Abstract

In this study, a coaxial and multi-aperture polarization imaging system was designed to obtain dehazed images under bad weather conditions, which could effectively utilize polarization information. The system can capture four polarization azimuth images simultaneously by integrating four polarizers with different transmission directions in front of the sub-apertures. The system can utilize energy of incident light effectively, as well as remain the image resolution of the camera. In order to solve the image registration problem, a translation registration method for sub-aperture polarized images was implemented, which was based on the phase-only correlation algorithm. Moreover, a polarization dehazing model suitable for this system is employed to remove the haze effect of the captured images. Further experimental data demonstrated that the system could achieve a pleasing visual effect, and its performance on image quality was certified by several objective evaluation means including the line spread function and quantified detail information. The core advantages of this system are real-time and the good image quality in terms of contrast, details, and clarity. The system can effectively adapt to the long-distance, high-resolution, and real-time imaging in bad weather conditions such as haze weather.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Real-time image haze removal using an aperture-division polarimetric camera

Wenfei Zhang, Jian Liang, Liyong Ren, Haijuan Ju, Enshi Qu, Zhaofeng Bai, Yao Tang, and Zhaoxin Wu
Appl. Opt. 56(4) 942-947 (2017)

Polarimetric dehazing utilizing spatial frequency segregation of images

Fei Liu, Lei Cao, Xiaopeng Shao, Pingli Han, and Xiangli Bin
Appl. Opt. 54(27) 8116-8122 (2015)

Real time polarimetric dehazing

Jason Mudge and Miguel Virgen
Appl. Opt. 52(9) 1932-1938 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Polarization-based vision through haze,” Appl. Opt. 42(3), 511–525 (2003).
    [Crossref]
  2. R. L. Spellicy, “Optical Environmental Monitoring in Industry,” Opt. Photonics News 6(1), 22–26 (1995).
    [Crossref]
  3. A. Akula, R. Ghosh, S. Kumar, and H. K. Sardana, “Moving target detection in thermal infrared imagery using spatiotemporal information,” J. Opt. Soc. Am. A 30(8), 1492–1501 (2013).
    [Crossref]
  4. K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
    [Crossref]
  5. G. Orsini and G. Ramponi, “A modified retinex for image contrast enhancement and dynamics control,” in Proceedings of IEEE Conference on International Conference on Image Processing (IEEE, 2003), pp. 393–396.
  6. M. J. Seow and V. K. Asari, “Ratio rule and homomorphic filter for enhancement of digital colour image,” Neurocomputing 69(7-9), 954–958 (2006).
    [Crossref]
  7. J. Liang, L. Ren, H. Ju, W. Zhang, and E. Qu, “Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization,” Opt. Express 23(20), 26146–26157 (2015).
    [Crossref]
  8. F. Liu, L. Cao, X. Shao, P. Han, and X. Bin, “Polarimetric dehazing utilizing spatial frequency segregation of image,” Appl. Opt. 54(27), 8116–8122 (2015).
    [Crossref]
  9. X. Li, H. Hu, L. Zhao, H. Wang, Y. Yu, L. Wu, and T. Liu, “Polarimetric image recovery method combining histogram stretching for underwater imaging,” Sci. Rep. 8(1), 12430 (2018).
    [Crossref]
  10. X. Xiao, B. Javidi, G. Saavedra, M. Eismann, and M. Martinez-Corral, “Three-dimensional polarimetric computational integral imaging,” Opt. Express 20(14), 15481–15488 (2012).
    [Crossref]
  11. F. Liu, P. Han, Y. Wei, K. Yang, S. Huang, X. Li, G. Zhang, L. Bai, and X. Shao, “Deeply seeing through highly turbid water by active polarization imaging,” Opt. Lett. 43(20), 4903–4906 (2018).
    [Crossref]
  12. M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, Polarimetric Detection, Characterization, and Remote Sensing (Springer, 2011).
  13. J. Mudge and M. Virgen, “Real time polarimetric dehazing,” Appl. Opt. 52(9), 1932–1938 (2013).
    [Crossref]
  14. L. Cao, X. Shao, F. Liu, and L. Wang, “Dehazing method through polarimetric imaging and multi-scale analysis,” Proc. SPIE 9501, 950111 (2015).
    [Crossref]
  15. Y. Y. Schechner and N. Karpel, “Recovery of underwater visiblilty and structure by polarization analysis,” IEEE J. Oceanic Eng. 30(3), 570–587 (2005).
    [Crossref]
  16. J. Liang, L. Ren, E. Qu, B. Hu, and Y. Wang, “Method for enhancing visibility of hazy images based on polarimetric imaging,” Photonics Res. 2(1), 38–44 (2014).
    [Crossref]
  17. W. Zhang, J. Liang, L. Ren, H. Ju, E. Qu, Z. Bai, Y. Tang, and Z. Wu, “Real-time image haze removal using an aperture-division polarimetric camera,” Appl. Opt. 56(4), 942–947 (2017).
    [Crossref]
  18. F. Chen, A. Henry, M. S. Brian, and R. A. Gonzalo, “Compressive spectral polarization imaging by a pixelized polarizer and colored patterned detector,” J. Opt. Soc. Am. A 32(11), 2178–2188 (2015).
    [Crossref]
  19. S. G. Narasimhan and S. K. Nayar, “Shedding light on the weather,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2003), pp. I-665–I-672.
  20. S. G. Narasimhan and S. K. Nayar, “Vision and the atmosphere,” Int. J. Comput. Vis. 48(3), 233–254 (2002).
    [Crossref]
  21. M. Sulami, I. Glatzer, R. Fattal, and M. Werman, “Automatic recovery of the atmospheric light in hazy images,” International Conference on Computational Photography (IEEE, 2014), pp. 1–11.
  22. C. M. Persons, D. B. Chenault, M. W. Jones, and C. A. Farlow, “Automated registration of polarimetric imagery using Fourier transform techniques,” Proc. SPIE 4819, 107–117 (2002).
    [Crossref]
  23. H. S. Stone, M. T. Orchard, E.-C. Chang, and S. A. Martucci, “A fast direct Fourier-based algorithm for subpixel registration of images,” IEEE Trans. Geosci. Remote Sensing 39(10), 2235–2243 (2001).
    [Crossref]
  24. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
    [Crossref]
  25. P. Han, F. Liu, K. Yang, J. Ma, J. Li, and X. Shao, “Active underwater descattering and image recovery,” Appl. Opt. 56(23), 6631–6638 (2017).
    [Crossref]
  26. P. T. Alexis and M. M. Jonathan, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34(6), 1808–1817 (1995).
    [Crossref]
  27. J. Canny, “A Computional Approach to Edge Detection,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986).
    [Crossref]

2018 (2)

X. Li, H. Hu, L. Zhao, H. Wang, Y. Yu, L. Wu, and T. Liu, “Polarimetric image recovery method combining histogram stretching for underwater imaging,” Sci. Rep. 8(1), 12430 (2018).
[Crossref]

F. Liu, P. Han, Y. Wei, K. Yang, S. Huang, X. Li, G. Zhang, L. Bai, and X. Shao, “Deeply seeing through highly turbid water by active polarization imaging,” Opt. Lett. 43(20), 4903–4906 (2018).
[Crossref]

2017 (2)

2015 (4)

2014 (1)

J. Liang, L. Ren, E. Qu, B. Hu, and Y. Wang, “Method for enhancing visibility of hazy images based on polarimetric imaging,” Photonics Res. 2(1), 38–44 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (1)

K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
[Crossref]

2006 (1)

M. J. Seow and V. K. Asari, “Ratio rule and homomorphic filter for enhancement of digital colour image,” Neurocomputing 69(7-9), 954–958 (2006).
[Crossref]

2005 (1)

Y. Y. Schechner and N. Karpel, “Recovery of underwater visiblilty and structure by polarization analysis,” IEEE J. Oceanic Eng. 30(3), 570–587 (2005).
[Crossref]

2004 (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

2003 (1)

2002 (2)

S. G. Narasimhan and S. K. Nayar, “Vision and the atmosphere,” Int. J. Comput. Vis. 48(3), 233–254 (2002).
[Crossref]

C. M. Persons, D. B. Chenault, M. W. Jones, and C. A. Farlow, “Automated registration of polarimetric imagery using Fourier transform techniques,” Proc. SPIE 4819, 107–117 (2002).
[Crossref]

2001 (1)

H. S. Stone, M. T. Orchard, E.-C. Chang, and S. A. Martucci, “A fast direct Fourier-based algorithm for subpixel registration of images,” IEEE Trans. Geosci. Remote Sensing 39(10), 2235–2243 (2001).
[Crossref]

1995 (2)

R. L. Spellicy, “Optical Environmental Monitoring in Industry,” Opt. Photonics News 6(1), 22–26 (1995).
[Crossref]

P. T. Alexis and M. M. Jonathan, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34(6), 1808–1817 (1995).
[Crossref]

1986 (1)

J. Canny, “A Computional Approach to Edge Detection,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986).
[Crossref]

Akula, A.

Alexis, P. T.

P. T. Alexis and M. M. Jonathan, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34(6), 1808–1817 (1995).
[Crossref]

Asari, V. K.

M. J. Seow and V. K. Asari, “Ratio rule and homomorphic filter for enhancement of digital colour image,” Neurocomputing 69(7-9), 954–958 (2006).
[Crossref]

Bai, L.

Bai, Z.

Bin, X.

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

Brian, M. S.

Canny, J.

J. Canny, “A Computional Approach to Edge Detection,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986).
[Crossref]

Cao, L.

F. Liu, L. Cao, X. Shao, P. Han, and X. Bin, “Polarimetric dehazing utilizing spatial frequency segregation of image,” Appl. Opt. 54(27), 8116–8122 (2015).
[Crossref]

L. Cao, X. Shao, F. Liu, and L. Wang, “Dehazing method through polarimetric imaging and multi-scale analysis,” Proc. SPIE 9501, 950111 (2015).
[Crossref]

Chang, E.-C.

H. S. Stone, M. T. Orchard, E.-C. Chang, and S. A. Martucci, “A fast direct Fourier-based algorithm for subpixel registration of images,” IEEE Trans. Geosci. Remote Sensing 39(10), 2235–2243 (2001).
[Crossref]

Chen, F.

Chenault, D. B.

C. M. Persons, D. B. Chenault, M. W. Jones, and C. A. Farlow, “Automated registration of polarimetric imagery using Fourier transform techniques,” Proc. SPIE 4819, 107–117 (2002).
[Crossref]

Eismann, M.

Farlow, C. A.

C. M. Persons, D. B. Chenault, M. W. Jones, and C. A. Farlow, “Automated registration of polarimetric imagery using Fourier transform techniques,” Proc. SPIE 4819, 107–117 (2002).
[Crossref]

Fattal, R.

M. Sulami, I. Glatzer, R. Fattal, and M. Werman, “Automatic recovery of the atmospheric light in hazy images,” International Conference on Computational Photography (IEEE, 2014), pp. 1–11.

Ghosh, R.

Glatzer, I.

M. Sulami, I. Glatzer, R. Fattal, and M. Werman, “Automatic recovery of the atmospheric light in hazy images,” International Conference on Computational Photography (IEEE, 2014), pp. 1–11.

Gonzalo, R. A.

Han, P.

He, K.

K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
[Crossref]

Henry, A.

Hu, B.

J. Liang, L. Ren, E. Qu, B. Hu, and Y. Wang, “Method for enhancing visibility of hazy images based on polarimetric imaging,” Photonics Res. 2(1), 38–44 (2014).
[Crossref]

Hu, H.

X. Li, H. Hu, L. Zhao, H. Wang, Y. Yu, L. Wu, and T. Liu, “Polarimetric image recovery method combining histogram stretching for underwater imaging,” Sci. Rep. 8(1), 12430 (2018).
[Crossref]

Huang, S.

Javidi, B.

Jonathan, M. M.

P. T. Alexis and M. M. Jonathan, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34(6), 1808–1817 (1995).
[Crossref]

Jones, M. W.

C. M. Persons, D. B. Chenault, M. W. Jones, and C. A. Farlow, “Automated registration of polarimetric imagery using Fourier transform techniques,” Proc. SPIE 4819, 107–117 (2002).
[Crossref]

Ju, H.

Karpel, N.

Y. Y. Schechner and N. Karpel, “Recovery of underwater visiblilty and structure by polarization analysis,” IEEE J. Oceanic Eng. 30(3), 570–587 (2005).
[Crossref]

Kumar, S.

Li, J.

Li, X.

F. Liu, P. Han, Y. Wei, K. Yang, S. Huang, X. Li, G. Zhang, L. Bai, and X. Shao, “Deeply seeing through highly turbid water by active polarization imaging,” Opt. Lett. 43(20), 4903–4906 (2018).
[Crossref]

X. Li, H. Hu, L. Zhao, H. Wang, Y. Yu, L. Wu, and T. Liu, “Polarimetric image recovery method combining histogram stretching for underwater imaging,” Sci. Rep. 8(1), 12430 (2018).
[Crossref]

Liang, J.

Liu, F.

Liu, T.

X. Li, H. Hu, L. Zhao, H. Wang, Y. Yu, L. Wu, and T. Liu, “Polarimetric image recovery method combining histogram stretching for underwater imaging,” Sci. Rep. 8(1), 12430 (2018).
[Crossref]

Ma, J.

Martinez-Corral, M.

Martucci, S. A.

H. S. Stone, M. T. Orchard, E.-C. Chang, and S. A. Martucci, “A fast direct Fourier-based algorithm for subpixel registration of images,” IEEE Trans. Geosci. Remote Sensing 39(10), 2235–2243 (2001).
[Crossref]

Mishchenko, M. I.

M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, Polarimetric Detection, Characterization, and Remote Sensing (Springer, 2011).

Mudge, J.

Narasimhan, S. G.

Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Polarization-based vision through haze,” Appl. Opt. 42(3), 511–525 (2003).
[Crossref]

S. G. Narasimhan and S. K. Nayar, “Vision and the atmosphere,” Int. J. Comput. Vis. 48(3), 233–254 (2002).
[Crossref]

S. G. Narasimhan and S. K. Nayar, “Shedding light on the weather,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2003), pp. I-665–I-672.

Nayar, S. K.

Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Polarization-based vision through haze,” Appl. Opt. 42(3), 511–525 (2003).
[Crossref]

S. G. Narasimhan and S. K. Nayar, “Vision and the atmosphere,” Int. J. Comput. Vis. 48(3), 233–254 (2002).
[Crossref]

S. G. Narasimhan and S. K. Nayar, “Shedding light on the weather,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2003), pp. I-665–I-672.

Orchard, M. T.

H. S. Stone, M. T. Orchard, E.-C. Chang, and S. A. Martucci, “A fast direct Fourier-based algorithm for subpixel registration of images,” IEEE Trans. Geosci. Remote Sensing 39(10), 2235–2243 (2001).
[Crossref]

Orsini, G.

G. Orsini and G. Ramponi, “A modified retinex for image contrast enhancement and dynamics control,” in Proceedings of IEEE Conference on International Conference on Image Processing (IEEE, 2003), pp. 393–396.

Persons, C. M.

C. M. Persons, D. B. Chenault, M. W. Jones, and C. A. Farlow, “Automated registration of polarimetric imagery using Fourier transform techniques,” Proc. SPIE 4819, 107–117 (2002).
[Crossref]

Qu, E.

Ramponi, G.

G. Orsini and G. Ramponi, “A modified retinex for image contrast enhancement and dynamics control,” in Proceedings of IEEE Conference on International Conference on Image Processing (IEEE, 2003), pp. 393–396.

Ren, L.

Rosenbush, V. K.

M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, Polarimetric Detection, Characterization, and Remote Sensing (Springer, 2011).

Saavedra, G.

Sardana, H. K.

Schechner, Y. Y.

Y. Y. Schechner and N. Karpel, “Recovery of underwater visiblilty and structure by polarization analysis,” IEEE J. Oceanic Eng. 30(3), 570–587 (2005).
[Crossref]

Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Polarization-based vision through haze,” Appl. Opt. 42(3), 511–525 (2003).
[Crossref]

Seow, M. J.

M. J. Seow and V. K. Asari, “Ratio rule and homomorphic filter for enhancement of digital colour image,” Neurocomputing 69(7-9), 954–958 (2006).
[Crossref]

Shao, X.

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

Spellicy, R. L.

R. L. Spellicy, “Optical Environmental Monitoring in Industry,” Opt. Photonics News 6(1), 22–26 (1995).
[Crossref]

Stone, H. S.

H. S. Stone, M. T. Orchard, E.-C. Chang, and S. A. Martucci, “A fast direct Fourier-based algorithm for subpixel registration of images,” IEEE Trans. Geosci. Remote Sensing 39(10), 2235–2243 (2001).
[Crossref]

Sulami, M.

M. Sulami, I. Glatzer, R. Fattal, and M. Werman, “Automatic recovery of the atmospheric light in hazy images,” International Conference on Computational Photography (IEEE, 2014), pp. 1–11.

Sun, J.

K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
[Crossref]

Tang, X.

K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
[Crossref]

Tang, Y.

Videen, G.

M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, Polarimetric Detection, Characterization, and Remote Sensing (Springer, 2011).

Virgen, M.

Wang, H.

X. Li, H. Hu, L. Zhao, H. Wang, Y. Yu, L. Wu, and T. Liu, “Polarimetric image recovery method combining histogram stretching for underwater imaging,” Sci. Rep. 8(1), 12430 (2018).
[Crossref]

Wang, L.

L. Cao, X. Shao, F. Liu, and L. Wang, “Dehazing method through polarimetric imaging and multi-scale analysis,” Proc. SPIE 9501, 950111 (2015).
[Crossref]

Wang, Y.

J. Liang, L. Ren, E. Qu, B. Hu, and Y. Wang, “Method for enhancing visibility of hazy images based on polarimetric imaging,” Photonics Res. 2(1), 38–44 (2014).
[Crossref]

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

Wei, Y.

Werman, M.

M. Sulami, I. Glatzer, R. Fattal, and M. Werman, “Automatic recovery of the atmospheric light in hazy images,” International Conference on Computational Photography (IEEE, 2014), pp. 1–11.

Wu, L.

X. Li, H. Hu, L. Zhao, H. Wang, Y. Yu, L. Wu, and T. Liu, “Polarimetric image recovery method combining histogram stretching for underwater imaging,” Sci. Rep. 8(1), 12430 (2018).
[Crossref]

Wu, Z.

Xiao, X.

Yang, K.

Yatskiv, Y. S.

M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, Polarimetric Detection, Characterization, and Remote Sensing (Springer, 2011).

Yu, Y.

X. Li, H. Hu, L. Zhao, H. Wang, Y. Yu, L. Wu, and T. Liu, “Polarimetric image recovery method combining histogram stretching for underwater imaging,” Sci. Rep. 8(1), 12430 (2018).
[Crossref]

Zhang, G.

Zhang, W.

Zhao, L.

X. Li, H. Hu, L. Zhao, H. Wang, Y. Yu, L. Wu, and T. Liu, “Polarimetric image recovery method combining histogram stretching for underwater imaging,” Sci. Rep. 8(1), 12430 (2018).
[Crossref]

Appl. Opt. (5)

IEEE J. Oceanic Eng. (1)

Y. Y. Schechner and N. Karpel, “Recovery of underwater visiblilty and structure by polarization analysis,” IEEE J. Oceanic Eng. 30(3), 570–587 (2005).
[Crossref]

IEEE Trans. Geosci. Remote Sensing (1)

H. S. Stone, M. T. Orchard, E.-C. Chang, and S. A. Martucci, “A fast direct Fourier-based algorithm for subpixel registration of images,” IEEE Trans. Geosci. Remote Sensing 39(10), 2235–2243 (2001).
[Crossref]

IEEE Trans. on Image Process. (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

J. Canny, “A Computional Approach to Edge Detection,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986).
[Crossref]

K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
[Crossref]

Int. J. Comput. Vis. (1)

S. G. Narasimhan and S. K. Nayar, “Vision and the atmosphere,” Int. J. Comput. Vis. 48(3), 233–254 (2002).
[Crossref]

J. Opt. Soc. Am. A (2)

Neurocomputing (1)

M. J. Seow and V. K. Asari, “Ratio rule and homomorphic filter for enhancement of digital colour image,” Neurocomputing 69(7-9), 954–958 (2006).
[Crossref]

Opt. Eng. (1)

P. T. Alexis and M. M. Jonathan, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34(6), 1808–1817 (1995).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Photonics News (1)

R. L. Spellicy, “Optical Environmental Monitoring in Industry,” Opt. Photonics News 6(1), 22–26 (1995).
[Crossref]

Photonics Res. (1)

J. Liang, L. Ren, E. Qu, B. Hu, and Y. Wang, “Method for enhancing visibility of hazy images based on polarimetric imaging,” Photonics Res. 2(1), 38–44 (2014).
[Crossref]

Proc. SPIE (2)

L. Cao, X. Shao, F. Liu, and L. Wang, “Dehazing method through polarimetric imaging and multi-scale analysis,” Proc. SPIE 9501, 950111 (2015).
[Crossref]

C. M. Persons, D. B. Chenault, M. W. Jones, and C. A. Farlow, “Automated registration of polarimetric imagery using Fourier transform techniques,” Proc. SPIE 4819, 107–117 (2002).
[Crossref]

Sci. Rep. (1)

X. Li, H. Hu, L. Zhao, H. Wang, Y. Yu, L. Wu, and T. Liu, “Polarimetric image recovery method combining histogram stretching for underwater imaging,” Sci. Rep. 8(1), 12430 (2018).
[Crossref]

Other (4)

G. Orsini and G. Ramponi, “A modified retinex for image contrast enhancement and dynamics control,” in Proceedings of IEEE Conference on International Conference on Image Processing (IEEE, 2003), pp. 393–396.

M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, Polarimetric Detection, Characterization, and Remote Sensing (Springer, 2011).

S. G. Narasimhan and S. K. Nayar, “Shedding light on the weather,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2003), pp. I-665–I-672.

M. Sulami, I. Glatzer, R. Fattal, and M. Werman, “Automatic recovery of the atmospheric light in hazy images,” International Conference on Computational Photography (IEEE, 2014), pp. 1–11.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Scattering imaging model under hazy weather.
Fig. 2.
Fig. 2. Variation of light intensity with scene distance.
Fig. 3.
Fig. 3. (a) and (c) are a set of mutually orthogonal polarization azimuth images. (b) and (d) are a set of polarization azimuth images that differ by 5 degrees from (a) and (c), respectively. (e) Difference in polarization between two sets of images.
Fig. 4.
Fig. 4. (a-d) Multi-aperture system images of I(0°), I(45°), I(90°) and I(135°), respectively. (e) The intensity image. (f) The DoLP result utilize Stokes method. (g) Statistics of more than 140 pixels’ gray values in line 264 column of Figs. (a) and (e). (h) The coaxial and multi-aperture polarimetric camera.
Fig. 5.
Fig. 5. Pixel statistics before and after registration. (a) result before registration. (b) result after registration. (c) pixel statistics of (a). (d) pixel statistics of (b).
Fig. 6.
Fig. 6. Dehazed image of Figs. 4(a-d). (a) is the dehazed image before registration. (b) is the dehazed image after registration.
Fig. 7.
Fig. 7. Building boundary definition evaluation result. (a) and (d) are the statistical results of using ESF on the horizontal and vertical boundaries of Fig. 6(a), respectively. (b) and (e) are the statistical results of using ESF on the horizontal and vertical boundaries of Fig. 6(b), respectively. (c) and (f) are the comparison of the evaluation results of Fig. 6(a) and (b) by LSF.
Fig. 8.
Fig. 8. Haze images, dehazed images and color statistical images. (a) and (e) are the haze images. (b), (d), (f) and (h) are the RGB color statistics images of (a), (c), (e) and (g), respectively. (c) and (g) are dehazed images after registration.
Fig. 9.
Fig. 9. The Canny edge detection results. (a) and (c) are high-frequency information extraction results of the haze images in Figs. 8(a) and 8(e), respectively. (b) and (d) are high-frequency information extraction results of the dehazed images in Figs. 8(c) and 8(g), respectively.

Tables (1)

Tables Icon

Table 1. Mean Structural Similarity Value

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I = I c e β d + I ( 1 e β d ) ,
D o L P = I max I min I max + I min = ( S 1 E 2 + S 2 E 2 ) 1 / 2 S 0 E ,
I ( 1 e β d ) = I t D o L P A D o L P ,
I c = I t ( 1 D o L P A D o L P ) / I t ( 1 D o L P A D o L P ) ( 1 I t D o L P A I D o L P ) ( 1 I t D o L P A I D o L P ) .
I ( 1 e β d ) = S 0 D o L P A D o L P ,
I N = I t ( 1 ( S 1 2 + S 2 2 S 0 ) / ( S 1 2 + S 2 2 S 0 ) ( S 1 E 2 + S 2 E 2 S 0 E ) ( S 1 E 2 + S 2 E 2 S 0 E ) ) × ( 1  -  S 1 2 + S 2 2 / S 1 2 + S 2 2 ( I × S 1 E 2 + S 2 E 2 S 0 E ) ( I × S 1 E 2 + S 2 E 2 S 0 E ) ) ,
I N = S 0 ( 1 γ 90 × ( ε 45 ) 2 + ( ε 45 ) 2 + 2 I 0 2 + I 135 2 + 2 ( w 45 135 w 0 45 w 0 135 w 45 90 ) S 0 × ( γ 45 ) 2 + ( γ 45 ) 2 + 2 I 0 2 + I 135 2 + 2 ( w ¯ 45 135 w ¯ 0 45 w ¯ 0 135 w ¯ 45 90 ) ) × ( 1 γ 90 × ( ε 45 ) 2 + ( ε 45 ) 2 + 2 I 0 2 + I 135 2 + 2 ( w 45 135 w 0 45 w 0 135 w 45 90 ) I × ( γ 45 ) 2 + ( γ 45 ) 2 + 2 I 0 2 + I 135 2 + 2 ( w ¯ 45 135 w ¯ 0 45 w ¯ 0 135 w ¯ 45 90 ) ) 1 ,
{ ε 45 = I ( 45 0 ) I ( 90 0 ) ε 45 = I ( 0 0 ) 2 I ( 45 0 ) γ 90 = I ( 0 0 ) + I ( 90 0 ) γ 45 = I ( 45 0 ) I ( 90 0 ) γ 45 = I ( 0 0 ) 2 I ( 45 0 ) w α β = I ( α 0 ) I ( β 0 ) w ¯ α β = I ( α 0 ) I ( β 0 ) .
{ f i ( x , y ) = f j ( x x 0 , y y 0 ) F j ( u , v ) = F i ( u , v ) e i 2 π ( u x i 0 / M + v y i 0 / N ) ( i = 45 0 , j [ 0 0 , 90 0 , 135 0 ] ) ,
c j ( u , v ) = F 1 [ F i ( u , v ) F j ( u , v ) | F i ( u , v ) | | F j ( u , v ) | ] = 1 M N sin [ π ( x x i 0 ) ] sin [ π M ( x x i 0 ) ] sin [ π ( y y i 0 ) ] sin [ π N ( y y i 0 ) ] ,
c j ( u , v ) sin [ π ( x x i 0 ) ] π ( x x i 0 ) sin [ π ( y y i 0 ) ] π ( y y i 0 ) = sinc ( x x i 0 ) sinc ( y y i 0 ) .
F ( x ) = a 1 + exp [ ( x b ) / ( x b ) c c ] + D ,
L S F ( x ) = d F ( x ) d x = a exp [ ( x b ) / ( x b ) c c ] c { exp [ ( x b ) / ( x b ) c c ] + 1 } 2 ,

Metrics