Abstract

We report research on superconducting transition temperature (Tc) tuning and the antireflective layer of NbxSi1-x films that were used as the absorbing layer in inductive superconducting transition edge detectors (ISTED). The Tc of NbxSi1-x film absorber should be tuned to be to the operating temperature range of the readout nano superconducting quantum interference devices. The composition ratio of Nb/Si was controlled by the co-sputtering powers of the Nb and Si target to adjust the Tc. To improve the detection efficiency, a 30 nm Nb95.7Si4.3 film with Tc 6.3 K was chosen to demonstrate the effect of the antireflective layer SiNx made by low temperature plasma enhanced chemical vapor deposition (LT-PECVD). According to the spectral refractive indexes and extinction coefficients of the Nb95.7Si4.3 and SiNx films, the structure parameters for 633 nm incident light were designed and the optical properties were calculated. The reflectivity measurements showed that the reflectivity was effectively reduced, which was consistent with the calculation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamically tunable polarization-independent terahertz absorber based on bulk Dirac semimetals

Ming Chen, Chen Chen, Shijie Deng, Houquan Liu, Chuanxin Teng, Yu Cheng, Hongyan Yang, Ronghui Xu, Hongchang Deng, and Libo Yuan
OSA Continuum 2(8) 2477-2486 (2019)

Absorption of terahertz radiation by a thin metal absorber in conventional and inverted bolometers

M. A. Dem’yanenko, I. V. Marchishin, and V. V. Startsev
OSA Continuum 2(6) 2085-2097 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
    [Crossref]
  2. L. You, J. Quan, Y. Wang, Y. Ma, X. Yang, Y. Liu, H. Li, J. Li, J. Wang, J. Liang, Z. Wang, and X. Xie, “Superconducting nanowire single photon detection system for space applications. Optics Express,” Opt. Express 26(3), 2965–2971 (2018).
    [Crossref]
  3. L. Zhang, S. Zhang, X. Tao, G. Zhu, L. Kang, J. Chen, and P. Wu, “Quasi-Gated superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 27(2), 1–6 (2017).
    [Crossref]
  4. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008).
    [Crossref]
  5. J. N. Ullom and D. A. Bennett, “Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy,” Supercond. Sci. Technol. 28(8), 084003 (2015).
    [Crossref]
  6. Q. Zhang, J. Liu, W. Dong, T. Wang, G. He, T. Li, X. Zhou, and W. Chen, “Design and fabrication of superconducting transition edge sensor bolometers with background limited noise performance,” Chin. Sci. Bull. 59(19), 2292–2297 (2014).
    [Crossref]
  7. W. K. Warburton, J. Harris, M. Carpenter, L. Fabris, and S. Friedrich, “Preamplifier development for superconducting tunnel junction array X-ray detector electronics,” IEEE Nuclear Science Symposuim & Medical Imaging Conference, Jun. 2011.
  8. S. Ariyoshi, T. Taino, A. Dobroiu, H. Sato, H. Matsuo, and C. Otani, “Evaluation of a terahertz detector based on a superconducting tunnel junction coupled to a thin superconductor film,” 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Oct. 2010.
  9. W. Guo, X. Liu, Y. Wang, Q. Wei, L. F. Wei, J. Hubmayr, J. Fowler, J. Ullom, L. Vale, M. R. Vissers, and J. Gao, “Counting near infrared photons with microwave kinetic inductance detectors,” Appl. Phys. Lett. 110(21), 212601 (2017).
    [Crossref]
  10. L. Hao, J. C. Gallop, C. Gardiner, P. Josephs-Franks, J. C. Macfarlane, S. K. H. Lam, and C. Foley, “Inductive superconducting transition-edge detector for single-photon and macro-molecule detection,” Supercond. Sci. Technol. 13(2), 622–625 (2003).
    [Crossref]
  11. S. Galer, L. Hao, J. Gallop, H. Palmans, K. Kirkby, and A. Nisbet, “Design concept for a novel squid-based microdosemeter,” Radiat. Prot. Dosim. 143(2-4), 427–431 (2011).
    [Crossref]
  12. J. Gallop, D. Cox, and L. Hao, “Nanobridge squids as calorimetric inductive particle detectors,” Supercond. Sci. Technol. 28(8), 084002 (2015).
    [Crossref]
  13. G. Hertel, D. J. Bishop, E. G. Spencer, J. M. Howell, and R. C. Dynes, “Tunneling and transport measurements at the metal-insulator transition of amorphous Nb: Si,” Phys. Rev. Lett. 50(10), 743–746 (1983).
    [Crossref]
  14. B. Baek, P. D. Dresselhaus, and S. P. Benz, “Co-Sputtered amorphous NbxSi1-x barriers for Josephson-Junction circuits,” IEEE Trans. Appl. Supercond. 16(4), 1966–1970 (2006).
    [Crossref]
  15. A. S. Barrera and M. R. Beaseley, “High-resistance SNS sandwichtype Josephson junctions,” IEEE Trans. Magn. 23(2), 866–868 (1987).
    [Crossref]
  16. N. Hadacek, P. D. Dresselhaus, Y. Chong, S. P. Benz, and J. E. Bonevich, “Fabrication and measurement of tall stacked arrays of SNS Josephson junctions,” IEEE Trans. Appl. Supercond. 15(2), 110–113 (2005).
    [Crossref]
  17. W. Cao, J. Li, Y. Zhong, and Q. He, “Study of Nb/NbxSi1−x/Nb Josephson junction arrays,” Chin. Phys. B 24(12), 127402 (2015).
    [Crossref]
  18. W. Cao, J. Li, Y. Zhong, Y. Gao, H. Li, Z. Wang, and Q. He, “Developing Josephson junction array chips for microvolt applications,” Chin. Phys. B 25(5), 057401 (2016).
    [Crossref]
  19. L. Wang, Y. Zhong, J. Li, J. Qu, Q. Zhong, W. Cao, X. Wang, Z. Zhou, K. Fu, and Y. Shi, “Development of quantum voltage noise source chip for precision measurement of Boltzmann constant,” Acta Phys. Sin. 67(10), 108501 (2018).
    [Crossref]
  20. O. Crauste, C. A. Marrache-Kikuchi, L. Bergé, S. Collin, Y. Dolgorouky, S. Marnieros, C. Nones, and L. Dumoulin, “Tunable superconducting properties of a-NbSi thin films and application to detection in astrophysics,” J. Low Temp. Phys. 163(1-2), 60–66 (2011).
    [Crossref]
  21. D. Prêle, M. R. Piat, E. L. Bréelle, F. Voisin, M. Pairat, Y. Atik, B. Bélier, L. Dumoulin, C. Evesque, G. Klisnick, S. Marnieros, F. Pajot, M. Redon, and G. Sou, “Development of superconducting NbSi TES array and associated readout with SQUIDs and integrated circuit operating at 2 K,” IEEE Trans. Magn. 19(3), 501–504 (2009).
    [Crossref]
  22. J. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
    [Crossref]
  23. D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19(2), 870–875 (2011).
    [Crossref]
  24. Y. Wan, K. R. McIntosh, and A. F. Thomson, “Characterisation and optimisation of PECVD SiNx as an antireflection coating and passivation layer for silicon solar cells,” AIP Adv. 3(3), 032113 (2013).
    [Crossref]
  25. Y. Lee, D. Gong, N. Balaji, Y. Lee, and J. Yi, “Stability of SiNx/SiNx double stack antireflection coating for single crystalline silicon solar cells,” Nanoscale Res. Lett. 7(1), 50 (2012).
    [Crossref]

2018 (2)

L. You, J. Quan, Y. Wang, Y. Ma, X. Yang, Y. Liu, H. Li, J. Li, J. Wang, J. Liang, Z. Wang, and X. Xie, “Superconducting nanowire single photon detection system for space applications. Optics Express,” Opt. Express 26(3), 2965–2971 (2018).
[Crossref]

L. Wang, Y. Zhong, J. Li, J. Qu, Q. Zhong, W. Cao, X. Wang, Z. Zhou, K. Fu, and Y. Shi, “Development of quantum voltage noise source chip for precision measurement of Boltzmann constant,” Acta Phys. Sin. 67(10), 108501 (2018).
[Crossref]

2017 (3)

L. Zhang, S. Zhang, X. Tao, G. Zhu, L. Kang, J. Chen, and P. Wu, “Quasi-Gated superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 27(2), 1–6 (2017).
[Crossref]

W. Guo, X. Liu, Y. Wang, Q. Wei, L. F. Wei, J. Hubmayr, J. Fowler, J. Ullom, L. Vale, M. R. Vissers, and J. Gao, “Counting near infrared photons with microwave kinetic inductance detectors,” Appl. Phys. Lett. 110(21), 212601 (2017).
[Crossref]

J. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

2016 (1)

W. Cao, J. Li, Y. Zhong, Y. Gao, H. Li, Z. Wang, and Q. He, “Developing Josephson junction array chips for microvolt applications,” Chin. Phys. B 25(5), 057401 (2016).
[Crossref]

2015 (3)

J. N. Ullom and D. A. Bennett, “Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy,” Supercond. Sci. Technol. 28(8), 084003 (2015).
[Crossref]

W. Cao, J. Li, Y. Zhong, and Q. He, “Study of Nb/NbxSi1−x/Nb Josephson junction arrays,” Chin. Phys. B 24(12), 127402 (2015).
[Crossref]

J. Gallop, D. Cox, and L. Hao, “Nanobridge squids as calorimetric inductive particle detectors,” Supercond. Sci. Technol. 28(8), 084002 (2015).
[Crossref]

2014 (1)

Q. Zhang, J. Liu, W. Dong, T. Wang, G. He, T. Li, X. Zhou, and W. Chen, “Design and fabrication of superconducting transition edge sensor bolometers with background limited noise performance,” Chin. Sci. Bull. 59(19), 2292–2297 (2014).
[Crossref]

2013 (1)

Y. Wan, K. R. McIntosh, and A. F. Thomson, “Characterisation and optimisation of PECVD SiNx as an antireflection coating and passivation layer for silicon solar cells,” AIP Adv. 3(3), 032113 (2013).
[Crossref]

2012 (1)

Y. Lee, D. Gong, N. Balaji, Y. Lee, and J. Yi, “Stability of SiNx/SiNx double stack antireflection coating for single crystalline silicon solar cells,” Nanoscale Res. Lett. 7(1), 50 (2012).
[Crossref]

2011 (3)

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express 19(2), 870–875 (2011).
[Crossref]

S. Galer, L. Hao, J. Gallop, H. Palmans, K. Kirkby, and A. Nisbet, “Design concept for a novel squid-based microdosemeter,” Radiat. Prot. Dosim. 143(2-4), 427–431 (2011).
[Crossref]

O. Crauste, C. A. Marrache-Kikuchi, L. Bergé, S. Collin, Y. Dolgorouky, S. Marnieros, C. Nones, and L. Dumoulin, “Tunable superconducting properties of a-NbSi thin films and application to detection in astrophysics,” J. Low Temp. Phys. 163(1-2), 60–66 (2011).
[Crossref]

2009 (1)

D. Prêle, M. R. Piat, E. L. Bréelle, F. Voisin, M. Pairat, Y. Atik, B. Bélier, L. Dumoulin, C. Evesque, G. Klisnick, S. Marnieros, F. Pajot, M. Redon, and G. Sou, “Development of superconducting NbSi TES array and associated readout with SQUIDs and integrated circuit operating at 2 K,” IEEE Trans. Magn. 19(3), 501–504 (2009).
[Crossref]

2008 (1)

2006 (1)

B. Baek, P. D. Dresselhaus, and S. P. Benz, “Co-Sputtered amorphous NbxSi1-x barriers for Josephson-Junction circuits,” IEEE Trans. Appl. Supercond. 16(4), 1966–1970 (2006).
[Crossref]

2005 (1)

N. Hadacek, P. D. Dresselhaus, Y. Chong, S. P. Benz, and J. E. Bonevich, “Fabrication and measurement of tall stacked arrays of SNS Josephson junctions,” IEEE Trans. Appl. Supercond. 15(2), 110–113 (2005).
[Crossref]

2003 (1)

L. Hao, J. C. Gallop, C. Gardiner, P. Josephs-Franks, J. C. Macfarlane, S. K. H. Lam, and C. Foley, “Inductive superconducting transition-edge detector for single-photon and macro-molecule detection,” Supercond. Sci. Technol. 13(2), 622–625 (2003).
[Crossref]

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

1987 (1)

A. S. Barrera and M. R. Beaseley, “High-resistance SNS sandwichtype Josephson junctions,” IEEE Trans. Magn. 23(2), 866–868 (1987).
[Crossref]

1983 (1)

G. Hertel, D. J. Bishop, E. G. Spencer, J. M. Howell, and R. C. Dynes, “Tunneling and transport measurements at the metal-insulator transition of amorphous Nb: Si,” Phys. Rev. Lett. 50(10), 743–746 (1983).
[Crossref]

Amemiya, K.

Ariyoshi, S.

S. Ariyoshi, T. Taino, A. Dobroiu, H. Sato, H. Matsuo, and C. Otani, “Evaluation of a terahertz detector based on a superconducting tunnel junction coupled to a thin superconductor film,” 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Oct. 2010.

Atik, Y.

D. Prêle, M. R. Piat, E. L. Bréelle, F. Voisin, M. Pairat, Y. Atik, B. Bélier, L. Dumoulin, C. Evesque, G. Klisnick, S. Marnieros, F. Pajot, M. Redon, and G. Sou, “Development of superconducting NbSi TES array and associated readout with SQUIDs and integrated circuit operating at 2 K,” IEEE Trans. Magn. 19(3), 501–504 (2009).
[Crossref]

Baek, B.

B. Baek, P. D. Dresselhaus, and S. P. Benz, “Co-Sputtered amorphous NbxSi1-x barriers for Josephson-Junction circuits,” IEEE Trans. Appl. Supercond. 16(4), 1966–1970 (2006).
[Crossref]

Balaji, N.

Y. Lee, D. Gong, N. Balaji, Y. Lee, and J. Yi, “Stability of SiNx/SiNx double stack antireflection coating for single crystalline silicon solar cells,” Nanoscale Res. Lett. 7(1), 50 (2012).
[Crossref]

Barrera, A. S.

A. S. Barrera and M. R. Beaseley, “High-resistance SNS sandwichtype Josephson junctions,” IEEE Trans. Magn. 23(2), 866–868 (1987).
[Crossref]

Beaseley, M. R.

A. S. Barrera and M. R. Beaseley, “High-resistance SNS sandwichtype Josephson junctions,” IEEE Trans. Magn. 23(2), 866–868 (1987).
[Crossref]

Bélier, B.

D. Prêle, M. R. Piat, E. L. Bréelle, F. Voisin, M. Pairat, Y. Atik, B. Bélier, L. Dumoulin, C. Evesque, G. Klisnick, S. Marnieros, F. Pajot, M. Redon, and G. Sou, “Development of superconducting NbSi TES array and associated readout with SQUIDs and integrated circuit operating at 2 K,” IEEE Trans. Magn. 19(3), 501–504 (2009).
[Crossref]

Bennett, D. A.

J. N. Ullom and D. A. Bennett, “Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy,” Supercond. Sci. Technol. 28(8), 084003 (2015).
[Crossref]

Benz, S. P.

B. Baek, P. D. Dresselhaus, and S. P. Benz, “Co-Sputtered amorphous NbxSi1-x barriers for Josephson-Junction circuits,” IEEE Trans. Appl. Supercond. 16(4), 1966–1970 (2006).
[Crossref]

N. Hadacek, P. D. Dresselhaus, Y. Chong, S. P. Benz, and J. E. Bonevich, “Fabrication and measurement of tall stacked arrays of SNS Josephson junctions,” IEEE Trans. Appl. Supercond. 15(2), 110–113 (2005).
[Crossref]

Bergé, L.

O. Crauste, C. A. Marrache-Kikuchi, L. Bergé, S. Collin, Y. Dolgorouky, S. Marnieros, C. Nones, and L. Dumoulin, “Tunable superconducting properties of a-NbSi thin films and application to detection in astrophysics,” J. Low Temp. Phys. 163(1-2), 60–66 (2011).
[Crossref]

Bishop, D. J.

G. Hertel, D. J. Bishop, E. G. Spencer, J. M. Howell, and R. C. Dynes, “Tunneling and transport measurements at the metal-insulator transition of amorphous Nb: Si,” Phys. Rev. Lett. 50(10), 743–746 (1983).
[Crossref]

Bonevich, J. E.

N. Hadacek, P. D. Dresselhaus, Y. Chong, S. P. Benz, and J. E. Bonevich, “Fabrication and measurement of tall stacked arrays of SNS Josephson junctions,” IEEE Trans. Appl. Supercond. 15(2), 110–113 (2005).
[Crossref]

Bréelle, E. L.

D. Prêle, M. R. Piat, E. L. Bréelle, F. Voisin, M. Pairat, Y. Atik, B. Bélier, L. Dumoulin, C. Evesque, G. Klisnick, S. Marnieros, F. Pajot, M. Redon, and G. Sou, “Development of superconducting NbSi TES array and associated readout with SQUIDs and integrated circuit operating at 2 K,” IEEE Trans. Magn. 19(3), 501–504 (2009).
[Crossref]

Cao, W.

L. Wang, Y. Zhong, J. Li, J. Qu, Q. Zhong, W. Cao, X. Wang, Z. Zhou, K. Fu, and Y. Shi, “Development of quantum voltage noise source chip for precision measurement of Boltzmann constant,” Acta Phys. Sin. 67(10), 108501 (2018).
[Crossref]

W. Cao, J. Li, Y. Zhong, Y. Gao, H. Li, Z. Wang, and Q. He, “Developing Josephson junction array chips for microvolt applications,” Chin. Phys. B 25(5), 057401 (2016).
[Crossref]

W. Cao, J. Li, Y. Zhong, and Q. He, “Study of Nb/NbxSi1−x/Nb Josephson junction arrays,” Chin. Phys. B 24(12), 127402 (2015).
[Crossref]

Carpenter, M.

W. K. Warburton, J. Harris, M. Carpenter, L. Fabris, and S. Friedrich, “Preamplifier development for superconducting tunnel junction array X-ray detector electronics,” IEEE Nuclear Science Symposuim & Medical Imaging Conference, Jun. 2011.

Chen, J.

L. Zhang, S. Zhang, X. Tao, G. Zhu, L. Kang, J. Chen, and P. Wu, “Quasi-Gated superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 27(2), 1–6 (2017).
[Crossref]

Chen, W.

Q. Zhang, J. Liu, W. Dong, T. Wang, G. He, T. Li, X. Zhou, and W. Chen, “Design and fabrication of superconducting transition edge sensor bolometers with background limited noise performance,” Chin. Sci. Bull. 59(19), 2292–2297 (2014).
[Crossref]

Chong, Y.

N. Hadacek, P. D. Dresselhaus, Y. Chong, S. P. Benz, and J. E. Bonevich, “Fabrication and measurement of tall stacked arrays of SNS Josephson junctions,” IEEE Trans. Appl. Supercond. 15(2), 110–113 (2005).
[Crossref]

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Collin, S.

O. Crauste, C. A. Marrache-Kikuchi, L. Bergé, S. Collin, Y. Dolgorouky, S. Marnieros, C. Nones, and L. Dumoulin, “Tunable superconducting properties of a-NbSi thin films and application to detection in astrophysics,” J. Low Temp. Phys. 163(1-2), 60–66 (2011).
[Crossref]

Cox, D.

J. Gallop, D. Cox, and L. Hao, “Nanobridge squids as calorimetric inductive particle detectors,” Supercond. Sci. Technol. 28(8), 084002 (2015).
[Crossref]

Crauste, O.

O. Crauste, C. A. Marrache-Kikuchi, L. Bergé, S. Collin, Y. Dolgorouky, S. Marnieros, C. Nones, and L. Dumoulin, “Tunable superconducting properties of a-NbSi thin films and application to detection in astrophysics,” J. Low Temp. Phys. 163(1-2), 60–66 (2011).
[Crossref]

Dobroiu, A.

S. Ariyoshi, T. Taino, A. Dobroiu, H. Sato, H. Matsuo, and C. Otani, “Evaluation of a terahertz detector based on a superconducting tunnel junction coupled to a thin superconductor film,” 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Oct. 2010.

Dolgorouky, Y.

O. Crauste, C. A. Marrache-Kikuchi, L. Bergé, S. Collin, Y. Dolgorouky, S. Marnieros, C. Nones, and L. Dumoulin, “Tunable superconducting properties of a-NbSi thin films and application to detection in astrophysics,” J. Low Temp. Phys. 163(1-2), 60–66 (2011).
[Crossref]

Dong, W.

Q. Zhang, J. Liu, W. Dong, T. Wang, G. He, T. Li, X. Zhou, and W. Chen, “Design and fabrication of superconducting transition edge sensor bolometers with background limited noise performance,” Chin. Sci. Bull. 59(19), 2292–2297 (2014).
[Crossref]

Dresselhaus, P. D.

B. Baek, P. D. Dresselhaus, and S. P. Benz, “Co-Sputtered amorphous NbxSi1-x barriers for Josephson-Junction circuits,” IEEE Trans. Appl. Supercond. 16(4), 1966–1970 (2006).
[Crossref]

N. Hadacek, P. D. Dresselhaus, Y. Chong, S. P. Benz, and J. E. Bonevich, “Fabrication and measurement of tall stacked arrays of SNS Josephson junctions,” IEEE Trans. Appl. Supercond. 15(2), 110–113 (2005).
[Crossref]

Dumoulin, L.

O. Crauste, C. A. Marrache-Kikuchi, L. Bergé, S. Collin, Y. Dolgorouky, S. Marnieros, C. Nones, and L. Dumoulin, “Tunable superconducting properties of a-NbSi thin films and application to detection in astrophysics,” J. Low Temp. Phys. 163(1-2), 60–66 (2011).
[Crossref]

D. Prêle, M. R. Piat, E. L. Bréelle, F. Voisin, M. Pairat, Y. Atik, B. Bélier, L. Dumoulin, C. Evesque, G. Klisnick, S. Marnieros, F. Pajot, M. Redon, and G. Sou, “Development of superconducting NbSi TES array and associated readout with SQUIDs and integrated circuit operating at 2 K,” IEEE Trans. Magn. 19(3), 501–504 (2009).
[Crossref]

Dynes, R. C.

G. Hertel, D. J. Bishop, E. G. Spencer, J. M. Howell, and R. C. Dynes, “Tunneling and transport measurements at the metal-insulator transition of amorphous Nb: Si,” Phys. Rev. Lett. 50(10), 743–746 (1983).
[Crossref]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Evesque, C.

D. Prêle, M. R. Piat, E. L. Bréelle, F. Voisin, M. Pairat, Y. Atik, B. Bélier, L. Dumoulin, C. Evesque, G. Klisnick, S. Marnieros, F. Pajot, M. Redon, and G. Sou, “Development of superconducting NbSi TES array and associated readout with SQUIDs and integrated circuit operating at 2 K,” IEEE Trans. Magn. 19(3), 501–504 (2009).
[Crossref]

Fabris, L.

W. K. Warburton, J. Harris, M. Carpenter, L. Fabris, and S. Friedrich, “Preamplifier development for superconducting tunnel junction array X-ray detector electronics,” IEEE Nuclear Science Symposuim & Medical Imaging Conference, Jun. 2011.

Foley, C.

L. Hao, J. C. Gallop, C. Gardiner, P. Josephs-Franks, J. C. Macfarlane, S. K. H. Lam, and C. Foley, “Inductive superconducting transition-edge detector for single-photon and macro-molecule detection,” Supercond. Sci. Technol. 13(2), 622–625 (2003).
[Crossref]

Fowler, J.

W. Guo, X. Liu, Y. Wang, Q. Wei, L. F. Wei, J. Hubmayr, J. Fowler, J. Ullom, L. Vale, M. R. Vissers, and J. Gao, “Counting near infrared photons with microwave kinetic inductance detectors,” Appl. Phys. Lett. 110(21), 212601 (2017).
[Crossref]

Friedrich, S.

W. K. Warburton, J. Harris, M. Carpenter, L. Fabris, and S. Friedrich, “Preamplifier development for superconducting tunnel junction array X-ray detector electronics,” IEEE Nuclear Science Symposuim & Medical Imaging Conference, Jun. 2011.

Fu, K.

L. Wang, Y. Zhong, J. Li, J. Qu, Q. Zhong, W. Cao, X. Wang, Z. Zhou, K. Fu, and Y. Shi, “Development of quantum voltage noise source chip for precision measurement of Boltzmann constant,” Acta Phys. Sin. 67(10), 108501 (2018).
[Crossref]

Fujii, G.

Fujino, H.

Fukuda, D.

Galer, S.

S. Galer, L. Hao, J. Gallop, H. Palmans, K. Kirkby, and A. Nisbet, “Design concept for a novel squid-based microdosemeter,” Radiat. Prot. Dosim. 143(2-4), 427–431 (2011).
[Crossref]

Gallop, J.

J. Gallop, D. Cox, and L. Hao, “Nanobridge squids as calorimetric inductive particle detectors,” Supercond. Sci. Technol. 28(8), 084002 (2015).
[Crossref]

S. Galer, L. Hao, J. Gallop, H. Palmans, K. Kirkby, and A. Nisbet, “Design concept for a novel squid-based microdosemeter,” Radiat. Prot. Dosim. 143(2-4), 427–431 (2011).
[Crossref]

Gallop, J. C.

L. Hao, J. C. Gallop, C. Gardiner, P. Josephs-Franks, J. C. Macfarlane, S. K. H. Lam, and C. Foley, “Inductive superconducting transition-edge detector for single-photon and macro-molecule detection,” Supercond. Sci. Technol. 13(2), 622–625 (2003).
[Crossref]

Gao, J.

W. Guo, X. Liu, Y. Wang, Q. Wei, L. F. Wei, J. Hubmayr, J. Fowler, J. Ullom, L. Vale, M. R. Vissers, and J. Gao, “Counting near infrared photons with microwave kinetic inductance detectors,” Appl. Phys. Lett. 110(21), 212601 (2017).
[Crossref]

Gao, Y.

W. Cao, J. Li, Y. Zhong, Y. Gao, H. Li, Z. Wang, and Q. He, “Developing Josephson junction array chips for microvolt applications,” Chin. Phys. B 25(5), 057401 (2016).
[Crossref]

Gardiner, C.

L. Hao, J. C. Gallop, C. Gardiner, P. Josephs-Franks, J. C. Macfarlane, S. K. H. Lam, and C. Foley, “Inductive superconducting transition-edge detector for single-photon and macro-molecule detection,” Supercond. Sci. Technol. 13(2), 622–625 (2003).
[Crossref]

Gol’tsman, G. N.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Gong, D.

Y. Lee, D. Gong, N. Balaji, Y. Lee, and J. Yi, “Stability of SiNx/SiNx double stack antireflection coating for single crystalline silicon solar cells,” Nanoscale Res. Lett. 7(1), 50 (2012).
[Crossref]

Guo, W.

W. Guo, X. Liu, Y. Wang, Q. Wei, L. F. Wei, J. Hubmayr, J. Fowler, J. Ullom, L. Vale, M. R. Vissers, and J. Gao, “Counting near infrared photons with microwave kinetic inductance detectors,” Appl. Phys. Lett. 110(21), 212601 (2017).
[Crossref]

Hadacek, N.

N. Hadacek, P. D. Dresselhaus, Y. Chong, S. P. Benz, and J. E. Bonevich, “Fabrication and measurement of tall stacked arrays of SNS Josephson junctions,” IEEE Trans. Appl. Supercond. 15(2), 110–113 (2005).
[Crossref]

Hao, L.

J. Gallop, D. Cox, and L. Hao, “Nanobridge squids as calorimetric inductive particle detectors,” Supercond. Sci. Technol. 28(8), 084002 (2015).
[Crossref]

S. Galer, L. Hao, J. Gallop, H. Palmans, K. Kirkby, and A. Nisbet, “Design concept for a novel squid-based microdosemeter,” Radiat. Prot. Dosim. 143(2-4), 427–431 (2011).
[Crossref]

L. Hao, J. C. Gallop, C. Gardiner, P. Josephs-Franks, J. C. Macfarlane, S. K. H. Lam, and C. Foley, “Inductive superconducting transition-edge detector for single-photon and macro-molecule detection,” Supercond. Sci. Technol. 13(2), 622–625 (2003).
[Crossref]

Harris, J.

W. K. Warburton, J. Harris, M. Carpenter, L. Fabris, and S. Friedrich, “Preamplifier development for superconducting tunnel junction array X-ray detector electronics,” IEEE Nuclear Science Symposuim & Medical Imaging Conference, Jun. 2011.

He, G.

Q. Zhang, J. Liu, W. Dong, T. Wang, G. He, T. Li, X. Zhou, and W. Chen, “Design and fabrication of superconducting transition edge sensor bolometers with background limited noise performance,” Chin. Sci. Bull. 59(19), 2292–2297 (2014).
[Crossref]

He, Q.

W. Cao, J. Li, Y. Zhong, Y. Gao, H. Li, Z. Wang, and Q. He, “Developing Josephson junction array chips for microvolt applications,” Chin. Phys. B 25(5), 057401 (2016).
[Crossref]

W. Cao, J. Li, Y. Zhong, and Q. He, “Study of Nb/NbxSi1−x/Nb Josephson junction arrays,” Chin. Phys. B 24(12), 127402 (2015).
[Crossref]

Hertel, G.

G. Hertel, D. J. Bishop, E. G. Spencer, J. M. Howell, and R. C. Dynes, “Tunneling and transport measurements at the metal-insulator transition of amorphous Nb: Si,” Phys. Rev. Lett. 50(10), 743–746 (1983).
[Crossref]

Howell, J. M.

G. Hertel, D. J. Bishop, E. G. Spencer, J. M. Howell, and R. C. Dynes, “Tunneling and transport measurements at the metal-insulator transition of amorphous Nb: Si,” Phys. Rev. Lett. 50(10), 743–746 (1983).
[Crossref]

Huang, J.

J. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Hubmayr, J.

W. Guo, X. Liu, Y. Wang, Q. Wei, L. F. Wei, J. Hubmayr, J. Fowler, J. Ullom, L. Vale, M. R. Vissers, and J. Gao, “Counting near infrared photons with microwave kinetic inductance detectors,” Appl. Phys. Lett. 110(21), 212601 (2017).
[Crossref]

Inoue, S.

Ishii, H.

Itatani, T.

Josephs-Franks, P.

L. Hao, J. C. Gallop, C. Gardiner, P. Josephs-Franks, J. C. Macfarlane, S. K. H. Lam, and C. Foley, “Inductive superconducting transition-edge detector for single-photon and macro-molecule detection,” Supercond. Sci. Technol. 13(2), 622–625 (2003).
[Crossref]

Kang, L.

L. Zhang, S. Zhang, X. Tao, G. Zhu, L. Kang, J. Chen, and P. Wu, “Quasi-Gated superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 27(2), 1–6 (2017).
[Crossref]

Kirkby, K.

S. Galer, L. Hao, J. Gallop, H. Palmans, K. Kirkby, and A. Nisbet, “Design concept for a novel squid-based microdosemeter,” Radiat. Prot. Dosim. 143(2-4), 427–431 (2011).
[Crossref]

Klisnick, G.

D. Prêle, M. R. Piat, E. L. Bréelle, F. Voisin, M. Pairat, Y. Atik, B. Bélier, L. Dumoulin, C. Evesque, G. Klisnick, S. Marnieros, F. Pajot, M. Redon, and G. Sou, “Development of superconducting NbSi TES array and associated readout with SQUIDs and integrated circuit operating at 2 K,” IEEE Trans. Magn. 19(3), 501–504 (2009).
[Crossref]

Lam, S. K. H.

L. Hao, J. C. Gallop, C. Gardiner, P. Josephs-Franks, J. C. Macfarlane, S. K. H. Lam, and C. Foley, “Inductive superconducting transition-edge detector for single-photon and macro-molecule detection,” Supercond. Sci. Technol. 13(2), 622–625 (2003).
[Crossref]

Lee, Y.

Y. Lee, D. Gong, N. Balaji, Y. Lee, and J. Yi, “Stability of SiNx/SiNx double stack antireflection coating for single crystalline silicon solar cells,” Nanoscale Res. Lett. 7(1), 50 (2012).
[Crossref]

Y. Lee, D. Gong, N. Balaji, Y. Lee, and J. Yi, “Stability of SiNx/SiNx double stack antireflection coating for single crystalline silicon solar cells,” Nanoscale Res. Lett. 7(1), 50 (2012).
[Crossref]

Li, H.

L. You, J. Quan, Y. Wang, Y. Ma, X. Yang, Y. Liu, H. Li, J. Li, J. Wang, J. Liang, Z. Wang, and X. Xie, “Superconducting nanowire single photon detection system for space applications. Optics Express,” Opt. Express 26(3), 2965–2971 (2018).
[Crossref]

J. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

W. Cao, J. Li, Y. Zhong, Y. Gao, H. Li, Z. Wang, and Q. He, “Developing Josephson junction array chips for microvolt applications,” Chin. Phys. B 25(5), 057401 (2016).
[Crossref]

Li, J.

L. Wang, Y. Zhong, J. Li, J. Qu, Q. Zhong, W. Cao, X. Wang, Z. Zhou, K. Fu, and Y. Shi, “Development of quantum voltage noise source chip for precision measurement of Boltzmann constant,” Acta Phys. Sin. 67(10), 108501 (2018).
[Crossref]

L. You, J. Quan, Y. Wang, Y. Ma, X. Yang, Y. Liu, H. Li, J. Li, J. Wang, J. Liang, Z. Wang, and X. Xie, “Superconducting nanowire single photon detection system for space applications. Optics Express,” Opt. Express 26(3), 2965–2971 (2018).
[Crossref]

W. Cao, J. Li, Y. Zhong, Y. Gao, H. Li, Z. Wang, and Q. He, “Developing Josephson junction array chips for microvolt applications,” Chin. Phys. B 25(5), 057401 (2016).
[Crossref]

W. Cao, J. Li, Y. Zhong, and Q. He, “Study of Nb/NbxSi1−x/Nb Josephson junction arrays,” Chin. Phys. B 24(12), 127402 (2015).
[Crossref]

Li, T.

Q. Zhang, J. Liu, W. Dong, T. Wang, G. He, T. Li, X. Zhou, and W. Chen, “Design and fabrication of superconducting transition edge sensor bolometers with background limited noise performance,” Chin. Sci. Bull. 59(19), 2292–2297 (2014).
[Crossref]

Liang, J.

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Lita, A. E.

Liu, J.

Q. Zhang, J. Liu, W. Dong, T. Wang, G. He, T. Li, X. Zhou, and W. Chen, “Design and fabrication of superconducting transition edge sensor bolometers with background limited noise performance,” Chin. Sci. Bull. 59(19), 2292–2297 (2014).
[Crossref]

Liu, X.

W. Guo, X. Liu, Y. Wang, Q. Wei, L. F. Wei, J. Hubmayr, J. Fowler, J. Ullom, L. Vale, M. R. Vissers, and J. Gao, “Counting near infrared photons with microwave kinetic inductance detectors,” Appl. Phys. Lett. 110(21), 212601 (2017).
[Crossref]

J. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Liu, Y.

Lv, C.

J. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Ma, Y.

Macfarlane, J. C.

L. Hao, J. C. Gallop, C. Gardiner, P. Josephs-Franks, J. C. Macfarlane, S. K. H. Lam, and C. Foley, “Inductive superconducting transition-edge detector for single-photon and macro-molecule detection,” Supercond. Sci. Technol. 13(2), 622–625 (2003).
[Crossref]

Marnieros, S.

O. Crauste, C. A. Marrache-Kikuchi, L. Bergé, S. Collin, Y. Dolgorouky, S. Marnieros, C. Nones, and L. Dumoulin, “Tunable superconducting properties of a-NbSi thin films and application to detection in astrophysics,” J. Low Temp. Phys. 163(1-2), 60–66 (2011).
[Crossref]

D. Prêle, M. R. Piat, E. L. Bréelle, F. Voisin, M. Pairat, Y. Atik, B. Bélier, L. Dumoulin, C. Evesque, G. Klisnick, S. Marnieros, F. Pajot, M. Redon, and G. Sou, “Development of superconducting NbSi TES array and associated readout with SQUIDs and integrated circuit operating at 2 K,” IEEE Trans. Magn. 19(3), 501–504 (2009).
[Crossref]

Marrache-Kikuchi, C. A.

O. Crauste, C. A. Marrache-Kikuchi, L. Bergé, S. Collin, Y. Dolgorouky, S. Marnieros, C. Nones, and L. Dumoulin, “Tunable superconducting properties of a-NbSi thin films and application to detection in astrophysics,” J. Low Temp. Phys. 163(1-2), 60–66 (2011).
[Crossref]

Matsuo, H.

S. Ariyoshi, T. Taino, A. Dobroiu, H. Sato, H. Matsuo, and C. Otani, “Evaluation of a terahertz detector based on a superconducting tunnel junction coupled to a thin superconductor film,” 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Oct. 2010.

McIntosh, K. R.

Y. Wan, K. R. McIntosh, and A. F. Thomson, “Characterisation and optimisation of PECVD SiNx as an antireflection coating and passivation layer for silicon solar cells,” AIP Adv. 3(3), 032113 (2013).
[Crossref]

Miller, A. J.

Nam, S. W.

Nisbet, A.

S. Galer, L. Hao, J. Gallop, H. Palmans, K. Kirkby, and A. Nisbet, “Design concept for a novel squid-based microdosemeter,” Radiat. Prot. Dosim. 143(2-4), 427–431 (2011).
[Crossref]

Nones, C.

O. Crauste, C. A. Marrache-Kikuchi, L. Bergé, S. Collin, Y. Dolgorouky, S. Marnieros, C. Nones, and L. Dumoulin, “Tunable superconducting properties of a-NbSi thin films and application to detection in astrophysics,” J. Low Temp. Phys. 163(1-2), 60–66 (2011).
[Crossref]

Numata, T.

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Otani, C.

S. Ariyoshi, T. Taino, A. Dobroiu, H. Sato, H. Matsuo, and C. Otani, “Evaluation of a terahertz detector based on a superconducting tunnel junction coupled to a thin superconductor film,” 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Oct. 2010.

Pairat, M.

D. Prêle, M. R. Piat, E. L. Bréelle, F. Voisin, M. Pairat, Y. Atik, B. Bélier, L. Dumoulin, C. Evesque, G. Klisnick, S. Marnieros, F. Pajot, M. Redon, and G. Sou, “Development of superconducting NbSi TES array and associated readout with SQUIDs and integrated circuit operating at 2 K,” IEEE Trans. Magn. 19(3), 501–504 (2009).
[Crossref]

Pajot, F.

D. Prêle, M. R. Piat, E. L. Bréelle, F. Voisin, M. Pairat, Y. Atik, B. Bélier, L. Dumoulin, C. Evesque, G. Klisnick, S. Marnieros, F. Pajot, M. Redon, and G. Sou, “Development of superconducting NbSi TES array and associated readout with SQUIDs and integrated circuit operating at 2 K,” IEEE Trans. Magn. 19(3), 501–504 (2009).
[Crossref]

Palmans, H.

S. Galer, L. Hao, J. Gallop, H. Palmans, K. Kirkby, and A. Nisbet, “Design concept for a novel squid-based microdosemeter,” Radiat. Prot. Dosim. 143(2-4), 427–431 (2011).
[Crossref]

Piat, M. R.

D. Prêle, M. R. Piat, E. L. Bréelle, F. Voisin, M. Pairat, Y. Atik, B. Bélier, L. Dumoulin, C. Evesque, G. Klisnick, S. Marnieros, F. Pajot, M. Redon, and G. Sou, “Development of superconducting NbSi TES array and associated readout with SQUIDs and integrated circuit operating at 2 K,” IEEE Trans. Magn. 19(3), 501–504 (2009).
[Crossref]

Prêle, D.

D. Prêle, M. R. Piat, E. L. Bréelle, F. Voisin, M. Pairat, Y. Atik, B. Bélier, L. Dumoulin, C. Evesque, G. Klisnick, S. Marnieros, F. Pajot, M. Redon, and G. Sou, “Development of superconducting NbSi TES array and associated readout with SQUIDs and integrated circuit operating at 2 K,” IEEE Trans. Magn. 19(3), 501–504 (2009).
[Crossref]

Qu, J.

L. Wang, Y. Zhong, J. Li, J. Qu, Q. Zhong, W. Cao, X. Wang, Z. Zhou, K. Fu, and Y. Shi, “Development of quantum voltage noise source chip for precision measurement of Boltzmann constant,” Acta Phys. Sin. 67(10), 108501 (2018).
[Crossref]

Quan, J.

Redon, M.

D. Prêle, M. R. Piat, E. L. Bréelle, F. Voisin, M. Pairat, Y. Atik, B. Bélier, L. Dumoulin, C. Evesque, G. Klisnick, S. Marnieros, F. Pajot, M. Redon, and G. Sou, “Development of superconducting NbSi TES array and associated readout with SQUIDs and integrated circuit operating at 2 K,” IEEE Trans. Magn. 19(3), 501–504 (2009).
[Crossref]

Sato, H.

S. Ariyoshi, T. Taino, A. Dobroiu, H. Sato, H. Matsuo, and C. Otani, “Evaluation of a terahertz detector based on a superconducting tunnel junction coupled to a thin superconductor film,” 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Oct. 2010.

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Shi, Y.

L. Wang, Y. Zhong, J. Li, J. Qu, Q. Zhong, W. Cao, X. Wang, Z. Zhou, K. Fu, and Y. Shi, “Development of quantum voltage noise source chip for precision measurement of Boltzmann constant,” Acta Phys. Sin. 67(10), 108501 (2018).
[Crossref]

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Sou, G.

D. Prêle, M. R. Piat, E. L. Bréelle, F. Voisin, M. Pairat, Y. Atik, B. Bélier, L. Dumoulin, C. Evesque, G. Klisnick, S. Marnieros, F. Pajot, M. Redon, and G. Sou, “Development of superconducting NbSi TES array and associated readout with SQUIDs and integrated circuit operating at 2 K,” IEEE Trans. Magn. 19(3), 501–504 (2009).
[Crossref]

Spencer, E. G.

G. Hertel, D. J. Bishop, E. G. Spencer, J. M. Howell, and R. C. Dynes, “Tunneling and transport measurements at the metal-insulator transition of amorphous Nb: Si,” Phys. Rev. Lett. 50(10), 743–746 (1983).
[Crossref]

Taino, T.

S. Ariyoshi, T. Taino, A. Dobroiu, H. Sato, H. Matsuo, and C. Otani, “Evaluation of a terahertz detector based on a superconducting tunnel junction coupled to a thin superconductor film,” 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Oct. 2010.

Tao, X.

L. Zhang, S. Zhang, X. Tao, G. Zhu, L. Kang, J. Chen, and P. Wu, “Quasi-Gated superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 27(2), 1–6 (2017).
[Crossref]

Thomson, A. F.

Y. Wan, K. R. McIntosh, and A. F. Thomson, “Characterisation and optimisation of PECVD SiNx as an antireflection coating and passivation layer for silicon solar cells,” AIP Adv. 3(3), 032113 (2013).
[Crossref]

Tsuchida, H.

Ullom, J.

W. Guo, X. Liu, Y. Wang, Q. Wei, L. F. Wei, J. Hubmayr, J. Fowler, J. Ullom, L. Vale, M. R. Vissers, and J. Gao, “Counting near infrared photons with microwave kinetic inductance detectors,” Appl. Phys. Lett. 110(21), 212601 (2017).
[Crossref]

Ullom, J. N.

J. N. Ullom and D. A. Bennett, “Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy,” Supercond. Sci. Technol. 28(8), 084003 (2015).
[Crossref]

Vale, L.

W. Guo, X. Liu, Y. Wang, Q. Wei, L. F. Wei, J. Hubmayr, J. Fowler, J. Ullom, L. Vale, M. R. Vissers, and J. Gao, “Counting near infrared photons with microwave kinetic inductance detectors,” Appl. Phys. Lett. 110(21), 212601 (2017).
[Crossref]

Vissers, M. R.

W. Guo, X. Liu, Y. Wang, Q. Wei, L. F. Wei, J. Hubmayr, J. Fowler, J. Ullom, L. Vale, M. R. Vissers, and J. Gao, “Counting near infrared photons with microwave kinetic inductance detectors,” Appl. Phys. Lett. 110(21), 212601 (2017).
[Crossref]

Voisin, F.

D. Prêle, M. R. Piat, E. L. Bréelle, F. Voisin, M. Pairat, Y. Atik, B. Bélier, L. Dumoulin, C. Evesque, G. Klisnick, S. Marnieros, F. Pajot, M. Redon, and G. Sou, “Development of superconducting NbSi TES array and associated readout with SQUIDs and integrated circuit operating at 2 K,” IEEE Trans. Magn. 19(3), 501–504 (2009).
[Crossref]

Voronov, B.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Wan, Y.

Y. Wan, K. R. McIntosh, and A. F. Thomson, “Characterisation and optimisation of PECVD SiNx as an antireflection coating and passivation layer for silicon solar cells,” AIP Adv. 3(3), 032113 (2013).
[Crossref]

Wang, J.

Wang, L.

L. Wang, Y. Zhong, J. Li, J. Qu, Q. Zhong, W. Cao, X. Wang, Z. Zhou, K. Fu, and Y. Shi, “Development of quantum voltage noise source chip for precision measurement of Boltzmann constant,” Acta Phys. Sin. 67(10), 108501 (2018).
[Crossref]

Wang, T.

Q. Zhang, J. Liu, W. Dong, T. Wang, G. He, T. Li, X. Zhou, and W. Chen, “Design and fabrication of superconducting transition edge sensor bolometers with background limited noise performance,” Chin. Sci. Bull. 59(19), 2292–2297 (2014).
[Crossref]

Wang, X.

L. Wang, Y. Zhong, J. Li, J. Qu, Q. Zhong, W. Cao, X. Wang, Z. Zhou, K. Fu, and Y. Shi, “Development of quantum voltage noise source chip for precision measurement of Boltzmann constant,” Acta Phys. Sin. 67(10), 108501 (2018).
[Crossref]

Wang, Y.

L. You, J. Quan, Y. Wang, Y. Ma, X. Yang, Y. Liu, H. Li, J. Li, J. Wang, J. Liang, Z. Wang, and X. Xie, “Superconducting nanowire single photon detection system for space applications. Optics Express,” Opt. Express 26(3), 2965–2971 (2018).
[Crossref]

W. Guo, X. Liu, Y. Wang, Q. Wei, L. F. Wei, J. Hubmayr, J. Fowler, J. Ullom, L. Vale, M. R. Vissers, and J. Gao, “Counting near infrared photons with microwave kinetic inductance detectors,” Appl. Phys. Lett. 110(21), 212601 (2017).
[Crossref]

Wang, Z.

L. You, J. Quan, Y. Wang, Y. Ma, X. Yang, Y. Liu, H. Li, J. Li, J. Wang, J. Liang, Z. Wang, and X. Xie, “Superconducting nanowire single photon detection system for space applications. Optics Express,” Opt. Express 26(3), 2965–2971 (2018).
[Crossref]

J. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

W. Cao, J. Li, Y. Zhong, Y. Gao, H. Li, Z. Wang, and Q. He, “Developing Josephson junction array chips for microvolt applications,” Chin. Phys. B 25(5), 057401 (2016).
[Crossref]

Warburton, W. K.

W. K. Warburton, J. Harris, M. Carpenter, L. Fabris, and S. Friedrich, “Preamplifier development for superconducting tunnel junction array X-ray detector electronics,” IEEE Nuclear Science Symposuim & Medical Imaging Conference, Jun. 2011.

Wei, L. F.

W. Guo, X. Liu, Y. Wang, Q. Wei, L. F. Wei, J. Hubmayr, J. Fowler, J. Ullom, L. Vale, M. R. Vissers, and J. Gao, “Counting near infrared photons with microwave kinetic inductance detectors,” Appl. Phys. Lett. 110(21), 212601 (2017).
[Crossref]

Wei, Q.

W. Guo, X. Liu, Y. Wang, Q. Wei, L. F. Wei, J. Hubmayr, J. Fowler, J. Ullom, L. Vale, M. R. Vissers, and J. Gao, “Counting near infrared photons with microwave kinetic inductance detectors,” Appl. Phys. Lett. 110(21), 212601 (2017).
[Crossref]

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Wu, J.

J. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Wu, P.

L. Zhang, S. Zhang, X. Tao, G. Zhu, L. Kang, J. Chen, and P. Wu, “Quasi-Gated superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 27(2), 1–6 (2017).
[Crossref]

Xie, X.

L. You, J. Quan, Y. Wang, Y. Ma, X. Yang, Y. Liu, H. Li, J. Li, J. Wang, J. Liang, Z. Wang, and X. Xie, “Superconducting nanowire single photon detection system for space applications. Optics Express,” Opt. Express 26(3), 2965–2971 (2018).
[Crossref]

J. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Yang, X.

Yi, J.

Y. Lee, D. Gong, N. Balaji, Y. Lee, and J. Yi, “Stability of SiNx/SiNx double stack antireflection coating for single crystalline silicon solar cells,” Nanoscale Res. Lett. 7(1), 50 (2012).
[Crossref]

Yoshizawa, A.

You, L.

L. You, J. Quan, Y. Wang, Y. Ma, X. Yang, Y. Liu, H. Li, J. Li, J. Wang, J. Liang, Z. Wang, and X. Xie, “Superconducting nanowire single photon detection system for space applications. Optics Express,” Opt. Express 26(3), 2965–2971 (2018).
[Crossref]

J. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Zama, T.

Zhang, J.

J. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Zhang, L.

J. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

L. Zhang, S. Zhang, X. Tao, G. Zhu, L. Kang, J. Chen, and P. Wu, “Quasi-Gated superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 27(2), 1–6 (2017).
[Crossref]

Zhang, Q.

Q. Zhang, J. Liu, W. Dong, T. Wang, G. He, T. Li, X. Zhou, and W. Chen, “Design and fabrication of superconducting transition edge sensor bolometers with background limited noise performance,” Chin. Sci. Bull. 59(19), 2292–2297 (2014).
[Crossref]

Zhang, S.

L. Zhang, S. Zhang, X. Tao, G. Zhu, L. Kang, J. Chen, and P. Wu, “Quasi-Gated superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 27(2), 1–6 (2017).
[Crossref]

Zhong, Q.

L. Wang, Y. Zhong, J. Li, J. Qu, Q. Zhong, W. Cao, X. Wang, Z. Zhou, K. Fu, and Y. Shi, “Development of quantum voltage noise source chip for precision measurement of Boltzmann constant,” Acta Phys. Sin. 67(10), 108501 (2018).
[Crossref]

Zhong, Y.

L. Wang, Y. Zhong, J. Li, J. Qu, Q. Zhong, W. Cao, X. Wang, Z. Zhou, K. Fu, and Y. Shi, “Development of quantum voltage noise source chip for precision measurement of Boltzmann constant,” Acta Phys. Sin. 67(10), 108501 (2018).
[Crossref]

W. Cao, J. Li, Y. Zhong, Y. Gao, H. Li, Z. Wang, and Q. He, “Developing Josephson junction array chips for microvolt applications,” Chin. Phys. B 25(5), 057401 (2016).
[Crossref]

W. Cao, J. Li, Y. Zhong, and Q. He, “Study of Nb/NbxSi1−x/Nb Josephson junction arrays,” Chin. Phys. B 24(12), 127402 (2015).
[Crossref]

Zhou, X.

Q. Zhang, J. Liu, W. Dong, T. Wang, G. He, T. Li, X. Zhou, and W. Chen, “Design and fabrication of superconducting transition edge sensor bolometers with background limited noise performance,” Chin. Sci. Bull. 59(19), 2292–2297 (2014).
[Crossref]

Zhou, Z.

L. Wang, Y. Zhong, J. Li, J. Qu, Q. Zhong, W. Cao, X. Wang, Z. Zhou, K. Fu, and Y. Shi, “Development of quantum voltage noise source chip for precision measurement of Boltzmann constant,” Acta Phys. Sin. 67(10), 108501 (2018).
[Crossref]

Zhu, G.

L. Zhang, S. Zhang, X. Tao, G. Zhu, L. Kang, J. Chen, and P. Wu, “Quasi-Gated superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 27(2), 1–6 (2017).
[Crossref]

Acta Phys. Sin. (1)

L. Wang, Y. Zhong, J. Li, J. Qu, Q. Zhong, W. Cao, X. Wang, Z. Zhou, K. Fu, and Y. Shi, “Development of quantum voltage noise source chip for precision measurement of Boltzmann constant,” Acta Phys. Sin. 67(10), 108501 (2018).
[Crossref]

AIP Adv. (1)

Y. Wan, K. R. McIntosh, and A. F. Thomson, “Characterisation and optimisation of PECVD SiNx as an antireflection coating and passivation layer for silicon solar cells,” AIP Adv. 3(3), 032113 (2013).
[Crossref]

Appl. Phys. Lett. (2)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

W. Guo, X. Liu, Y. Wang, Q. Wei, L. F. Wei, J. Hubmayr, J. Fowler, J. Ullom, L. Vale, M. R. Vissers, and J. Gao, “Counting near infrared photons with microwave kinetic inductance detectors,” Appl. Phys. Lett. 110(21), 212601 (2017).
[Crossref]

Chin. Phys. B (2)

W. Cao, J. Li, Y. Zhong, and Q. He, “Study of Nb/NbxSi1−x/Nb Josephson junction arrays,” Chin. Phys. B 24(12), 127402 (2015).
[Crossref]

W. Cao, J. Li, Y. Zhong, Y. Gao, H. Li, Z. Wang, and Q. He, “Developing Josephson junction array chips for microvolt applications,” Chin. Phys. B 25(5), 057401 (2016).
[Crossref]

Chin. Sci. Bull. (1)

Q. Zhang, J. Liu, W. Dong, T. Wang, G. He, T. Li, X. Zhou, and W. Chen, “Design and fabrication of superconducting transition edge sensor bolometers with background limited noise performance,” Chin. Sci. Bull. 59(19), 2292–2297 (2014).
[Crossref]

IEEE Trans. Appl. Supercond. (3)

L. Zhang, S. Zhang, X. Tao, G. Zhu, L. Kang, J. Chen, and P. Wu, “Quasi-Gated superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond. 27(2), 1–6 (2017).
[Crossref]

N. Hadacek, P. D. Dresselhaus, Y. Chong, S. P. Benz, and J. E. Bonevich, “Fabrication and measurement of tall stacked arrays of SNS Josephson junctions,” IEEE Trans. Appl. Supercond. 15(2), 110–113 (2005).
[Crossref]

B. Baek, P. D. Dresselhaus, and S. P. Benz, “Co-Sputtered amorphous NbxSi1-x barriers for Josephson-Junction circuits,” IEEE Trans. Appl. Supercond. 16(4), 1966–1970 (2006).
[Crossref]

IEEE Trans. Magn. (2)

A. S. Barrera and M. R. Beaseley, “High-resistance SNS sandwichtype Josephson junctions,” IEEE Trans. Magn. 23(2), 866–868 (1987).
[Crossref]

D. Prêle, M. R. Piat, E. L. Bréelle, F. Voisin, M. Pairat, Y. Atik, B. Bélier, L. Dumoulin, C. Evesque, G. Klisnick, S. Marnieros, F. Pajot, M. Redon, and G. Sou, “Development of superconducting NbSi TES array and associated readout with SQUIDs and integrated circuit operating at 2 K,” IEEE Trans. Magn. 19(3), 501–504 (2009).
[Crossref]

J. Low Temp. Phys. (1)

O. Crauste, C. A. Marrache-Kikuchi, L. Bergé, S. Collin, Y. Dolgorouky, S. Marnieros, C. Nones, and L. Dumoulin, “Tunable superconducting properties of a-NbSi thin films and application to detection in astrophysics,” J. Low Temp. Phys. 163(1-2), 60–66 (2011).
[Crossref]

Nanoscale Res. Lett. (1)

Y. Lee, D. Gong, N. Balaji, Y. Lee, and J. Yi, “Stability of SiNx/SiNx double stack antireflection coating for single crystalline silicon solar cells,” Nanoscale Res. Lett. 7(1), 50 (2012).
[Crossref]

Opt. Express (3)

Phys. Rev. Lett. (1)

G. Hertel, D. J. Bishop, E. G. Spencer, J. M. Howell, and R. C. Dynes, “Tunneling and transport measurements at the metal-insulator transition of amorphous Nb: Si,” Phys. Rev. Lett. 50(10), 743–746 (1983).
[Crossref]

Radiat. Prot. Dosim. (1)

S. Galer, L. Hao, J. Gallop, H. Palmans, K. Kirkby, and A. Nisbet, “Design concept for a novel squid-based microdosemeter,” Radiat. Prot. Dosim. 143(2-4), 427–431 (2011).
[Crossref]

Sci. China: Phys., Mech. Astron. (1)

J. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Supercond. Sci. Technol. (3)

J. Gallop, D. Cox, and L. Hao, “Nanobridge squids as calorimetric inductive particle detectors,” Supercond. Sci. Technol. 28(8), 084002 (2015).
[Crossref]

J. N. Ullom and D. A. Bennett, “Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy,” Supercond. Sci. Technol. 28(8), 084003 (2015).
[Crossref]

L. Hao, J. C. Gallop, C. Gardiner, P. Josephs-Franks, J. C. Macfarlane, S. K. H. Lam, and C. Foley, “Inductive superconducting transition-edge detector for single-photon and macro-molecule detection,” Supercond. Sci. Technol. 13(2), 622–625 (2003).
[Crossref]

Other (2)

W. K. Warburton, J. Harris, M. Carpenter, L. Fabris, and S. Friedrich, “Preamplifier development for superconducting tunnel junction array X-ray detector electronics,” IEEE Nuclear Science Symposuim & Medical Imaging Conference, Jun. 2011.

S. Ariyoshi, T. Taino, A. Dobroiu, H. Sato, H. Matsuo, and C. Otani, “Evaluation of a terahertz detector based on a superconducting tunnel junction coupled to a thin superconductor film,” 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Oct. 2010.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. The Tc of the Nb x Si1-x film with different Nb contents x.
Fig. 2.
Fig. 2. The refractive index (a) and extinction coefficient (b) of Nb95.7Si4.3 films with different ratios of Nb/Si. (c) The refractive index of SiN x films.
Fig. 3.
Fig. 3. The variation of R with the thickness of SiNx films and wavelength on Nb95.7Si4.3 / Si.
Fig. 4.
Fig. 4. The calculated and measured R of Nb95.7Si4.3 film on Si wafer without and with SiNx films.
Fig. 5.
Fig. 5. The calculated and measured R (a), T(b), A(c) of Nb95.7Si4.3 film on glass wafer without and with SiN x films.

Tables (1)

Tables Icon

Table 1. The calculated and measured reflectance, transmittance and absorption coefficient of Nb95.7Si4.3 film without and with 68 nm SiNx films at 633 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d V d E = d V d L d L d λ d λ d T d T d E

Metrics