Abstract

We propose a combined structure that can freely control the transmission of spoof surface plasmon polarizations in the terahertz region. The combined structure is composed of a corrugated metallic strip and a textured closed surface with defect units. The spoof surface plasmon polarizations with different frequencies can be effectively trapped by the defect units with different scales in the localized spoof plasmonic structure. The designer structures provide the enhanced ability to modulate the spoof surface plasmon polarizations transmitted in the waveguide, which may provide potential applications in optical switching and sensing in the terahertz region.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multiband localized spoof plasmons in closed textured cavities

Bingzheng Xu, Zhuo Li, Changqing Gu, Pingping Ning, Liangliang Liu, Zhenyi Niu, and Yongjiu Zhao
Appl. Opt. 53(30) 6950-6953 (2014)

Bandwidth tunable microstrip band-stop filters based on localized spoof surface plasmons

Bingzheng Xu, Zhuo Li, Liangliang Liu, Jia Xu, Chen Chen, and Changqing Gu
J. Opt. Soc. Am. B 33(7) 1388-1391 (2016)

Revealing the physical mechanisms behind large field enhancement in hybrid spoof plasmonic systems

Yao Huang, Jingjing Zhang, Tie Jun Cui, Zhen Liao, and Dao Hua Zhang
J. Opt. Soc. Am. B 35(2) 396-401 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [Crossref]
  4. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
    [Crossref]
  5. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  6. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hetcht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref]
  7. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: reason for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
    [Crossref]
  8. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref]
  9. J. N. Anker, W. P. Hall, O. Lyandres, N. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref]
  10. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [Crossref]
  11. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
    [Crossref]
  12. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref]
  13. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
    [Crossref]
  14. A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
    [Crossref]
  15. Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on the closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
    [Crossref]
  16. Z. Gao, F. Gao, H. Xu, T. Zhang, and B. Zhang, “Localized spoof surface plasmons in textured open metal surface,” Opt. Lett. 41(10), 2181–2184 (2016).
    [Crossref]
  17. X. P. Shen and T. J. Cui, “Tunable band-notched line-defect waveguide in a surface-wave photonic crystal,” Laser Photonics Rev. 8(1), 137–145 (2014).
    [Crossref]
  18. P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
    [Crossref]
  19. J. Zhang, Z. Liao, Y. Luo, X. Shen, S. A. Maier, and T. J. Cui, “Spoof plasmon hybridization,” Laser Photonics Rev. 11(1), 1600191 (2017).
    [Crossref]
  20. F. Gao, Z. Gao, Y. Luo, and B. Zhang, “Invisibility dips of near-field energy transport in a spoof plasmonic metadimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
    [Crossref]
  21. Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
    [Crossref]
  22. Z. Gao, F. Gao, Y. Zhang, and B. Zhang, “Deep-subwavelength magnetic-coupling-dominant interaction among magnetic localized surface plasmons,” Phys. Rev. B 93(19), 195410 (2016).
    [Crossref]
  23. T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
    [Crossref]
  24. X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surfave plasmon polaritons based on composite-periodic gratings,” J. Phys. D: Appl. Phys. 45(50), 505104 (2012).
    [Crossref]
  25. Z. Zhao, Y. Chen, Z. Gu, and W. Shi, “Maximization of terahertz slow light by tuning the spoof localized surface plasmon induced transparency,” Opt. Mater. Express 8(8), 2345–2354 (2018).
    [Crossref]
  26. B. Wang, Y. Jin, and S. He, “Design of subwavelength corrugated metal waveguides for slow waves at terahertz frequencies,” Appl. Opt. 47(21), 3694–3700 (2008).
    [Crossref]
  27. M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
    [Crossref]
  28. X. P. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
    [Crossref]
  29. X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
    [Crossref]
  30. Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and captire of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
    [Crossref]
  31. Y. Yang, X. P. Shen, P. Zhao, H. C. Zhang, and T. J. Cui, “Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies,” Opt. Express 23(6), 7031–7037 (2015).
    [Crossref]
  32. J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
    [Crossref]
  33. B. Sun and Y. Yu, “Double toroidal spoof localized surface plasmon resonance excited by two types of coupling mechanisms,” Opt. Lett. 44(6), 1444–1447 (2019).
    [Crossref]
  34. Z. Liao, G. Q. Luo, B. G. Cai, B. C. Pan, and W. H. Cao, “Subwavelength negative-index waveguiding enabled by coupled spoof magnetic localized surface plasmons,” Photonics Res. 7(3), 274–282 (2019).
    [Crossref]
  35. H. W. Wu, H. J. Chen, H. Y. Fan, Y. Li, and X. W. Fang, “Trapped spoof surface plasmons with structured defects in textured closed surfaces,” Opt. Lett. 42(4), 791–794 (2017).
    [Crossref]
  36. H. W. Wu, Y. Z. Han, H. J. Chen, Y. Zhou, X. C. Li, J. Gao, and Z. Q. Sheng, “Physical mechanism of order between electric and magnetic dipoles in spoof plasmonic structures,” Opt. Lett. 42(21), 4521–4524 (2017).
    [Crossref]
  37. H. W. Wu, H. J. Chen, H. F. Xu, R. H. Fan, and Y. Li, “Tunable multiband directional electromagnetic scattering from spoof Mie resonant structure,” Sci. Rep. 8(1), 8817 (2018).
    [Crossref]
  38. H. W. Wu, Y. Li, H. J. Chen, Z. Q. Sheng, H. Jing, R. H. Fan, and R. W. Peng, “Strong purcell effect for terahertz magnetic dipole emission with spoof plasmonic structure,” ACS Appl. Nano Mater. 2(2), 1045–1052 (2019).
    [Crossref]
  39. J. Q. Quan, Z. Q. Sheng, Y. Fang, R. H. Fan, and H. W. Wu, “Ultra-directional forward scattering in spoof plasmonic structure,” Appl. Phys. Express 12(4), 042002 (2019).
    [Crossref]

2019 (4)

B. Sun and Y. Yu, “Double toroidal spoof localized surface plasmon resonance excited by two types of coupling mechanisms,” Opt. Lett. 44(6), 1444–1447 (2019).
[Crossref]

Z. Liao, G. Q. Luo, B. G. Cai, B. C. Pan, and W. H. Cao, “Subwavelength negative-index waveguiding enabled by coupled spoof magnetic localized surface plasmons,” Photonics Res. 7(3), 274–282 (2019).
[Crossref]

H. W. Wu, Y. Li, H. J. Chen, Z. Q. Sheng, H. Jing, R. H. Fan, and R. W. Peng, “Strong purcell effect for terahertz magnetic dipole emission with spoof plasmonic structure,” ACS Appl. Nano Mater. 2(2), 1045–1052 (2019).
[Crossref]

J. Q. Quan, Z. Q. Sheng, Y. Fang, R. H. Fan, and H. W. Wu, “Ultra-directional forward scattering in spoof plasmonic structure,” Appl. Phys. Express 12(4), 042002 (2019).
[Crossref]

2018 (2)

H. W. Wu, H. J. Chen, H. F. Xu, R. H. Fan, and Y. Li, “Tunable multiband directional electromagnetic scattering from spoof Mie resonant structure,” Sci. Rep. 8(1), 8817 (2018).
[Crossref]

Z. Zhao, Y. Chen, Z. Gu, and W. Shi, “Maximization of terahertz slow light by tuning the spoof localized surface plasmon induced transparency,” Opt. Mater. Express 8(8), 2345–2354 (2018).
[Crossref]

2017 (3)

2016 (4)

F. Gao, Z. Gao, Y. Luo, and B. Zhang, “Invisibility dips of near-field energy transport in a spoof plasmonic metadimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

Z. Gao, F. Gao, Y. Zhang, and B. Zhang, “Deep-subwavelength magnetic-coupling-dominant interaction among magnetic localized surface plasmons,” Phys. Rev. B 93(19), 195410 (2016).
[Crossref]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on the closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

Z. Gao, F. Gao, H. Xu, T. Zhang, and B. Zhang, “Localized spoof surface plasmons in textured open metal surface,” Opt. Lett. 41(10), 2181–2184 (2016).
[Crossref]

2015 (3)

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and captire of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Y. Yang, X. P. Shen, P. Zhao, H. C. Zhang, and T. J. Cui, “Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies,” Opt. Express 23(6), 7031–7037 (2015).
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref]

2014 (4)

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref]

X. P. Shen and T. J. Cui, “Tunable band-notched line-defect waveguide in a surface-wave photonic crystal,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

2013 (1)

X. P. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

2012 (2)

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surfave plasmon polaritons based on composite-periodic gratings,” J. Phys. D: Appl. Phys. 45(50), 505104 (2012).
[Crossref]

2011 (1)

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

2009 (1)

2008 (3)

B. Wang, Y. Jin, and S. He, “Design of subwavelength corrugated metal waveguides for slow waves at terahertz frequencies,” Appl. Opt. 47(21), 3694–3700 (2008).
[Crossref]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

2006 (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

2005 (3)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hetcht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref]

2004 (2)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref]

2003 (3)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: reason for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Agrafiotis, S.

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Beruete, M.

Bozhevolnyi, S. I.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

Cai, B. G.

Z. Liao, G. Q. Luo, B. G. Cai, B. C. Pan, and W. H. Cao, “Subwavelength negative-index waveguiding enabled by coupled spoof magnetic localized surface plasmons,” Photonics Res. 7(3), 274–282 (2019).
[Crossref]

Cao, W. H.

Z. Liao, G. Q. Luo, B. G. Cai, B. C. Pan, and W. H. Cao, “Subwavelength negative-index waveguiding enabled by coupled spoof magnetic localized surface plasmons,” Photonics Res. 7(3), 274–282 (2019).
[Crossref]

Chen, C.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on the closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

Chen, H. J.

H. W. Wu, Y. Li, H. J. Chen, Z. Q. Sheng, H. Jing, R. H. Fan, and R. W. Peng, “Strong purcell effect for terahertz magnetic dipole emission with spoof plasmonic structure,” ACS Appl. Nano Mater. 2(2), 1045–1052 (2019).
[Crossref]

H. W. Wu, H. J. Chen, H. F. Xu, R. H. Fan, and Y. Li, “Tunable multiband directional electromagnetic scattering from spoof Mie resonant structure,” Sci. Rep. 8(1), 8817 (2018).
[Crossref]

H. W. Wu, H. J. Chen, H. Y. Fan, Y. Li, and X. W. Fang, “Trapped spoof surface plasmons with structured defects in textured closed surfaces,” Opt. Lett. 42(4), 791–794 (2017).
[Crossref]

H. W. Wu, Y. Z. Han, H. J. Chen, Y. Zhou, X. C. Li, J. Gao, and Z. Q. Sheng, “Physical mechanism of order between electric and magnetic dipoles in spoof plasmonic structures,” Opt. Lett. 42(21), 4521–4524 (2017).
[Crossref]

Chen, Y.

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: reason for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Cuerda, J.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Cui, T. J.

J. Zhang, Z. Liao, Y. Luo, X. Shen, S. A. Maier, and T. J. Cui, “Spoof plasmon hybridization,” Laser Photonics Rev. 11(1), 1600191 (2017).
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref]

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and captire of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Y. Yang, X. P. Shen, P. Zhao, H. C. Zhang, and T. J. Cui, “Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies,” Opt. Express 23(6), 7031–7037 (2015).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref]

X. P. Shen and T. J. Cui, “Tunable band-notched line-defect waveguide in a surface-wave photonic crystal,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

X. P. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surfave plasmon polaritons based on composite-periodic gratings,” J. Phys. D: Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

Duyne, R. P. V.

J. N. Anker, W. P. Hall, O. Lyandres, N. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hetcht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref]

Falcone, F.

Fan, H. Y.

Fan, R. H.

H. W. Wu, Y. Li, H. J. Chen, Z. Q. Sheng, H. Jing, R. H. Fan, and R. W. Peng, “Strong purcell effect for terahertz magnetic dipole emission with spoof plasmonic structure,” ACS Appl. Nano Mater. 2(2), 1045–1052 (2019).
[Crossref]

J. Q. Quan, Z. Q. Sheng, Y. Fang, R. H. Fan, and H. W. Wu, “Ultra-directional forward scattering in spoof plasmonic structure,” Appl. Phys. Express 12(4), 042002 (2019).
[Crossref]

H. W. Wu, H. J. Chen, H. F. Xu, R. H. Fan, and Y. Li, “Tunable multiband directional electromagnetic scattering from spoof Mie resonant structure,” Sci. Rep. 8(1), 8817 (2018).
[Crossref]

Fang, X. W.

Fang, Y.

J. Q. Quan, Z. Q. Sheng, Y. Fang, R. H. Fan, and H. W. Wu, “Ultra-directional forward scattering in spoof plasmonic structure,” Appl. Phys. Express 12(4), 042002 (2019).
[Crossref]

Gao, F.

Z. Gao, F. Gao, Y. Zhang, and B. Zhang, “Deep-subwavelength magnetic-coupling-dominant interaction among magnetic localized surface plasmons,” Phys. Rev. B 93(19), 195410 (2016).
[Crossref]

F. Gao, Z. Gao, Y. Luo, and B. Zhang, “Invisibility dips of near-field energy transport in a spoof plasmonic metadimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

Z. Gao, F. Gao, H. Xu, T. Zhang, and B. Zhang, “Localized spoof surface plasmons in textured open metal surface,” Opt. Lett. 41(10), 2181–2184 (2016).
[Crossref]

Gao, J.

Gao, X.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surfave plasmon polaritons based on composite-periodic gratings,” J. Phys. D: Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Gao, Z.

F. Gao, Z. Gao, Y. Luo, and B. Zhang, “Invisibility dips of near-field energy transport in a spoof plasmonic metadimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

Z. Gao, F. Gao, Y. Zhang, and B. Zhang, “Deep-subwavelength magnetic-coupling-dominant interaction among magnetic localized surface plasmons,” Phys. Rev. B 93(19), 195410 (2016).
[Crossref]

Z. Gao, F. Gao, H. Xu, T. Zhang, and B. Zhang, “Localized spoof surface plasmons in textured open metal surface,” Opt. Lett. 41(10), 2181–2184 (2016).
[Crossref]

Garcia-Vidal, F. J.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[Crossref]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Gu, C.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on the closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

Gu, Z.

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Han, Y. Z.

He, S.

Hetcht, B.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hetcht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref]

Huidobro, P. A.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Jiang, T.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Jiang, W. X.

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surfave plasmon polaritons based on composite-periodic gratings,” J. Phys. D: Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Jin, Y.

Jing, H.

H. W. Wu, Y. Li, H. J. Chen, Z. Q. Sheng, H. Jing, R. H. Fan, and R. W. Peng, “Strong purcell effect for terahertz magnetic dipole emission with spoof plasmonic structure,” ACS Appl. Nano Mater. 2(2), 1045–1052 (2019).
[Crossref]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: reason for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

Li, X. C.

Li, Y.

H. W. Wu, Y. Li, H. J. Chen, Z. Q. Sheng, H. Jing, R. H. Fan, and R. W. Peng, “Strong purcell effect for terahertz magnetic dipole emission with spoof plasmonic structure,” ACS Appl. Nano Mater. 2(2), 1045–1052 (2019).
[Crossref]

H. W. Wu, H. J. Chen, H. F. Xu, R. H. Fan, and Y. Li, “Tunable multiband directional electromagnetic scattering from spoof Mie resonant structure,” Sci. Rep. 8(1), 8817 (2018).
[Crossref]

H. W. Wu, H. J. Chen, H. Y. Fan, Y. Li, and X. W. Fang, “Trapped spoof surface plasmons with structured defects in textured closed surfaces,” Opt. Lett. 42(4), 791–794 (2017).
[Crossref]

Li, Z.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on the closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

Liao, Z.

Z. Liao, G. Q. Luo, B. G. Cai, B. C. Pan, and W. H. Cao, “Subwavelength negative-index waveguiding enabled by coupled spoof magnetic localized surface plasmons,” Photonics Res. 7(3), 274–282 (2019).
[Crossref]

J. Zhang, Z. Liao, Y. Luo, X. Shen, S. A. Maier, and T. J. Cui, “Spoof plasmon hybridization,” Laser Photonics Rev. 11(1), 1600191 (2017).
[Crossref]

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and captire of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref]

Liu, L.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on the closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

Luo, G. Q.

Z. Liao, G. Q. Luo, B. G. Cai, B. C. Pan, and W. H. Cao, “Subwavelength negative-index waveguiding enabled by coupled spoof magnetic localized surface plasmons,” Photonics Res. 7(3), 274–282 (2019).
[Crossref]

Luo, Y.

J. Zhang, Z. Liao, Y. Luo, X. Shen, S. A. Maier, and T. J. Cui, “Spoof plasmon hybridization,” Laser Photonics Rev. 11(1), 1600191 (2017).
[Crossref]

F. Gao, Z. Gao, Y. Luo, and B. Zhang, “Invisibility dips of near-field energy transport in a spoof plasmonic metadimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and captire of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Ma, H. F.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surfave plasmon polaritons based on composite-periodic gratings,” J. Phys. D: Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Maier, S. A.

Martin, O. J. F.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hetcht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

Martin-Moreno, L.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[Crossref]

Martín-Moreno, L.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Moreno, E.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[Crossref]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hetcht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

Navarro-Cía, M.

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

Pan, B. C.

Z. Liao, G. Q. Luo, B. G. Cai, B. C. Pan, and W. H. Cao, “Subwavelength negative-index waveguiding enabled by coupled spoof magnetic localized surface plasmons,” Photonics Res. 7(3), 274–282 (2019).
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref]

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and captire of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref]

Pendry, J. B.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Peng, R. W.

H. W. Wu, Y. Li, H. J. Chen, Z. Q. Sheng, H. Jing, R. H. Fan, and R. W. Peng, “Strong purcell effect for terahertz magnetic dipole emission with spoof plasmonic structure,” ACS Appl. Nano Mater. 2(2), 1045–1052 (2019).
[Crossref]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hetcht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

Pors, A.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Quan, J. Q.

J. Q. Quan, Z. Q. Sheng, Y. Fang, R. H. Fan, and H. W. Wu, “Ultra-directional forward scattering in spoof plasmonic structure,” Appl. Phys. Express 12(4), 042002 (2019).
[Crossref]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: reason for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Ran, L.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Ren, J.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref]

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[Crossref]

Ruan, Z.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref]

Shah, N.

J. N. Anker, W. P. Hall, O. Lyandres, N. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Shen, L.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Shen, X.

J. Zhang, Z. Liao, Y. Luo, X. Shen, S. A. Maier, and T. J. Cui, “Spoof plasmon hybridization,” Laser Photonics Rev. 11(1), 1600191 (2017).
[Crossref]

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and captire of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref]

Shen, X. P.

Y. Yang, X. P. Shen, P. Zhao, H. C. Zhang, and T. J. Cui, “Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies,” Opt. Express 23(6), 7031–7037 (2015).
[Crossref]

X. P. Shen and T. J. Cui, “Tunable band-notched line-defect waveguide in a surface-wave photonic crystal,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

X. P. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

Sheng, Z. Q.

J. Q. Quan, Z. Q. Sheng, Y. Fang, R. H. Fan, and H. W. Wu, “Ultra-directional forward scattering in spoof plasmonic structure,” Appl. Phys. Express 12(4), 042002 (2019).
[Crossref]

H. W. Wu, Y. Li, H. J. Chen, Z. Q. Sheng, H. Jing, R. H. Fan, and R. W. Peng, “Strong purcell effect for terahertz magnetic dipole emission with spoof plasmonic structure,” ACS Appl. Nano Mater. 2(2), 1045–1052 (2019).
[Crossref]

H. W. Wu, Y. Z. Han, H. J. Chen, Y. Zhou, X. C. Li, J. Gao, and Z. Q. Sheng, “Physical mechanism of order between electric and magnetic dipoles in spoof plasmonic structures,” Opt. Lett. 42(21), 4521–4524 (2017).
[Crossref]

Shi, J. H.

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surfave plasmon polaritons based on composite-periodic gratings,” J. Phys. D: Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Shi, W.

Sorolla, M.

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref]

Sun, B.

Sundaramurthy, A.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: reason for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Wang, B.

Wu, H. W.

H. W. Wu, Y. Li, H. J. Chen, Z. Q. Sheng, H. Jing, R. H. Fan, and R. W. Peng, “Strong purcell effect for terahertz magnetic dipole emission with spoof plasmonic structure,” ACS Appl. Nano Mater. 2(2), 1045–1052 (2019).
[Crossref]

J. Q. Quan, Z. Q. Sheng, Y. Fang, R. H. Fan, and H. W. Wu, “Ultra-directional forward scattering in spoof plasmonic structure,” Appl. Phys. Express 12(4), 042002 (2019).
[Crossref]

H. W. Wu, H. J. Chen, H. F. Xu, R. H. Fan, and Y. Li, “Tunable multiband directional electromagnetic scattering from spoof Mie resonant structure,” Sci. Rep. 8(1), 8817 (2018).
[Crossref]

H. W. Wu, H. J. Chen, H. Y. Fan, Y. Li, and X. W. Fang, “Trapped spoof surface plasmons with structured defects in textured closed surfaces,” Opt. Lett. 42(4), 791–794 (2017).
[Crossref]

H. W. Wu, Y. Z. Han, H. J. Chen, Y. Zhou, X. C. Li, J. Gao, and Z. Q. Sheng, “Physical mechanism of order between electric and magnetic dipoles in spoof plasmonic structures,” Opt. Lett. 42(21), 4521–4524 (2017).
[Crossref]

Wu, J. J.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Xu, B.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on the closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

Xu, H.

Xu, H. F.

H. W. Wu, H. J. Chen, H. F. Xu, R. H. Fan, and Y. Li, “Tunable multiband directional electromagnetic scattering from spoof Mie resonant structure,” Sci. Rep. 8(1), 8817 (2018).
[Crossref]

Xu, J.

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on the closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

Yang, T. J.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Yang, Y.

Yin, J. Y.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref]

Yu, Y.

Zhang, B.

F. Gao, Z. Gao, Y. Luo, and B. Zhang, “Invisibility dips of near-field energy transport in a spoof plasmonic metadimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

Z. Gao, F. Gao, Y. Zhang, and B. Zhang, “Deep-subwavelength magnetic-coupling-dominant interaction among magnetic localized surface plasmons,” Phys. Rev. B 93(19), 195410 (2016).
[Crossref]

Z. Gao, F. Gao, H. Xu, T. Zhang, and B. Zhang, “Localized spoof surface plasmons in textured open metal surface,” Opt. Lett. 41(10), 2181–2184 (2016).
[Crossref]

Zhang, H. C.

Y. Yang, X. P. Shen, P. Zhao, H. C. Zhang, and T. J. Cui, “Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies,” Opt. Express 23(6), 7031–7037 (2015).
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref]

Zhang, J.

J. Zhang, Z. Liao, Y. Luo, X. Shen, S. A. Maier, and T. J. Cui, “Spoof plasmon hybridization,” Laser Photonics Rev. 11(1), 1600191 (2017).
[Crossref]

Zhang, T.

Zhang, Y.

Z. Gao, F. Gao, Y. Zhang, and B. Zhang, “Deep-subwavelength magnetic-coupling-dominant interaction among magnetic localized surface plasmons,” Phys. Rev. B 93(19), 195410 (2016).
[Crossref]

Zhao, J.

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and captire of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Zhao, P.

Zhao, Z.

Zhou, L.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Zhou, Y.

H. W. Wu, Y. Z. Han, H. J. Chen, Y. Zhou, X. C. Li, J. Gao, and Z. Q. Sheng, “Physical mechanism of order between electric and magnetic dipoles in spoof plasmonic structures,” Opt. Lett. 42(21), 4521–4524 (2017).
[Crossref]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on the closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

ACS Appl. Nano Mater. (1)

H. W. Wu, Y. Li, H. J. Chen, Z. Q. Sheng, H. Jing, R. H. Fan, and R. W. Peng, “Strong purcell effect for terahertz magnetic dipole emission with spoof plasmonic structure,” ACS Appl. Nano Mater. 2(2), 1045–1052 (2019).
[Crossref]

ACS Photonics (1)

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and captire of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Adv. Funct. Mater. (1)

F. Gao, Z. Gao, Y. Luo, and B. Zhang, “Invisibility dips of near-field energy transport in a spoof plasmonic metadimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

J. Q. Quan, Z. Q. Sheng, Y. Fang, R. H. Fan, and H. W. Wu, “Ultra-directional forward scattering in spoof plasmonic structure,” Appl. Phys. Express 12(4), 042002 (2019).
[Crossref]

Appl. Phys. Lett. (3)

X. P. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: reason for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. Phys. D: Appl. Phys. (1)

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surfave plasmon polaritons based on composite-periodic gratings,” J. Phys. D: Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Laser Photonics Rev. (2)

X. P. Shen and T. J. Cui, “Tunable band-notched line-defect waveguide in a surface-wave photonic crystal,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

J. Zhang, Z. Liao, Y. Luo, X. Shen, S. A. Maier, and T. J. Cui, “Spoof plasmon hybridization,” Laser Photonics Rev. 11(1), 1600191 (2017).
[Crossref]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. Express (1)

Photonics Res. (1)

Z. Liao, G. Q. Luo, B. G. Cai, B. C. Pan, and W. H. Cao, “Subwavelength negative-index waveguiding enabled by coupled spoof magnetic localized surface plasmons,” Photonics Res. 7(3), 274–282 (2019).
[Crossref]

Phys. Rev. B (1)

Z. Gao, F. Gao, Y. Zhang, and B. Zhang, “Deep-subwavelength magnetic-coupling-dominant interaction among magnetic localized surface plasmons,” Phys. Rev. B 93(19), 195410 (2016).
[Crossref]

Phys. Rev. Lett. (3)

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[Crossref]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref]

Phys. Rev. X (1)

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Sci. Rep. (3)

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized spoof surface plasmons based on the closed subwavelength high contrast gratings: concept and microwave-regime realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5(1), 8165 (2015).
[Crossref]

H. W. Wu, H. J. Chen, H. F. Xu, R. H. Fan, and Y. Li, “Tunable multiband directional electromagnetic scattering from spoof Mie resonant structure,” Sci. Rep. 8(1), 8817 (2018).
[Crossref]

Science (5)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hetcht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

Other (1)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) A 2D corrugated cylinder structure with a defect unit and the depth of the defect unit can be freely tailored. (b) The enlarging schematic of the red triangle area in (a). The structural outer radius is R, inner radius is r, the groove width about corrugated cylinder is a, and the structural periodicity is d, besides, the depth of the defect unit is Rd. The whole structure is exposed to air.
Fig. 2.
Fig. 2. (a)-(c) Calculated the normalized SCS spectrum of the textured cylinder structure as show in Fig. 1, and the parameter Rd is vary from 18.5um to 19.5um. The different background colors represent the diverse excite modes. (d)-(f) The field distributions Hz about the SCS spectrum in (b) denoted by “ed”, “eq”, and “1”.
Fig. 3.
Fig. 3. (a) The schematic picture about the metal strips structure, the structural length of each part is l1 = 100um, l2 = 600um, l3 = 1230um, and the width about the metal flaring and the metal corrugated band are W = 150um and H = 100um, the distance from the flaring and the metal band is g = 5um. The gradient grooves have different depth which h1 = 5um, h2 = 10um, h3 = 15um, h4 = 20um, h5 = 25um, h6 = 30um, h7 = 35um and h = 40um. (b) The blue solid line metal strips structural dispersion cure, and the black dashed line represent the light line. The inset figure show the slit width a = 30um, and the periodicity d = 50um. (c)-(d) We show the metal strips structural field distributions Hz and Ey at 1.3THz.
Fig. 4.
Fig. 4. (a) Simulated the transmission coefficients about the spoof SPPs and spoof LSPs combination system, the inset schematic represent the system. The red solid line represents the transmission spectrum without defect unit while the black solid line represents the transmission spectrum of the whole combined system. The inset transmission spectrums explore the influence of the rotation of the defect unit. (b)-(d) We describe the filed distributions Hz of the combined system to show the transmission effect at three valleys. (e)-(g) We enlarge the modes in the red dashed box in (b)-(d) for better visibility, the modes about the combined system can be clearly observed at the corresponding frequency.
Fig. 5.
Fig. 5. (a) Calculated the normalized SCS spectrum of the textured cylinder structure which have three defect units, the inset figure show the schematic about the spoof LSPs structure. (b) The transmission coefficients about the combined system which we designed three defect units in the system to realize multi-frequency control, the inset figure show the combined system which have three defect units. (c) Further gives the filed distributions Hz under the trapped frequencies points in (b). (d) The transmission filed distributions Hz of the combined structure under the trapped frequencies points.

Metrics