Abstract

We apply a previously developed approach for the automated design of optical structures to two cases. This approach reduces the basis of the electromagnetic system to obtain fast gradient-based optimization. In the first case, an existing photonic crystal demultiplexer is optimized for higher power transmission and lower crosstalk. In the second, new optical diodes for plane- and cylindrical-wave incidence are designed using a photonic crystal as a starting point. Highly efficient and aperiodic devices are obtained in all cases. These results indicate that aperiodic devices produced by this automated design method can outperform their analytically-obtained counterparts and encourage its application to other photonic crystal-based devices.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Modeling and optimization of photonic crystal devices based on transformation optics method

Yinghui Cao, Jun Xie, Yongmin Liu, and Zhenyu Liu
Opt. Express 22(3) 2725-2734 (2014)

Preconditioned superprism-based photonic crystal demultiplexers: analysis and design

Babak Momeni and Ali Adibi
Appl. Opt. 45(33) 8466-8476 (2006)

On the design of photonic crystal multiplexers

Jasmin Smajic, Christian Hafner, and Daniel Erni
Opt. Express 11(6) 566-571 (2003)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
    [Crossref]
  2. Y. Liu, F. Qin, Z.-M. Meng, F. Zhou, Q.-H. Mao, and Z.-Y. Li, “All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express 19(3), 1945–1953 (2011).
    [Crossref]
  3. V. Jandieri, R. Khomeriki, and D. Erni, “Realization of true all-optical AND logic gate based on nonlinear coupled air-hole type photonic crystal waveguides,” Opt. Express 26(16), 19845–19853 (2018).
    [Crossref]
  4. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26(2), 87–88 (1990).
    [Crossref]
  5. Y. Tan, H. Wu, S. Wang, C. Li, and D. Dai, “Silicon-based hybrid demultiplexer for wavelength- and mode-division multiplexing,” Opt. Lett. 43(9), 1962–1965 (2018).
    [Crossref]
  6. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
    [Crossref]
  7. E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” J. Opt. A: Pure Appl. Opt. 1(5), L10–L13 (1999).
    [Crossref]
  8. A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt. 40(14), 2247–2252 (2001).
    [Crossref]
  9. V. Liu, Y. Jiao, D. A. B. Miller, and S. Fan, “Design methodology for compact photonic-crystal-based wavelength division multiplexers,” Opt. Lett. 36(4), 591–593 (2011).
    [Crossref]
  10. R. Philip, M. Anija, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Passive all-optical diode using asymmetric nonlinear absorption,” Appl. Phys. Lett. 91(14), 141118 (2007).
    [Crossref]
  11. M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
    [Crossref]
  12. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
    [Crossref]
  13. Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
    [Crossref]
  14. M. Stolarek, D. Yavorskiy, R. Kotyński, C. J. Z. Rodríguez, J. Łusakowski, and T. Szoplik, “Asymmetric transmission of terahertz radiation through a double grating,” Opt. Lett. 38(6), 839–841 (2013).
    [Crossref]
  15. P. Xu, X. Lv, J. Chen, Y. Li, J. Qian, Z. Chen, J. Qi, Q. Sun, and J. Xu, “Dichroic optical diode transmission in two dislocated parallel metallic gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
    [Crossref]
  16. Y. Zhang, Q. Kan, and G. P. Wang, “One-way optical transmission in silicon grating-photonic crystal structures,” Opt. Lett. 39(16), 4934–4937 (2014).
    [Crossref]
  17. D. Liu, S. Hu, and Y. Gao, “One-way optical transmission in silicon photonic crystal heterojunction with circular and square scatterers,” Phys. Lett. A 381(25-26), 2131–2135 (2017).
    [Crossref]
  18. E. Bor, M. Turduev, U. G. Yasa, H. Kurt, and K. Staliunas, “Asymmetric light transmission effect based on an evolutionary optimized semi-dirac cone dispersion photonic structure,” Phys. Rev. B 98(24), 245112 (2018).
    [Crossref]
  19. Y.-C. Hsueh and K. J. Webb, “Electromagnetic field control with binary aperiodic nanostructures,” J. Opt. Soc. Am. B 34(10), 2059–2071 (2017).
    [Crossref]
  20. B. Blankrot and C. Heitzinger, “Efficient computational design and optimization of dielectric metamaterial devices,” http://arxiv.org/abs/1804.09489 (2018). Submitted for publication.
  21. B. Blankrot and C. Heitzinger, “Automated design of photonic crystal demultiplexers,” in 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), (Espoo, Finland, 2018), pp. 55, 57.
  22. N. A. Gumerov and R. Duraiswami, “A scalar potential formulation and translation theory for the time-harmonic maxwell equations,” J. Comput. Phys. 225(1), 206–236 (2007).
    [Crossref]
  23. J. Lai, M. Kobayashi, and L. Greengard, “A fast solver for multi-particle scattering in a layered medium,” Opt. Express 22(17), 20481–20499 (2014).
    [Crossref]
  24. J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,” Appl. Phys. Lett. 84(12), 2022–2024 (2004).
    [Crossref]
  25. M. Minkov and V. Savona, “Automated optimization of photonic crystal slab cavities,” Sci. Rep. 4(1), 5124 (2014).
    [Crossref]
  26. C. Valagiannopoulos and P. G. Lagoudakis, “Photonic crystals for optimal color conversion in light-emitting diodes: a semi-analytical approach,” J. Opt. Soc. Am. B 35(5), 1105–1112 (2018).
    [Crossref]
  27. P. Seliger, M. Mahvash, C. Wang, and A. F. J. Levi, “Optimization of aperiodic dielectric structures,” J. Appl. Phys. 100(3), 034310 (2006).
    [Crossref]
  28. R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35(3), 7–12 (1993).
    [Crossref]
  29. J. Smajic, C. Hafner, and D. Erni, “On the design of photonic crystal multiplexers,” Opt. Express 11(6), 566–571 (2003).
    [Crossref]
  30. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
    [Crossref]

2018 (5)

V. Jandieri, R. Khomeriki, and D. Erni, “Realization of true all-optical AND logic gate based on nonlinear coupled air-hole type photonic crystal waveguides,” Opt. Express 26(16), 19845–19853 (2018).
[Crossref]

Y. Tan, H. Wu, S. Wang, C. Li, and D. Dai, “Silicon-based hybrid demultiplexer for wavelength- and mode-division multiplexing,” Opt. Lett. 43(9), 1962–1965 (2018).
[Crossref]

P. Xu, X. Lv, J. Chen, Y. Li, J. Qian, Z. Chen, J. Qi, Q. Sun, and J. Xu, “Dichroic optical diode transmission in two dislocated parallel metallic gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

E. Bor, M. Turduev, U. G. Yasa, H. Kurt, and K. Staliunas, “Asymmetric light transmission effect based on an evolutionary optimized semi-dirac cone dispersion photonic structure,” Phys. Rev. B 98(24), 245112 (2018).
[Crossref]

C. Valagiannopoulos and P. G. Lagoudakis, “Photonic crystals for optimal color conversion in light-emitting diodes: a semi-analytical approach,” J. Opt. Soc. Am. B 35(5), 1105–1112 (2018).
[Crossref]

2017 (2)

Y.-C. Hsueh and K. J. Webb, “Electromagnetic field control with binary aperiodic nanostructures,” J. Opt. Soc. Am. B 34(10), 2059–2071 (2017).
[Crossref]

D. Liu, S. Hu, and Y. Gao, “One-way optical transmission in silicon photonic crystal heterojunction with circular and square scatterers,” Phys. Lett. A 381(25-26), 2131–2135 (2017).
[Crossref]

2015 (1)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

2014 (3)

2013 (2)

Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
[Crossref]

M. Stolarek, D. Yavorskiy, R. Kotyński, C. J. Z. Rodríguez, J. Łusakowski, and T. Szoplik, “Asymmetric transmission of terahertz radiation through a double grating,” Opt. Lett. 38(6), 839–841 (2013).
[Crossref]

2011 (2)

2010 (2)

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

2009 (1)

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

2007 (2)

R. Philip, M. Anija, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Passive all-optical diode using asymmetric nonlinear absorption,” Appl. Phys. Lett. 91(14), 141118 (2007).
[Crossref]

N. A. Gumerov and R. Duraiswami, “A scalar potential formulation and translation theory for the time-harmonic maxwell equations,” J. Comput. Phys. 225(1), 206–236 (2007).
[Crossref]

2006 (1)

P. Seliger, M. Mahvash, C. Wang, and A. F. J. Levi, “Optimization of aperiodic dielectric structures,” J. Appl. Phys. 100(3), 034310 (2006).
[Crossref]

2004 (1)

J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,” Appl. Phys. Lett. 84(12), 2022–2024 (2004).
[Crossref]

2003 (1)

2001 (1)

1999 (1)

E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” J. Opt. A: Pure Appl. Opt. 1(5), L10–L13 (1999).
[Crossref]

1993 (1)

R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35(3), 7–12 (1993).
[Crossref]

1990 (1)

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26(2), 87–88 (1990).
[Crossref]

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Anija, M.

R. Philip, M. Anija, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Passive all-optical diode using asymmetric nonlinear absorption,” Appl. Phys. Lett. 91(14), 141118 (2007).
[Crossref]

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Beauvillain, P.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Blankrot, B.

B. Blankrot and C. Heitzinger, “Efficient computational design and optimization of dielectric metamaterial devices,” http://arxiv.org/abs/1804.09489 (2018). Submitted for publication.

B. Blankrot and C. Heitzinger, “Automated design of photonic crystal demultiplexers,” in 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), (Espoo, Finland, 2018), pp. 55, 57.

Bor, E.

E. Bor, M. Turduev, U. G. Yasa, H. Kurt, and K. Staliunas, “Asymmetric light transmission effect based on an evolutionary optimized semi-dirac cone dispersion photonic structure,” Phys. Rev. B 98(24), 245112 (2018).
[Crossref]

Caulfield, H. J.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[Crossref]

Centeno, E.

E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” J. Opt. A: Pure Appl. Opt. 1(5), L10–L13 (1999).
[Crossref]

Checoury, X.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Chen, H.

Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
[Crossref]

Chen, J.

P. Xu, X. Lv, J. Chen, Y. Li, J. Qian, Z. Chen, J. Qi, Q. Sun, and J. Xu, “Dichroic optical diode transmission in two dislocated parallel metallic gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Chen, Z.

P. Xu, X. Lv, J. Chen, Y. Li, J. Qian, Z. Chen, J. Qi, Q. Sun, and J. Xu, “Dichroic optical diode transmission in two dislocated parallel metallic gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Coifman, R.

R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35(3), 7–12 (1993).
[Crossref]

Dagens, B.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Dai, D.

Dolev, S.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[Crossref]

Duraiswami, R.

N. A. Gumerov and R. Duraiswami, “A scalar potential formulation and translation theory for the time-harmonic maxwell equations,” J. Comput. Phys. 225(1), 206–236 (2007).
[Crossref]

Erni, D.

Fan, S.

Felbacq, D.

E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” J. Opt. A: Pure Appl. Opt. 1(5), L10–L13 (1999).
[Crossref]

Gao, Y.

D. Liu, S. Hu, and Y. Gao, “One-way optical transmission in silicon photonic crystal heterojunction with circular and square scatterers,” Phys. Lett. A 381(25-26), 2131–2135 (2017).
[Crossref]

Gralak, B.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Greengard, L.

Gu, C.

Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
[Crossref]

Guizal, B.

E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” J. Opt. A: Pure Appl. Opt. 1(5), L10–L13 (1999).
[Crossref]

Gumerov, N. A.

N. A. Gumerov and R. Duraiswami, “A scalar potential formulation and translation theory for the time-harmonic maxwell equations,” J. Comput. Phys. 225(1), 206–236 (2007).
[Crossref]

Hafner, C.

Heitzinger, C.

B. Blankrot and C. Heitzinger, “Automated design of photonic crystal demultiplexers,” in 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), (Espoo, Finland, 2018), pp. 55, 57.

B. Blankrot and C. Heitzinger, “Efficient computational design and optimization of dielectric metamaterial devices,” http://arxiv.org/abs/1804.09489 (2018). Submitted for publication.

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Hou, B.

Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
[Crossref]

Hsueh, Y.-C.

Hu, S.

D. Liu, S. Hu, and Y. Gao, “One-way optical transmission in silicon photonic crystal heterojunction with circular and square scatterers,” Phys. Lett. A 381(25-26), 2131–2135 (2017).
[Crossref]

Jandieri, V.

Jensen, J. S.

J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,” Appl. Phys. Lett. 84(12), 2022–2024 (2004).
[Crossref]

Jiao, Y.

Kan, Q.

Kato, K.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26(2), 87–88 (1990).
[Crossref]

Khomeriki, R.

Kley, E.-B.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Kobayashi, M.

Kotynski, R.

Kurt, H.

E. Bor, M. Turduev, U. G. Yasa, H. Kurt, and K. Staliunas, “Asymmetric light transmission effect based on an evolutionary optimized semi-dirac cone dispersion photonic structure,” Phys. Rev. B 98(24), 245112 (2018).
[Crossref]

L. N. Rao, D. V. G.

R. Philip, M. Anija, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Passive all-optical diode using asymmetric nonlinear absorption,” Appl. Phys. Lett. 91(14), 141118 (2007).
[Crossref]

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Lagoudakis, P. G.

Lai, J.

Lai, Y.

Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
[Crossref]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Levi, A. F. J.

P. Seliger, M. Mahvash, C. Wang, and A. F. J. Levi, “Optimization of aperiodic dielectric structures,” J. Appl. Phys. 100(3), 034310 (2006).
[Crossref]

Li, C.

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Li, J.

Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
[Crossref]

Li, Y.

P. Xu, X. Lv, J. Chen, Y. Li, J. Qian, Z. Chen, J. Qi, Q. Sun, and J. Xu, “Dichroic optical diode transmission in two dislocated parallel metallic gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Li, Z.-Y.

Liu, D.

D. Liu, S. Hu, and Y. Gao, “One-way optical transmission in silicon photonic crystal heterojunction with circular and square scatterers,” Phys. Lett. A 381(25-26), 2131–2135 (2017).
[Crossref]

Liu, V.

Liu, Y.

Lourtioz, J.-M.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Lusakowski, J.

Lv, X.

P. Xu, X. Lv, J. Chen, Y. Li, J. Qian, Z. Chen, J. Qi, Q. Sun, and J. Xu, “Dichroic optical diode transmission in two dislocated parallel metallic gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Magdenko, L.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Mahvash, M.

P. Seliger, M. Mahvash, C. Wang, and A. F. J. Levi, “Optimization of aperiodic dielectric structures,” J. Appl. Phys. 100(3), 034310 (2006).
[Crossref]

Mao, Q.-H.

Meng, Z.-M.

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Miller, D. A. B.

Minkov, M.

M. Minkov and V. Savona, “Automated optimization of photonic crystal slab cavities,” Sci. Rep. 4(1), 5124 (2014).
[Crossref]

Nishi, I.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26(2), 87–88 (1990).
[Crossref]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Petykiewicz, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Philip, R.

R. Philip, M. Anija, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Passive all-optical diode using asymmetric nonlinear absorption,” Appl. Phys. Lett. 91(14), 141118 (2007).
[Crossref]

Piggott, A. Y.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Postava, K.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Prather, D. W.

Qi, J.

P. Xu, X. Lv, J. Chen, Y. Li, J. Qian, Z. Chen, J. Qi, Q. Sun, and J. Xu, “Dichroic optical diode transmission in two dislocated parallel metallic gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Qian, J.

P. Xu, X. Lv, J. Chen, Y. Li, J. Qian, Z. Chen, J. Qi, Q. Sun, and J. Xu, “Dichroic optical diode transmission in two dislocated parallel metallic gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Qin, F.

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Rodríguez, C. J. Z.

Rokhlin, V.

R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35(3), 7–12 (1993).
[Crossref]

Savona, V.

M. Minkov and V. Savona, “Automated optimization of photonic crystal slab cavities,” Sci. Rep. 4(1), 5124 (2014).
[Crossref]

Seliger, P.

P. Seliger, M. Mahvash, C. Wang, and A. F. J. Levi, “Optimization of aperiodic dielectric structures,” J. Appl. Phys. 100(3), 034310 (2006).
[Crossref]

Sharkawy, A.

Shi, S.

Sigmund, O.

J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,” Appl. Phys. Lett. 84(12), 2022–2024 (2004).
[Crossref]

Smajic, J.

Smigaj, W.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Staliunas, K.

E. Bor, M. Turduev, U. G. Yasa, H. Kurt, and K. Staliunas, “Asymmetric light transmission effect based on an evolutionary optimized semi-dirac cone dispersion photonic structure,” Phys. Rev. B 98(24), 245112 (2018).
[Crossref]

Stolarek, M.

Sun, Q.

P. Xu, X. Lv, J. Chen, Y. Li, J. Qian, Z. Chen, J. Qi, Q. Sun, and J. Xu, “Dichroic optical diode transmission in two dislocated parallel metallic gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Suzuki, S.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26(2), 87–88 (1990).
[Crossref]

Szoplik, T.

Takahashi, H.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26(2), 87–88 (1990).
[Crossref]

Tan, Y.

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Turduev, M.

E. Bor, M. Turduev, U. G. Yasa, H. Kurt, and K. Staliunas, “Asymmetric light transmission effect based on an evolutionary optimized semi-dirac cone dispersion photonic structure,” Phys. Rev. B 98(24), 245112 (2018).
[Crossref]

Valagiannopoulos, C.

Vanwolleghem, M.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Vuckovic, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Wandzura, S.

R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35(3), 7–12 (1993).
[Crossref]

Wang, C.

P. Seliger, M. Mahvash, C. Wang, and A. F. J. Levi, “Optimization of aperiodic dielectric structures,” J. Appl. Phys. 100(3), 034310 (2006).
[Crossref]

Wang, G. P.

Wang, S.

Webb, K. J.

Wu, H.

Xu, J.

P. Xu, X. Lv, J. Chen, Y. Li, J. Qian, Z. Chen, J. Qi, Q. Sun, and J. Xu, “Dichroic optical diode transmission in two dislocated parallel metallic gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Xu, P.

P. Xu, X. Lv, J. Chen, Y. Li, J. Qian, Z. Chen, J. Qi, Q. Sun, and J. Xu, “Dichroic optical diode transmission in two dislocated parallel metallic gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Xu, Y.

Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
[Crossref]

Yasa, U. G.

E. Bor, M. Turduev, U. G. Yasa, H. Kurt, and K. Staliunas, “Asymmetric light transmission effect based on an evolutionary optimized semi-dirac cone dispersion photonic structure,” Phys. Rev. B 98(24), 245112 (2018).
[Crossref]

Yavorskiy, D.

Yelleswarapu, C. S.

R. Philip, M. Anija, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Passive all-optical diode using asymmetric nonlinear absorption,” Appl. Phys. Lett. 91(14), 141118 (2007).
[Crossref]

Zhang, Y.

Zhou, F.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. Philip, M. Anija, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Passive all-optical diode using asymmetric nonlinear absorption,” Appl. Phys. Lett. 91(14), 141118 (2007).
[Crossref]

J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,” Appl. Phys. Lett. 84(12), 2022–2024 (2004).
[Crossref]

Electron. Lett. (1)

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26(2), 87–88 (1990).
[Crossref]

IEEE Antennas Propag. Mag. (1)

R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35(3), 7–12 (1993).
[Crossref]

J. Appl. Phys. (1)

P. Seliger, M. Mahvash, C. Wang, and A. F. J. Levi, “Optimization of aperiodic dielectric structures,” J. Appl. Phys. 100(3), 034310 (2006).
[Crossref]

J. Comput. Phys. (1)

N. A. Gumerov and R. Duraiswami, “A scalar potential formulation and translation theory for the time-harmonic maxwell equations,” J. Comput. Phys. 225(1), 206–236 (2007).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” J. Opt. A: Pure Appl. Opt. 1(5), L10–L13 (1999).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Nanoscale Res. Lett. (1)

P. Xu, X. Lv, J. Chen, Y. Li, J. Qian, Z. Chen, J. Qi, Q. Sun, and J. Xu, “Dichroic optical diode transmission in two dislocated parallel metallic gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Nat. Commun. (1)

Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
[Crossref]

Nat. Photonics (2)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Phys. Lett. A (1)

D. Liu, S. Hu, and Y. Gao, “One-way optical transmission in silicon photonic crystal heterojunction with circular and square scatterers,” Phys. Lett. A 381(25-26), 2131–2135 (2017).
[Crossref]

Phys. Rev. B (2)

E. Bor, M. Turduev, U. G. Yasa, H. Kurt, and K. Staliunas, “Asymmetric light transmission effect based on an evolutionary optimized semi-dirac cone dispersion photonic structure,” Phys. Rev. B 98(24), 245112 (2018).
[Crossref]

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J.-M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[Crossref]

Phys. Rev. Lett. (1)

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Sci. Rep. (1)

M. Minkov and V. Savona, “Automated optimization of photonic crystal slab cavities,” Sci. Rep. 4(1), 5124 (2014).
[Crossref]

Other (2)

B. Blankrot and C. Heitzinger, “Efficient computational design and optimization of dielectric metamaterial devices,” http://arxiv.org/abs/1804.09489 (2018). Submitted for publication.

B. Blankrot and C. Heitzinger, “Automated design of photonic crystal demultiplexers,” in 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), (Espoo, Finland, 2018), pp. 55, 57.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Diplexer before optimization. Unit cell size is $a = {1}\ \mu{\textrm{m}}$, lines indicate arcs through which the propagated power was calculated for optimization. Black star denotes the input current filament location.
Fig. 2.
Fig. 2. Amplitude of the electric field $E_z$ in the diplexer when excited by a current filament. (a) Reference design with $\lambda _1$, (b) reference design with $\lambda _2$, (c) optimized design with $\lambda _1$, (d) optimized design with $\lambda _2$.
Fig. 3.
Fig. 3. Power density entering the top and exiting the desired sides of the reference and optimized diplexers. (a) $\lambda _1$ power entering the top, (b) $\lambda _1$ exiting the left, (c) $\lambda _2$ entering the top, (d) $\lambda _2$ exiting the right.
Fig. 4.
Fig. 4. Power flow to the left and right sides of the reference and optimized diplexers. (a) Absolute. (b) Normalized by power entering the device. Vertical lines indicate the frequencies of interest $\lambda _1$, $\lambda _2$.
Fig. 5.
Fig. 5. Amplitude of $E_z$ for the designed optical diode in response to a unit plane wave. (a) Left-to-right propagation. (b) Right-to-left propagation. Dotted line indicates where power flow was optimized and calculated.
Fig. 6.
Fig. 6. Photonic band structure for a triangular array of dielectric ($n = 3.48$) rods of radius $r/a = 0.2$ in air, for TM polarization. The insets depict the irreducible Brillouin zone in light blue as well as the unit cell.
Fig. 7.
Fig. 7. (a) Power transmission spectrum in both directions, normalized by the power flow without the device. (b) Transmission ratio between right- and left-propagating light for the device that was optimized for excitation by plane wave (solid line) and current filament (dashed).
Fig. 8.
Fig. 8. Amplitude of $E_z$ for the designed optical diode in response to a ${1}\ {\textrm{nA}}$ current filament. (a) Left-to-right propagation. (b) Right-to-left propagation. Dotted line indicates where power flow was optimized and calculated.

Tables (1)

Tables Icon

Table 1. Power Transmission for Diplexer

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P i ( j ) = 1 2 j ( E i × H i ) n ^ d l .
( I X i T i ) β i = X i α i ,
Λ = f + 2 i ζ i c i ,
d Λ d R m = 2 i ( ζ i ( I X i T i ) + f β i ) β i R m ζ i X i R m X i 1 β i .
f = i = 1 , 2 P 3 i ( i ) P i ( i ) + P i ( 3 ) P i ( i ) + P i ( 2 i + 2 ) P i ( i ) + P i ( 2 i + 3 ) P i ( i ) + C max ( 0 , 1 P i ( i ) P i ) 2 ,
f = 1 P r ( 1 + C | P l | P r ) ,

Metrics