, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Wang, C.

M. B. Pu, P. Chen, Y. Q. Wang, Z. Y. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Wang, L.

Z. Xiao, H. Zou, X. Zheng, X. Ling, and L. Wang, “A tunable reflective polarization converter based on hybrid metamaterial,” Opt. Quantum Electron. 49(1), 12 (2017).
[Crossref]

Wang, S. M.

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246(7), 1397–1406 (2009).
[Crossref]

Wang, X.

Y. Z. Cheng, Y. Nie, X. Wang, and R. Z. Gong, “An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator,” Appl. Phys. A: Mater. Sci. Process. 111(1), 209–215 (2013).
[Crossref]

Wang, X. H.

Wang, Y. J.

Wang, Y. Q.

M. B. Pu, P. Chen, Y. Q. Wang, Z. Y. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Wang, Z. H.

J. Y. Tang, Z. Y. Xiao, K. K. Xu, X. L. Ma, D. J. Liu, and Z. H. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum Electron. 48(1), 1–11 (2016).
[Crossref]

Wang, Z. S.

Z. Y. Song, Z. S. Wang, and M. L. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Liu, and Y. G. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Watanabe, W.

Wei, G.

Wei, M. L.

Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Liu, and Y. G. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Z. Y. Song, Z. S. Wang, and M. L. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

Wiesauer, K.

K. Wiesauer and C. Jördens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared, Millimeter, Terahertz Waves 34(11), 663–681 (2013).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).

Wraback, M.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Wu, L.

Y. Z. Cheng, R. Z. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite Metamaterial for Terahertz Waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

Xiao, S. Y.

Xiao, Z.

X. Zheng, Z. Xiao, and X. Ling, “A Tunable Hybrid Metamaterial Reflective Polarization Converter Based on Vanadium Oxide Film,” Plasmonics 13(1), 287–291 (2018).
[Crossref]

Z. Xiao, H. Zou, X. Zheng, X. Ling, and L. Wang, “A tunable reflective polarization converter based on hybrid metamaterial,” Opt. Quantum Electron. 49(1), 12 (2017).
[Crossref]

Xiao, Z. Y.

H. L. Zou, Z. Y. Xiao, W. Li, and C. Li, “Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region,” Appl. Phys. A: Mater. Sci. Process. 124(4), 322 (2018).
[Crossref]

J. Y. Tang, Z. Y. Xiao, K. K. Xu, X. L. Ma, D. J. Liu, and Z. H. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum Electron. 48(1), 1–11 (2016).
[Crossref]

Xie, J.

L. Zhang, P. Zhou, H. Lu, H. Cheng, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas and Wireless Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

Xu, K. K.

J. Y. Tang, Z. Y. Xiao, K. K. Xu, X. L. Ma, D. J. Liu, and Z. H. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum Electron. 48(1), 1–11 (2016).
[Crossref]

Xu, X.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral grapheme metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Yamada, I.

Yang, Y.

J. F. Zhu, S. F. Li, L. Deng, C. Zhang, Y. Yang, and H. B. Zhu, “Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial,” Opt. Mater. Express 8(5), 1164–1173 (2018).
[Crossref]

J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
[Crossref]

Yang, Y. L.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Yao, Z.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral grapheme metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Yin, X.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref]

Yogesh, N.

L. Stephen, N. Yogesh, and V. Subramanian, “Broadband asymmetric transmission of linearly polarized electromagnetic waves based on chiral metamaterial,” J. Appl. Phys. 123(3), 033103 (2018).
[Crossref]

Yu, L.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral grapheme metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Yu, Z.

Z. Y. Song, J. F. Zhu, C. H. Zhu, Z. Yu, and Q. H. Liu, “Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays,” Mater. Lett. 159, 269–272 (2015).
[Crossref]

Zang, X. F.

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Zhang, C.

Zhang, J.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Zhang, L.

Z. Y. Song, L. Zhang, and Q. H. Liu, “High-efficiency broadband cross polarization converter for near-Infrared light based on anisotropic plasmonic metasurfaces,” Plasmonics 11(1), 61–64 (2016).
[Crossref]

L. Zhang, P. Zhou, H. Lu, H. Cheng, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas and Wireless Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

Zhang, S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref]

Zhang, W.

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Zhang, W. L.

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Zhang, X.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246(7), 1397–1406 (2009).
[Crossref]

Zhang, X. Q.

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Zhang, Y.

Y. Zhang, Y. J. Feng, T. Jiang, J. Cao, J. M. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230–27239 (2015).
[Crossref]

Zhang, Z.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Zhao, J.

Zhao, J. C.

J. C. Zhao, Y. Z. Cheng, and Z. Z. Cheng, “Design of a Photo-Excited Switchable Broadband Reflective Linear Polarization Conversion Metasurface for Terahertz Waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Y. Z. Cheng, J. C. Zhao, X. S. Mao, and R. Z. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagn. Res. 160, 89–101 (2017).
[Crossref]

Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

Zhao, J. M.

Y. Zhang, Y. J. Feng, T. Jiang, J. Cao, J. M. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

Zhao, X. P.

K. Song, Y. H. Liu, C. R. Luo, and X. P. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D: Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Zhao, Z. Y.

M. B. Pu, P. Chen, Y. Q. Wang, Z. Y. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Zheng, X.

X. Zheng, Z. Xiao, and X. Ling, “A Tunable Hybrid Metamaterial Reflective Polarization Converter Based on Vanadium Oxide Film,” Plasmonics 13(1), 287–291 (2018).
[Crossref]

Z. Xiao, H. Zou, X. Zheng, X. Ling, and L. Wang, “A tunable reflective polarization converter based on hybrid metamaterial,” Opt. Quantum Electron. 49(1), 12 (2017).
[Crossref]

Zhou, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref]

Zhou, L.

Zhou, P.

L. Zhang, P. Zhou, H. Lu, H. Cheng, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas and Wireless Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

Zhou, Y. G.

Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Liu, and Y. G. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Zhou, Y. J.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Zhu, B.

Y. Zhang, Y. J. Feng, T. Jiang, J. Cao, J. M. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230–27239 (2015).
[Crossref]

Zhu, C. H.

Z. Y. Song, J. F. Zhu, C. H. Zhu, Z. Yu, and Q. H. Liu, “Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays,” Mater. Lett. 159, 269–272 (2015).
[Crossref]

Zhu, H. B.

Zhu, J.

J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
[Crossref]

Zhu, J. F.

J. F. Zhu, S. F. Li, L. Deng, C. Zhang, Y. Yang, and H. B. Zhu, “Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial,” Opt. Mater. Express 8(5), 1164–1173 (2018).
[Crossref]

Z. Y. Song, J. F. Zhu, C. H. Zhu, Z. Yu, and Q. H. Liu, “Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays,” Mater. Lett. 159, 269–272 (2015).
[Crossref]

Zhu, S. N.

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246(7), 1397–1406 (2009).
[Crossref]

Zhu, Y. M.

Zou, H.

Z. Xiao, H. Zou, X. Zheng, X. Ling, and L. Wang, “A tunable reflective polarization converter based on hybrid metamaterial,” Opt. Quantum Electron. 49(1), 12 (2017).
[Crossref]

Zou, H. L.

H. L. Zou, Z. Y. Xiao, W. Li, and C. Li, “Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region,” Appl. Phys. A: Mater. Sci. Process. 124(4), 322 (2018).
[Crossref]

Adv. Mater. (1)

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[Crossref]

Adv. Opt. Mater. (1)

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Angew. Chem., Int. Ed. (1)

N. Liu and H. Giessen, “Coupling Effects in Optical Metamaterials,” Angew. Chem., Int. Ed. 49(51), 9838–9852 (2010).
[Crossref]

Appl. Phys. A: Mater. Sci. Process. (2)

Y. Z. Cheng, Y. Nie, X. Wang, and R. Z. Gong, “An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator,” Appl. Phys. A: Mater. Sci. Process. 111(1), 209–215 (2013).
[Crossref]

H. L. Zou, Z. Y. Xiao, W. Li, and C. Li, “Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region,” Appl. Phys. A: Mater. Sci. Process. 124(4), 322 (2018).
[Crossref]

Appl. Phys. Lett. (3)

C. Y. Chen, T. R. Tsai, C. L. Pan, and R. P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. J. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

M. B. Pu, P. Chen, Y. Q. Wang, Z. Y. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
[Crossref]

Carbon (2)

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral grapheme metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Y. Zhang, Y. J. Feng, T. Jiang, J. Cao, J. M. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

Front. Phys. (1)

Z. Y. Song, Q. Q. Chu, X. P. Shen, and Q. H. Liu, “Wideband high-efficient linear polarization rotators,” Front. Phys. 13(5), 137803 (2018).
[Crossref]

IEEE Antennas and Wireless Propag. Lett. (1)

L. Zhang, P. Zhou, H. Lu, H. Cheng, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas and Wireless Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

W. Aroua, F. Abdelmalek, S. Haxha, S. Tesfa, and H. Bouchriha, “Mode converter optical isolator based on dual negative refraction photonic crystal,” IEEE J. Quantum Electron. 50(8), 633–638 (2014).
[Crossref]

IEEE Photonics J. (2)

J. C. Zhao, Y. Z. Cheng, and Z. Z. Cheng, “Design of a Photo-Excited Switchable Broadband Reflective Linear Polarization Conversion Metasurface for Terahertz Waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Liu, and Y. G. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

J. Appl. Phys. (1)

L. Stephen, N. Yogesh, and V. Subramanian, “Broadband asymmetric transmission of linearly polarized electromagnetic waves based on chiral metamaterial,” J. Appl. Phys. 123(3), 033103 (2018).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

K. Wiesauer and C. Jördens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared, Millimeter, Terahertz Waves 34(11), 663–681 (2013).
[Crossref]

J. Mod. Opt. (1)

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

K. Song, Y. H. Liu, C. R. Luo, and X. P. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D: Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Mater. Lett. (2)

Z. Y. Song, J. F. Zhu, C. H. Zhu, Z. Yu, and Q. H. Liu, “Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays,” Mater. Lett. 159, 269–272 (2015).
[Crossref]

Z. Y. Song, Z. S. Wang, and M. L. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

Nat. Commun. (1)

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref]

New J. Phys. (1)

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Opt. Commun. (3)

Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
[Crossref]

Y. Z. Cheng, R. Z. Gong, and Z. Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (1)

Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

Opt. Mater. Express (2)

Opt. Quantum Electron. (2)

Z. Xiao, H. Zou, X. Zheng, X. Ling, and L. Wang, “A tunable reflective polarization converter based on hybrid metamaterial,” Opt. Quantum Electron. 49(1), 12 (2017).
[Crossref]

J. Y. Tang, Z. Y. Xiao, K. K. Xu, X. L. Ma, D. J. Liu, and Z. H. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum Electron. 48(1), 1–11 (2016).
[Crossref]

Phys. Rev. Lett. (1)

N. H. Shen, M. Massaouti, M. Gokkavas, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Phys. Status Solidi B (1)

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246(7), 1397–1406 (2009).
[Crossref]

Plasmonics (3)

X. Zheng, Z. Xiao, and X. Ling, “A Tunable Hybrid Metamaterial Reflective Polarization Converter Based on Vanadium Oxide Film,” Plasmonics 13(1), 287–291 (2018).
[Crossref]

Y. Z. Cheng, R. Z. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite Metamaterial for Terahertz Waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

Z. Y. Song, L. Zhang, and Q. H. Liu, “High-efficiency broadband cross polarization converter for near-Infrared light based on anisotropic plasmonic metasurfaces,” Plasmonics 11(1), 61–64 (2016).
[Crossref]

Prog. Electromagn. Res. (1)

Y. Z. Cheng, J. C. Zhao, X. S. Mao, and R. Z. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagn. Res. 160, 89–101 (2017).
[Crossref]

Science (1)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Other (1)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Design schemes of the proposed compound CCMM: (a-c) the front, back and perspective views of the unit-cell structure, (d) three-dimensional (3D) array structure.
Fig. 2.
Fig. 2. Simulated transmission coefficients ($t_{xx}^{f(b)}$, $t_{yx}^{f(b)}$, $t_{xy}^{f(b)}$ and $t_{yy}^{f(b)}$) of the CCMM (a,b) without Si and (c,d) with Si (σsi = 1 S/m without pump infrared laser illumination) for (a,c) backward (–z) direction (b,d) forward (+z) direction propagation.
Fig. 3.
Fig. 3. PCRx(y) of the normal incident x(y)-polarization wave propagation along the backward (-z) direction, (b) AT parameters for both circular and linear polarization waves.
Fig. 4.
Fig. 4. Simulated electric field distributions of the CCMM unit-cell structure in the x-z plane in case of the incident (a,e) x-polarized and (b,f) y-polarized wave propagation along backward (-z) direction, and (c,g) y-polarized and (d,h) x-polarized wave propagation along forward (+z) direction at different resonance frequencies: (a-d) f1 = 0.69 THz, (e-h) f2 = 0.77 THz.
Fig. 5.
Fig. 5. The (a) simulation and (b) calculation cross-polarization transmission coefficients (ryx) of the proposed polarization convertor for different Si conductivity (σsi) under normal incident x-pol. wave.
Fig. 6.
Fig. 6. (a) The PCRx and (b) AT parameter of the proposed CCMM for different conductivity (σsi) of the Si.
Fig. 7.
Fig. 7. The surface current distributions of the (a1-d1) front and (a2-d2) back layer of the proposed CCMM for different Si conductivity (σsi) under normal incident x-pol. wave at 0.72 THz: (a1,a2) σsi = 1×102 S/m, (b1,b2) σsi = 1×103 S/m, (c1,c2) σsi = 5×103 S/m, and (d1,d2) σsi = 1×105 S/m. The solid arrows indicate flow direction of the surface currents