Abstract

A Bessel-Bessel laser bullet is the ultra-short and tightly-focused analogue of a non-diffracting and non-dispersing laser Bessel beam. Analytic investigation of the energy, linear momentum, energy flux, and angular momentum, associated with the fields of a Bessel-Bessel bullet, propagating in an under-dense plasma, is conducted in this work. The analytic results reported here are essential for the further understanding of the bullets and to their ultimate experimental realization and utilization in practical applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of superposition modes by polarization-phase coupling in a cylindrical vector orbital angular momentum beam

Tae Moon Jeong, Sergei Bulanov, Wenchao Yan, Stefan Weber, and Georg Korn
OSA Continuum 2(9) 2718-2727 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
    [Crossref]
  2. K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
    [Crossref]
  3. C. Schulze, F. S. Roux, A. Dudley, R. Rop, M. Duparré, and A. Forbes, “Accelerated rotation with orbital angular momentum modes,” Phys. Rev. A 91(4), 043821 (2015).
    [Crossref]
  4. Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
    [Crossref]
  5. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origin, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  6. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18(10), 10828–10833 (2010).
    [Crossref]
  7. M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
    [Crossref]
  8. Y. I. Salamin, “Electron acceleration in vacuum by a linearly-polarized ultra-short tightly-focused THz pulse,” Phys. Lett. A 381(35), 3010–3013 (2017).
    [Crossref]
  9. A. Dudley, M. Lavery, M. Padgett, and A. Forbes, “Unraveling bessel beams,” Opt. Photonics News 24(6), 22–29 (2013).
    [Crossref]
  10. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987).
    [Crossref]
  11. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [Crossref]
  12. W.-P. Zhong, M. Belić, and T. Huang, “Three-dimensional bessel light bullets in self-focusing kerr media,” Phys. Rev. A 82(3), 033834 (2010).
    [Crossref]
  13. P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
    [Crossref]
  14. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
    [Crossref]
  15. A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy – Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).
    [Crossref]
  16. D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
    [Crossref]
  17. J. M. Urrutia and R. L. Stenzel, “Helicon waves in uniform plasmas. IV. Bessel beams, Gendrin beams, and helicons,” Phys. Plasmas 23(5), 052112 (2016).
    [Crossref]
  18. F. Deng, W. Yu, and D. Deng, “Controllably accelerating and decelerating airy–bessel–gaussian wave packets,” Laser Phys. Lett. 13(11), 116202 (2016).
    [Crossref]
  19. J. Mendoza-Hernández, M. L. Arroyo-Carrasco, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Laguerre-Gauss beams versus bessel beams showdown: peer comparison,” Opt. Lett. 40(16), 3739–3742 (2015).
    [Crossref]
  20. K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order bessel light beam,” J. Opt. B: Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
    [Crossref]
  21. G. F. Quinteiro, C. T. Schmiegelow, D. E. Reiter, and T. Kuhn, “Reexamination of bessel beams: A generalized scheme to derive optical vortices,” Phys. Rev. A 99(2), 023845 (2019).
    [Crossref]
  22. Y. I. Salamin, “Approximate fields of an ultra-short, tightly-focused, radially-polarized laser pulse in an under-dense plasma: a Bessel-Bessel light bullet,” Opt. Express 25(23), 28990–28999 (2017).
    [Crossref]
  23. Y. I. Salamin, “Fields of a Bessel-Bessel light bullet of arbitrary order in an under-dense plasma,” Sci. Rep. 8(1), 11362 (2018).
    [Crossref]
  24. E. Esarey, P. Sprangle, M. Pilloff, and J. Krall, “Theory and group velocity of ultrashort, tightly focused laser pulses,” J. Opt. Soc. Am. B 12(9), 1695–1703 (1995).
    [Crossref]
  25. M. V. Berry and K. T. McDonald, “Exact and geometrical optics energy trajectories in twisted beams,” J. Opt. A: Pure Appl. Opt. 10(3), 035005 (2008).
    [Crossref]
  26. G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887–4890 (2015).
    [Crossref]
  27. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref]
  28. L. Allen and M. Padgett, “The poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184(1-4), 67–71 (2000).
    [Crossref]
  29. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

2019 (1)

G. F. Quinteiro, C. T. Schmiegelow, D. E. Reiter, and T. Kuhn, “Reexamination of bessel beams: A generalized scheme to derive optical vortices,” Phys. Rev. A 99(2), 023845 (2019).
[Crossref]

2018 (1)

Y. I. Salamin, “Fields of a Bessel-Bessel light bullet of arbitrary order in an under-dense plasma,” Sci. Rep. 8(1), 11362 (2018).
[Crossref]

2017 (2)

Y. I. Salamin, “Approximate fields of an ultra-short, tightly-focused, radially-polarized laser pulse in an under-dense plasma: a Bessel-Bessel light bullet,” Opt. Express 25(23), 28990–28999 (2017).
[Crossref]

Y. I. Salamin, “Electron acceleration in vacuum by a linearly-polarized ultra-short tightly-focused THz pulse,” Phys. Lett. A 381(35), 3010–3013 (2017).
[Crossref]

2016 (3)

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

J. M. Urrutia and R. L. Stenzel, “Helicon waves in uniform plasmas. IV. Bessel beams, Gendrin beams, and helicons,” Phys. Plasmas 23(5), 052112 (2016).
[Crossref]

F. Deng, W. Yu, and D. Deng, “Controllably accelerating and decelerating airy–bessel–gaussian wave packets,” Laser Phys. Lett. 13(11), 116202 (2016).
[Crossref]

2015 (3)

2013 (1)

A. Dudley, M. Lavery, M. Padgett, and A. Forbes, “Unraveling bessel beams,” Opt. Photonics News 24(6), 22–29 (2013).
[Crossref]

2012 (1)

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

2011 (2)

2010 (4)

Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18(10), 10828–10833 (2010).
[Crossref]

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[Crossref]

W.-P. Zhong, M. Belić, and T. Huang, “Three-dimensional bessel light bullets in self-focusing kerr media,” Phys. Rev. A 82(3), 033834 (2010).
[Crossref]

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy – Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).
[Crossref]

2008 (1)

M. V. Berry and K. T. McDonald, “Exact and geometrical optics energy trajectories in twisted beams,” J. Opt. A: Pure Appl. Opt. 10(3), 035005 (2008).
[Crossref]

2007 (1)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

2004 (1)

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

2003 (1)

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
[Crossref]

2002 (1)

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order bessel light beam,” J. Opt. B: Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[Crossref]

2000 (1)

L. Allen and M. Padgett, “The poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184(1-4), 67–71 (2000).
[Crossref]

1995 (1)

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

1987 (2)

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987).
[Crossref]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

Aiello, A.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[Crossref]

Alfano, R. R.

Allen, L.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

L. Allen and M. Padgett, “The poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184(1-4), 67–71 (2000).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Alonso, M. A.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[Crossref]

Arlt, J.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order bessel light beam,” J. Opt. B: Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[Crossref]

Arnold, C. B.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Arroyo-Carrasco, M. L.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Belic, M.

W.-P. Zhong, M. Belić, and T. Huang, “Three-dimensional bessel light bullets in self-focusing kerr media,” Phys. Rev. A 82(3), 033834 (2010).
[Crossref]

Berry, M. V.

M. V. Berry and K. T. McDonald, “Exact and geometrical optics energy trajectories in twisted beams,” J. Opt. A: Pure Appl. Opt. 10(3), 035005 (2008).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[Crossref]

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Chávez-Cerda, S.

J. Mendoza-Hernández, M. L. Arroyo-Carrasco, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Laguerre-Gauss beams versus bessel beams showdown: peer comparison,” Opt. Lett. 40(16), 3739–3742 (2015).
[Crossref]

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order bessel light beam,” J. Opt. B: Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[Crossref]

Chong, A.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy – Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).
[Crossref]

Christodoulides, D. N.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy – Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Conti, C.

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
[Crossref]

Courtial, J.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Deng, D.

F. Deng, W. Yu, and D. Deng, “Controllably accelerating and decelerating airy–bessel–gaussian wave packets,” Laser Phys. Lett. 13(11), 116202 (2016).
[Crossref]

Deng, F.

F. Deng, W. Yu, and D. Deng, “Controllably accelerating and decelerating airy–bessel–gaussian wave packets,” Laser Phys. Lett. 13(11), 116202 (2016).
[Crossref]

Dholakia, K.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order bessel light beam,” J. Opt. B: Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[Crossref]

Di Trapani, P.

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
[Crossref]

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Dudley, A.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

C. Schulze, F. S. Roux, A. Dudley, R. Rop, M. Duparré, and A. Forbes, “Accelerated rotation with orbital angular momentum modes,” Phys. Rev. A 91(4), 043821 (2015).
[Crossref]

A. Dudley, M. Lavery, M. Padgett, and A. Forbes, “Unraveling bessel beams,” Opt. Photonics News 24(6), 22–29 (2013).
[Crossref]

Duocastella, M.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Duparré, M.

C. Schulze, F. S. Roux, A. Dudley, R. Rop, M. Duparré, and A. Forbes, “Accelerated rotation with orbital angular momentum modes,” Phys. Rev. A 91(4), 043821 (2015).
[Crossref]

Durnin, J.

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987).
[Crossref]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

Esarey, E.

Forbes, A.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

C. Schulze, F. S. Roux, A. Dudley, R. Rop, M. Duparré, and A. Forbes, “Accelerated rotation with orbital angular momentum modes,” Phys. Rev. A 91(4), 043821 (2015).
[Crossref]

A. Dudley, M. Lavery, M. Padgett, and A. Forbes, “Unraveling bessel beams,” Opt. Photonics News 24(6), 22–29 (2013).
[Crossref]

Garcés-Chávez, V.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order bessel light beam,” J. Opt. B: Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[Crossref]

Hashimoto, N.

Hibi, T.

Horanai, H.

Huang, T.

W.-P. Zhong, M. Belić, and T. Huang, “Three-dimensional bessel light bullets in self-focusing kerr media,” Phys. Rev. A 82(3), 033834 (2010).
[Crossref]

Iturbe-Castillo, M. D.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

Jedrkiewicz, O.

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
[Crossref]

Kozawa, Y.

Krall, J.

Kuhn, T.

G. F. Quinteiro, C. T. Schmiegelow, D. E. Reiter, and T. Kuhn, “Reexamination of bessel beams: A generalized scheme to derive optical vortices,” Phys. Rev. A 99(2), 023845 (2019).
[Crossref]

Kurihara, M.

Lavery, M.

A. Dudley, M. Lavery, M. Padgett, and A. Forbes, “Unraveling bessel beams,” Opt. Photonics News 24(6), 22–29 (2013).
[Crossref]

Leach, J.

Litvin, I.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Marrucci, L.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

McDonald, K. T.

M. V. Berry and K. T. McDonald, “Exact and geometrical optics energy trajectories in twisted beams,” J. Opt. A: Pure Appl. Opt. 10(3), 035005 (2008).
[Crossref]

Mendoza-Hernández, J.

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

Milione, G.

Naidoo, D.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Nemoto, T.

Nguyen, T. A.

Nolan, D. A.

Ostrovskaya, E. A.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[Crossref]

Padgett, M.

A. Dudley, M. Lavery, M. Padgett, and A. Forbes, “Unraveling bessel beams,” Opt. Photonics News 24(6), 22–29 (2013).
[Crossref]

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

L. Allen and M. Padgett, “The poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184(1-4), 67–71 (2000).
[Crossref]

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origin, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Piccirillo, B.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Pilloff, M.

Piskarskas, A.

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
[Crossref]

Quinteiro, G. F.

G. F. Quinteiro, C. T. Schmiegelow, D. E. Reiter, and T. Kuhn, “Reexamination of bessel beams: A generalized scheme to derive optical vortices,” Phys. Rev. A 99(2), 023845 (2019).
[Crossref]

Reiter, D. E.

G. F. Quinteiro, C. T. Schmiegelow, D. E. Reiter, and T. Kuhn, “Reexamination of bessel beams: A generalized scheme to derive optical vortices,” Phys. Rev. A 99(2), 023845 (2019).
[Crossref]

Renninger, W. H.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy – Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).
[Crossref]

Rop, R.

C. Schulze, F. S. Roux, A. Dudley, R. Rop, M. Duparré, and A. Forbes, “Accelerated rotation with orbital angular momentum modes,” Phys. Rev. A 91(4), 043821 (2015).
[Crossref]

Roux, F. S.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

C. Schulze, F. S. Roux, A. Dudley, R. Rop, M. Duparré, and A. Forbes, “Accelerated rotation with orbital angular momentum modes,” Phys. Rev. A 91(4), 043821 (2015).
[Crossref]

Salamin, Y. I.

Y. I. Salamin, “Fields of a Bessel-Bessel light bullet of arbitrary order in an under-dense plasma,” Sci. Rep. 8(1), 11362 (2018).
[Crossref]

Y. I. Salamin, “Approximate fields of an ultra-short, tightly-focused, radially-polarized laser pulse in an under-dense plasma: a Bessel-Bessel light bullet,” Opt. Express 25(23), 28990–28999 (2017).
[Crossref]

Y. I. Salamin, “Electron acceleration in vacuum by a linearly-polarized ultra-short tightly-focused THz pulse,” Phys. Lett. A 381(35), 3010–3013 (2017).
[Crossref]

Sato, A.

Sato, S.

Schmiegelow, C. T.

G. F. Quinteiro, C. T. Schmiegelow, D. E. Reiter, and T. Kuhn, “Reexamination of bessel beams: A generalized scheme to derive optical vortices,” Phys. Rev. A 99(2), 023845 (2019).
[Crossref]

Schulze, C.

C. Schulze, F. S. Roux, A. Dudley, R. Rop, M. Duparré, and A. Forbes, “Accelerated rotation with orbital angular momentum modes,” Phys. Rev. A 91(4), 043821 (2015).
[Crossref]

Siviloglou, G. A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Sprangle, P.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Stenzel, R. L.

J. M. Urrutia and R. L. Stenzel, “Helicon waves in uniform plasmas. IV. Bessel beams, Gendrin beams, and helicons,” Phys. Plasmas 23(5), 052112 (2016).
[Crossref]

Trillo, S.

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
[Crossref]

Trull, J.

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
[Crossref]

Urrutia, J. M.

J. M. Urrutia and R. L. Stenzel, “Helicon waves in uniform plasmas. IV. Bessel beams, Gendrin beams, and helicons,” Phys. Plasmas 23(5), 052112 (2016).
[Crossref]

Valiulis, G.

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
[Crossref]

Volke-Sepulveda, K.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order bessel light beam,” J. Opt. B: Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[Crossref]

Wise, F. W.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy – Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origin, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Yokoyama, H.

Yu, W.

F. Deng, W. Yu, and D. Deng, “Controllably accelerating and decelerating airy–bessel–gaussian wave packets,” Laser Phys. Lett. 13(11), 116202 (2016).
[Crossref]

Zhong, W.-P.

W.-P. Zhong, M. Belić, and T. Huang, “Three-dimensional bessel light bullets in self-focusing kerr media,” Phys. Rev. A 82(3), 033834 (2010).
[Crossref]

Adv. Opt. Photonics (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origin, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

M. V. Berry and K. T. McDonald, “Exact and geometrical optics energy trajectories in twisted beams,” J. Opt. A: Pure Appl. Opt. 10(3), 035005 (2008).
[Crossref]

J. Opt. B: Quantum Semiclassical Opt. (1)

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order bessel light beam,” J. Opt. B: Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Laser Phys. Lett. (1)

F. Deng, W. Yu, and D. Deng, “Controllably accelerating and decelerating airy–bessel–gaussian wave packets,” Laser Phys. Lett. 13(11), 116202 (2016).
[Crossref]

Nat. Photonics (2)

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy – Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010).
[Crossref]

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Opt. Commun. (1)

L. Allen and M. Padgett, “The poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184(1-4), 67–71 (2000).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Photonics News (1)

A. Dudley, M. Lavery, M. Padgett, and A. Forbes, “Unraveling bessel beams,” Opt. Photonics News 24(6), 22–29 (2013).
[Crossref]

Phys. Lett. A (1)

Y. I. Salamin, “Electron acceleration in vacuum by a linearly-polarized ultra-short tightly-focused THz pulse,” Phys. Lett. A 381(35), 3010–3013 (2017).
[Crossref]

Phys. Plasmas (1)

J. M. Urrutia and R. L. Stenzel, “Helicon waves in uniform plasmas. IV. Bessel beams, Gendrin beams, and helicons,” Phys. Plasmas 23(5), 052112 (2016).
[Crossref]

Phys. Rev. A (5)

W.-P. Zhong, M. Belić, and T. Huang, “Three-dimensional bessel light bullets in self-focusing kerr media,” Phys. Rev. A 82(3), 033834 (2010).
[Crossref]

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[Crossref]

C. Schulze, F. S. Roux, A. Dudley, R. Rop, M. Duparré, and A. Forbes, “Accelerated rotation with orbital angular momentum modes,” Phys. Rev. A 91(4), 043821 (2015).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

G. F. Quinteiro, C. T. Schmiegelow, D. E. Reiter, and T. Kuhn, “Reexamination of bessel beams: A generalized scheme to derive optical vortices,” Phys. Rev. A 99(2), 023845 (2019).
[Crossref]

Phys. Rev. Lett. (3)

P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett. 91(9), 093904 (2003).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

Phys. Today (1)

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Sci. Rep. (1)

Y. I. Salamin, “Fields of a Bessel-Bessel light bullet of arbitrary order in an under-dense plasma,” Sci. Rep. 8(1), 11362 (2018).
[Crossref]

Other (1)

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Intensity profiles (left to right) of $|E_r/E_0|^2$, $|E_\theta /E_0|^2$, $|E_z/E_0|^2$, $|cB_r/E_0|^2$, and $|cB_\theta /E_0|^2$ in the moving focal plane ($z = ct, t = 1$ fs) of a Bessel-Bessel bullet for which $L = 1.6 \lambda _0$, $w_0 = 0.9 \lambda _0$, $\lambda _0 = 1 ~\mu$m, in a plasma of electron density $n_0 = 10^{20}$ cm$^{-3}$. Top: $l = 1$, and bottom: $l = 3$. Other parameters used are: $\varphi _0 = 0$, and $k_r = x_{1,l}/w_0$, where $x_{1,l}$ is the first zero of $J_l$. See Figs. 3 and 4 below for the relative intensities of the various rings displayed here.
Fig. 2.
Fig. 2. Density plots of the argument of $e^{i\tilde {\varphi }}$, for four values of the index $l$.
Fig. 3.
Fig. 3. Intensity profiles associated with the field components in the moving focal plane, for the cases of: (a) $l = 1$ and (b) $l = 3$, as functions of the radial distance from the focus, using parameters the same as in Fig. 1.
Fig. 4.
Fig. 4. Time-averaged linear momentum components at points in the moving focal plane, as a function of the radial distance from the focus, for the cases of (a) $l = 1$ and (b) $l = 3$, employing the same parameters as in Fig. 1.
Fig. 5.
Fig. 5. Scaled intensity $I/cu_0$ in the focal plane as a function of the distance from focus, using the parameters of Fig. 1.
Fig. 6.
Fig. 6. Components of time-averaged angular momentum density, scaled by $u_0/\omega _0$, in the focal plane as a function of the distance from focus, for parameters the same as in Fig. 1.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

A ( r , θ , η , ζ ) = a 0 J l ( k r r ) j 0 ( π ζ L ) e i ( φ 0 + k 0 ζ + l θ α η ) ,
α = k r 2 + k p 2 2 k 0 ; k p = ω p c ; ω p = n 0 e 2 m ε 0 ,
k = φ = ( l r ) θ ^ + ( k 0 α 2 ) z ^ ,
ω = φ t = c ( k 0 + α 2 ) , and k z = φ z = k 0 α 2 .
ω = c k z 2 + k r 2 + k p 2 .
v g = ω k z = c [ k 0 α / 2 k 0 + α / 2 ] , and v p h = ω k z = c [ k 0 + α / 2 k 0 α / 2 ] .
E r = E 0 ( k r k 0 ) ( α 2 k 0 α + 2 k 0 ) [ J l 1 J l + 1 2 ] e i φ ~ ,
E θ = E 0 l ( k r k 0 ) ( α 2 k 0 α + 2 k 0 ) [ J l k r r ] e i ( φ ~ + π / 2 ) ,
E z = E 0 ( 4 α α + 2 k 0 ) [ 1 ( π / L ) 2 3 k 0 ( α + 2 k 0 ) ] J l e i ( φ ~ + π / 2 ) ,
B r = E 0 c l ( k r k 0 ) [ J l k r r ] e i ( φ ~ + π / 2 ) ,
B θ = E 0 c ( k r k 0 ) [ J l 1 J l + 1 2 ] e i ( φ ~ + π ) .
u = 1 2 ε 0 ( | E | 2 + | c B | 2 ) , = u 0 ( α + 2 k 0 ) 2 { ( α 2 + 4 k 0 2 ) ( k r k 0 ) 2 [ J l + 1 2 + J l 1 2 ] + 16 α 2 [ 1 ( π / L ) 2 3 k 0 ( α + 2 k 0 ) ] 2 J l 2 } .
p = ε 0 2 ( E × B + E × B ) , = u 0 c [ α 2 k 0 α + 2 k 0 ] { ( 8 l α / k 0 α 2 k 0 ) [ 1 ( π / L ) 2 3 k 0 ( α + 2 k 0 ) ] [ J l 2 r ] θ ^ ( k r k 0 ) 2 [ J l + 1 2 + J l 1 2 ] z ^ } .
I ( r ) = c u 0 [ k 0 α / 2 k 0 + α / 2 ] ( k r k 0 ) 2 [ J l + 1 2 + J l 1 2 ] .
P = 2 π c u 0 [ k 0 α / 2 k 0 + α / 2 ] ( k r k 0 ) 2 0 r ¯ [ J l + 1 2 + J l 1 2 ] r d r ,
l = ε 0 2 r × ( E × B + E × B ) , = u 0 [ α 2 k 0 α + 2 k 0 ] { ( 8 α α 2 k 0 ) [ 1 ( π / L ) 2 3 k 0 ( α + 2 k 0 ) ] J l 2 [ ( l ω 0 ) ( z r ) r ^ + ( l ω 0 ) z ^ ] + ( k r k 0 ) 2 [ J l + 1 2 + J l 1 2 ] ( r c ) θ ^ } ,
J l ( k r r ) 2 π k r r cos ( k r r l π 2 π 4 ) .

Metrics