Abstract

We propose and demonstrate two designs of complementary spiral-shape metamaterials (CSSM) with square and hexagonal meta-atom arrangements in the terahertz (THz) frequency range. For convenience, they are denoted as CSSM-S and CSSM-H for CSSM with square and hexagonal meta-atom arrangements, respectively. The electromagnetic responses are investigated for CSSM with different spiral angle (θ). CSSM-S exhibits dual-, triple-, and quad-resonance for θ = 360°, θ = 540° and θ = 720°, respectively in transverse electric (TE) mode and exhibits single-, dual-, and triple-resonance for θ = 360°, θ = 540° and θ = 720°, respectively in transverse magnetic (TM) mode. By applying a direct-current (dc) bias voltage on CSSM-S, it shows the actively tunable resonance with a tuning range of 0.12 THz and switching polarization characteristics. Furthermore, to facilitate the flexibility and applicability of CSSM, the unit cell of CSSM with different θ is superimposed to form CSSM-H. CSSM-H possesses the combination of electromagnetic behaviors generated by each unit cell of CSSM with different θ. This study provides a design of complementary THz metamaterials to have electromagnetically induced transparency (EIT) analog characteristics, which shows single-digital and multi-digital signals for the programmable metamaterial application. It paves a way to the possibility of THz metamaterials with great tunability and good polarization-dependence.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrically active manipulation of electromagnetic induced transparency in hybrid terahertz metamaterial

Xunjun He, Xingyu Yang, Shaopeng Li, Shuang Shi, Fengmin Wu, and Jiuxing Jiang
Opt. Mater. Express 6(10) 3075-3085 (2016)

Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials

Jiuxing Jiang, Qinfei Zhang, Qixiang Ma, Shitao Yan, Fengmin Wu, and Xunjun He
Opt. Mater. Express 5(9) 1962-1971 (2015)

Analog electromagnetically induced transparency for circularly polarized wave using three-dimensional chiral metamaterials

Hai Lin, Dong Yang, Song Han, Yangjie Liu, and Helin Yang
Opt. Express 24(26) 30068-30078 (2016)

References

  • View by:
  • |
  • |
  • |

  1. E. Manikandan, B. S. Sreeja, S. Radha, and R. N. Bathe, “Direct laser fabrication of five-band symmetric terahertz metamaterial with Fano resonance,” Mater. Lett. 229, 320–323 (2018).
    [Crossref]
  2. C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
    [Crossref]
  3. K. Shih, P. Pitchappa, L. Jin, C. H. Chen, R. Singh, and C. Lee, “Nanofluidic terahertz metasensor for sensing in aqueous environment,” Appl. Phys. Lett. 113(7), 071105 (2018).
    [Crossref]
  4. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
    [Crossref]
  5. R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
    [Crossref]
  6. W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
    [Crossref]
  7. H. T. Chen, W. J. Padilla, J. M. O. Aide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref]
  8. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref]
  9. G. Liang and Q. J. Wang, “Integrated terahertz optoelectronics,” Proc. SPIE 10030, 100300T (2016).
    [Crossref]
  10. S. Wang, L. Kang, and D. H. Werner, “Active Terahertz Chiral Metamaterials Based on Phase Transition of Vanadium Dioxide (VO2),” Sci. Rep. 8(1), 189 (2018).
    [Crossref]
  11. Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic Photoinduced Controlling of the Large Phase Shift of Terahertz Waves via Vanadium Dioxide Coupling Nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
    [Crossref]
  12. Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
    [Crossref]
  13. M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708 (2015).
    [Crossref]
  14. L. Huang, C. C. Chang, B. Zeng, J. Nogan, S. N. Luo, A. J. Taylor, A. K. Azad, and H. T. Chen, “Bilayer Metasurfaces for Dual- and Broadband Optical Antireflection,” ACS Photonics 4(9), 2111–2116 (2017).
    [Crossref]
  15. Z. Xu, R. Xu, B. Zhang, Y. Tong, and Y. S. Lin, “Infrared metamaterial absorber by using chalcogenide glass material with a cyclic ring-disk structure,” OSA Continuum 1(2), 573–580 (2018).
    [Crossref]
  16. S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
    [Crossref]
  17. D. M. Wu, M. L. Solomon, G. V. Naik, A. Garcia-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
    [Crossref]
  18. C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. J. Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
    [Crossref]
  19. M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-Based Waveguide-Integrated Terahertz Modulator,” ACS Photonics 4(2), 316–321 (2017).
    [Crossref]
  20. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
    [Crossref]
  21. B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
    [Crossref]
  22. L. Q. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, “Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms,” Adv. Opt. Mater. 5(2), 1600716 (2017).
    [Crossref]
  23. W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold Nanoparticle-Based Terahertz Metamaterial Sensors: Mechanisms and Applications,” ACS Photonics 3(12), 2308–2314 (2016).
    [Crossref]
  24. Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353, 83–89 (2015).
    [Crossref]
  25. Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21, 2700207 (2015).
    [Crossref]
  26. J. Liu and Z. Hong, “Mechanically tunable dual frequency THz metamaterial filter,” Opt. Commun. 426, 598–601 (2018).
    [Crossref]
  27. K. M. Devi, D. R. Chowdhury, G. Kumar, and A. K. Sarma, “Dual-band electromagnetically induced transparency effect in a concentrically coupled asymmetric terahertz metamaterial,” J. Appl. Phys. 124(6), 063106 (2018).
    [Crossref]
  28. K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, and G. Kumar, “Plasmon-induced transparency in graphene-based terahertz metamaterials,” EPL 120(2), 27005 (2017).
    [Crossref]
  29. K. M. Devi, A. K. Sarma, D. R. Chowdhury, and G. Kumar, “Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial,” Opt. Express 25(9), 10484–10493 (2017).
    [Crossref]
  30. J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, “A novel planar metamaterial design for electromagnetically induced transparency and slow light,” Opt. Express 21(21), 25159–25166 (2013).
    [Crossref]
  31. C. Shu, Q. Chen, J. Mei, and J. Yin, “Analogue of tunable electromagnetically induced transparency in terahertz metal-graphene metamaterial,” Mater. Res. Express 6(5), 055808 (2019).
    [Crossref]
  32. X. R. Jin, J. Park, H. Y. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
    [Crossref]
  33. J. S. Hwang, Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, L. Y. Chen, S. R. Li, X. W. Guo, and Y. P. Lee, “Tunable quad-band transmission response, based on single-layer metamaterials,” Opt. Express 26(24), 31607–31616 (2018).
    [Crossref]
  34. N. Born, M. Scheller, M. Koch, and J. V. Moloney, “Cavity enhanced terahertz modulation,” Appl. Phys. Lett. 104(10), 103508 (2014).
    [Crossref]
  35. X. Li, T. Yang, W. Zhu, and X. Li, “Continuously tunable terahertz metamaterial employing a thermal actuator,” Microsyst. Technol. 19(8), 1145–1151 (2013).
    [Crossref]
  36. D. R. Chowdhury, N. Xu, W. Zhang, and R. Singh, “Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials,” J. Appl. Phys. 118(2), 023104 (2015).
    [Crossref]
  37. C. M. Soukoulis, M. Kafesaki, and E. N. Economou, “Negative-Index Materials: New Frontiers in Optics,” Adv. Mater. 18(15), 1941–1952 (2006).
    [Crossref]
  38. W. Y. Chang and Y. S. Hsihe, “Multilayer microheater based on glass substrate using MEMS technology,” Microelectron. Eng. 149, 25–30 (2016).
    [Crossref]
  39. C. Z. Tan, “Review and analysis of refractive index temperature dependence in amorphous SiO2,” J. Non-Cryst. Solids 238(1-2), 30–36 (1998).
    [Crossref]

2019 (1)

C. Shu, Q. Chen, J. Mei, and J. Yin, “Analogue of tunable electromagnetically induced transparency in terahertz metal-graphene metamaterial,” Mater. Res. Express 6(5), 055808 (2019).
[Crossref]

2018 (11)

J. S. Hwang, Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, L. Y. Chen, S. R. Li, X. W. Guo, and Y. P. Lee, “Tunable quad-band transmission response, based on single-layer metamaterials,” Opt. Express 26(24), 31607–31616 (2018).
[Crossref]

J. Liu and Z. Hong, “Mechanically tunable dual frequency THz metamaterial filter,” Opt. Commun. 426, 598–601 (2018).
[Crossref]

K. M. Devi, D. R. Chowdhury, G. Kumar, and A. K. Sarma, “Dual-band electromagnetically induced transparency effect in a concentrically coupled asymmetric terahertz metamaterial,” J. Appl. Phys. 124(6), 063106 (2018).
[Crossref]

E. Manikandan, B. S. Sreeja, S. Radha, and R. N. Bathe, “Direct laser fabrication of five-band symmetric terahertz metamaterial with Fano resonance,” Mater. Lett. 229, 320–323 (2018).
[Crossref]

K. Shih, P. Pitchappa, L. Jin, C. H. Chen, R. Singh, and C. Lee, “Nanofluidic terahertz metasensor for sensing in aqueous environment,” Appl. Phys. Lett. 113(7), 071105 (2018).
[Crossref]

S. Wang, L. Kang, and D. H. Werner, “Active Terahertz Chiral Metamaterials Based on Phase Transition of Vanadium Dioxide (VO2),” Sci. Rep. 8(1), 189 (2018).
[Crossref]

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic Photoinduced Controlling of the Large Phase Shift of Terahertz Waves via Vanadium Dioxide Coupling Nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Z. Xu, R. Xu, B. Zhang, Y. Tong, and Y. S. Lin, “Infrared metamaterial absorber by using chalcogenide glass material with a cyclic ring-disk structure,” OSA Continuum 1(2), 573–580 (2018).
[Crossref]

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

D. M. Wu, M. L. Solomon, G. V. Naik, A. Garcia-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. J. Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
[Crossref]

2017 (6)

M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-Based Waveguide-Integrated Terahertz Modulator,” ACS Photonics 4(2), 316–321 (2017).
[Crossref]

L. Huang, C. C. Chang, B. Zeng, J. Nogan, S. N. Luo, A. J. Taylor, A. K. Azad, and H. T. Chen, “Bilayer Metasurfaces for Dual- and Broadband Optical Antireflection,” ACS Photonics 4(9), 2111–2116 (2017).
[Crossref]

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]

K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, and G. Kumar, “Plasmon-induced transparency in graphene-based terahertz metamaterials,” EPL 120(2), 27005 (2017).
[Crossref]

K. M. Devi, A. K. Sarma, D. R. Chowdhury, and G. Kumar, “Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial,” Opt. Express 25(9), 10484–10493 (2017).
[Crossref]

L. Q. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, “Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms,” Adv. Opt. Mater. 5(2), 1600716 (2017).
[Crossref]

2016 (4)

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold Nanoparticle-Based Terahertz Metamaterial Sensors: Mechanisms and Applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

W. Y. Chang and Y. S. Hsihe, “Multilayer microheater based on glass substrate using MEMS technology,” Microelectron. Eng. 149, 25–30 (2016).
[Crossref]

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

G. Liang and Q. J. Wang, “Integrated terahertz optoelectronics,” Proc. SPIE 10030, 100300T (2016).
[Crossref]

2015 (4)

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708 (2015).
[Crossref]

D. R. Chowdhury, N. Xu, W. Zhang, and R. Singh, “Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials,” J. Appl. Phys. 118(2), 023104 (2015).
[Crossref]

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353, 83–89 (2015).
[Crossref]

Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21, 2700207 (2015).
[Crossref]

2014 (1)

N. Born, M. Scheller, M. Koch, and J. V. Moloney, “Cavity enhanced terahertz modulation,” Appl. Phys. Lett. 104(10), 103508 (2014).
[Crossref]

2013 (2)

X. Li, T. Yang, W. Zhu, and X. Li, “Continuously tunable terahertz metamaterial employing a thermal actuator,” Microsyst. Technol. 19(8), 1145–1151 (2013).
[Crossref]

J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, “A novel planar metamaterial design for electromagnetically induced transparency and slow light,” Opt. Express 21(21), 25159–25166 (2013).
[Crossref]

2012 (2)

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref]

2011 (1)

2010 (2)

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

2006 (2)

H. T. Chen, W. J. Padilla, J. M. O. Aide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

C. M. Soukoulis, M. Kafesaki, and E. N. Economou, “Negative-Index Materials: New Frontiers in Optics,” Adv. Mater. 18(15), 1941–1952 (2006).
[Crossref]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

2002 (1)

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref]

1998 (1)

C. Z. Tan, “Review and analysis of refractive index temperature dependence in amorphous SiO2,” J. Non-Cryst. Solids 238(1-2), 30–36 (1998).
[Crossref]

Aide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Aide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Atrashchenko, A. V.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref]

Averitt, R. D.

H. T. Chen, W. J. Padilla, J. M. O. Aide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Azad, A. K.

L. Huang, C. C. Chang, B. Zeng, J. Nogan, S. N. Luo, A. J. Taylor, A. K. Azad, and H. T. Chen, “Bilayer Metasurfaces for Dual- and Broadband Optical Antireflection,” ACS Photonics 4(9), 2111–2116 (2017).
[Crossref]

Bai, Y.

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353, 83–89 (2015).
[Crossref]

Bathe, R. N.

E. Manikandan, B. S. Sreeja, S. Radha, and R. N. Bathe, “Direct laser fabrication of five-band symmetric terahertz metamaterial with Fano resonance,” Mater. Lett. 229, 320–323 (2018).
[Crossref]

Belov, P. A.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref]

Berry, C. W.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708 (2015).
[Crossref]

Born, N.

N. Born, M. Scheller, M. Koch, and J. V. Moloney, “Cavity enhanced terahertz modulation,” Appl. Phys. Lett. 104(10), 103508 (2014).
[Crossref]

Bu, T.

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353, 83–89 (2015).
[Crossref]

Cai, B.

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353, 83–89 (2015).
[Crossref]

Chang, C. C.

L. Huang, C. C. Chang, B. Zeng, J. Nogan, S. N. Luo, A. J. Taylor, A. K. Azad, and H. T. Chen, “Bilayer Metasurfaces for Dual- and Broadband Optical Antireflection,” ACS Photonics 4(9), 2111–2116 (2017).
[Crossref]

Chang, W. Y.

W. Y. Chang and Y. S. Hsihe, “Multilayer microheater based on glass substrate using MEMS technology,” Microelectron. Eng. 149, 25–30 (2016).
[Crossref]

Chen, C. H.

K. Shih, P. Pitchappa, L. Jin, C. H. Chen, R. Singh, and C. Lee, “Nanofluidic terahertz metasensor for sensing in aqueous environment,” Appl. Phys. Lett. 113(7), 071105 (2018).
[Crossref]

Chen, H. T.

L. Huang, C. C. Chang, B. Zeng, J. Nogan, S. N. Luo, A. J. Taylor, A. K. Azad, and H. T. Chen, “Bilayer Metasurfaces for Dual- and Broadband Optical Antireflection,” ACS Photonics 4(9), 2111–2116 (2017).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. O. Aide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Chen, K.

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353, 83–89 (2015).
[Crossref]

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Chen, L. Y.

Chen, Q.

C. Shu, Q. Chen, J. Mei, and J. Yin, “Analogue of tunable electromagnetically induced transparency in terahertz metal-graphene metamaterial,” Mater. Res. Express 6(5), 055808 (2019).
[Crossref]

Cheong, H. S.

Choi, C. G.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Choi, H. K.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Choi, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Choi, S. Y.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Chowdhury, D. R.

K. M. Devi, D. R. Chowdhury, G. Kumar, and A. K. Sarma, “Dual-band electromagnetically induced transparency effect in a concentrically coupled asymmetric terahertz metamaterial,” J. Appl. Phys. 124(6), 063106 (2018).
[Crossref]

K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, and G. Kumar, “Plasmon-induced transparency in graphene-based terahertz metamaterials,” EPL 120(2), 27005 (2017).
[Crossref]

K. M. Devi, A. K. Sarma, D. R. Chowdhury, and G. Kumar, “Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial,” Opt. Express 25(9), 10484–10493 (2017).
[Crossref]

D. R. Chowdhury, N. Xu, W. Zhang, and R. Singh, “Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials,” J. Appl. Phys. 118(2), 023104 (2015).
[Crossref]

Cong, L. Q.

L. Q. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, “Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms,” Adv. Opt. Mater. 5(2), 1600716 (2017).
[Crossref]

Devi, K. M.

K. M. Devi, D. R. Chowdhury, G. Kumar, and A. K. Sarma, “Dual-band electromagnetically induced transparency effect in a concentrically coupled asymmetric terahertz metamaterial,” J. Appl. Phys. 124(6), 063106 (2018).
[Crossref]

K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, and G. Kumar, “Plasmon-induced transparency in graphene-based terahertz metamaterials,” EPL 120(2), 27005 (2017).
[Crossref]

K. M. Devi, A. K. Sarma, D. R. Chowdhury, and G. Kumar, “Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial,” Opt. Express 25(9), 10484–10493 (2017).
[Crossref]

Ding, P.

Dionne, J. A.

D. M. Wu, M. L. Solomon, G. V. Naik, A. Garcia-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

Dunn, C. K.

C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. J. Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
[Crossref]

Economou, E. N.

C. M. Soukoulis, M. Kafesaki, and E. N. Economou, “Negative-Index Materials: New Frontiers in Optics,” Adv. Mater. 18(15), 1941–1952 (2006).
[Crossref]

Erben, C.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref]

Fan, C.

Feng, Y. J.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Garcia-Etxarri, A.

D. M. Wu, M. L. Solomon, G. V. Naik, A. Garcia-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

Gill, D. M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref]

Gopalan, P.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Aide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Guo, X. W.

Haidar, J.

C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. J. Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
[Crossref]

Han, Z. Y.

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

Hashemi, M. R.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708 (2015).
[Crossref]

He, J.

Heber, J. D.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref]

Hong, Z.

J. Liu and Z. Hong, “Mechanically tunable dual frequency THz metamaterial filter,” Opt. Commun. 426, 598–601 (2018).
[Crossref]

Hsihe, Y. S.

W. Y. Chang and Y. S. Hsihe, “Multilayer microheater based on glass substrate using MEMS technology,” Microelectron. Eng. 149, 25–30 (2016).
[Crossref]

Huang, C.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Huang, C. Y.

Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21, 2700207 (2015).
[Crossref]

Huang, J.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Huang, L.

L. Huang, C. C. Chang, B. Zeng, J. Nogan, S. N. Luo, A. J. Taylor, A. K. Azad, and H. T. Chen, “Bilayer Metasurfaces for Dual- and Broadband Optical Antireflection,” ACS Photonics 4(9), 2111–2116 (2017).
[Crossref]

Huang, W.

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic Photoinduced Controlling of the Large Phase Shift of Terahertz Waves via Vanadium Dioxide Coupling Nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Hwang, J. S.

Islam, M.

K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, and G. Kumar, “Plasmon-induced transparency in graphene-based terahertz metamaterials,” EPL 120(2), 27005 (2017).
[Crossref]

Jang, J. W.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Jang, W. H.

Jarrahi, M.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708 (2015).
[Crossref]

Jian, J.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Jiang, R.

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

Jiang, T. A.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Jin, L.

K. Shih, P. Pitchappa, L. Jin, C. H. Chen, R. Singh, and C. Lee, “Nanofluidic terahertz metasensor for sensing in aqueous environment,” Appl. Phys. Lett. 113(7), 071105 (2018).
[Crossref]

Jin, X. R.

Jung, H. S.

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

Kafesaki, M.

C. M. Soukoulis, M. Kafesaki, and E. N. Economou, “Negative-Index Materials: New Frontiers in Optics,” Adv. Mater. 18(15), 1941–1952 (2006).
[Crossref]

Kang, L.

S. Wang, L. Kang, and D. H. Werner, “Active Terahertz Chiral Metamaterials Based on Phase Transition of Vanadium Dioxide (VO2),” Sci. Rep. 8(1), 189 (2018).
[Crossref]

Katz, H. E.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref]

Ke, L.

L. Q. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, “Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms,” Adv. Opt. Mater. 5(2), 1600716 (2017).
[Crossref]

Kim, K. W.

Kim, T. T.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Kim, Y. J.

Kivshar, Y. S.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref]

Koch, M.

N. Born, M. Scheller, M. Koch, and J. V. Moloney, “Cavity enhanced terahertz modulation,” Appl. Phys. Lett. 104(10), 103508 (2014).
[Crossref]

Kou, W.

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic Photoinduced Controlling of the Large Phase Shift of Terahertz Waves via Vanadium Dioxide Coupling Nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Kumar, G.

K. M. Devi, D. R. Chowdhury, G. Kumar, and A. K. Sarma, “Dual-band electromagnetically induced transparency effect in a concentrically coupled asymmetric terahertz metamaterial,” J. Appl. Phys. 124(6), 063106 (2018).
[Crossref]

K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, and G. Kumar, “Plasmon-induced transparency in graphene-based terahertz metamaterials,” EPL 120(2), 27005 (2017).
[Crossref]

K. M. Devi, A. K. Sarma, D. R. Chowdhury, and G. Kumar, “Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial,” Opt. Express 25(9), 10484–10493 (2017).
[Crossref]

Lawrence, M.

D. M. Wu, M. L. Solomon, G. V. Naik, A. Garcia-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

Lee, C.

K. Shih, P. Pitchappa, L. Jin, C. H. Chen, R. Singh, and C. Lee, “Nanofluidic terahertz metasensor for sensing in aqueous environment,” Appl. Phys. Lett. 113(7), 071105 (2018).
[Crossref]

L. Q. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, “Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms,” Adv. Opt. Mater. 5(2), 1600716 (2017).
[Crossref]

Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21, 2700207 (2015).
[Crossref]

Lee, M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref]

Lee, S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

X. R. Jin, J. Park, H. Y. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
[Crossref]

Lee, S. H.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Lee, S. S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Lee, Y.

Lee, Y. P.

Li, L.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Li, S.

M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-Based Waveguide-Integrated Terahertz Modulator,” ACS Photonics 4(2), 316–321 (2017).
[Crossref]

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708 (2015).
[Crossref]

Li, S. R.

Li, X.

X. Li, T. Yang, W. Zhu, and X. Li, “Continuously tunable terahertz metamaterial employing a thermal actuator,” Microsyst. Technol. 19(8), 1145–1151 (2013).
[Crossref]

X. Li, T. Yang, W. Zhu, and X. Li, “Continuously tunable terahertz metamaterial employing a thermal actuator,” Microsyst. Technol. 19(8), 1145–1151 (2013).
[Crossref]

Liang, E.

Liang, G.

G. Liang and Q. J. Wang, “Integrated terahertz optoelectronics,” Proc. SPIE 10030, 100300T (2016).
[Crossref]

Liang, S.

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic Photoinduced Controlling of the Large Phase Shift of Terahertz Waves via Vanadium Dioxide Coupling Nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Lin, Y. S.

Z. Xu, R. Xu, B. Zhang, Y. Tong, and Y. S. Lin, “Infrared metamaterial absorber by using chalcogenide glass material with a cyclic ring-disk structure,” OSA Continuum 1(2), 573–580 (2018).
[Crossref]

Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21, 2700207 (2015).
[Crossref]

Liu, H.

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353, 83–89 (2015).
[Crossref]

Liu, J.

J. Liu and Z. Hong, “Mechanically tunable dual frequency THz metamaterial filter,” Opt. Commun. 426, 598–601 (2018).
[Crossref]

Liu, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Liu, Y. L.

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Luo, S. N.

L. Huang, C. C. Chang, B. Zeng, J. Nogan, S. N. Luo, A. J. Taylor, A. K. Azad, and H. T. Chen, “Bilayer Metasurfaces for Dual- and Broadband Optical Antireflection,” ACS Photonics 4(9), 2111–2116 (2017).
[Crossref]

Ma, Y.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold Nanoparticle-Based Terahertz Metamaterial Sensors: Mechanisms and Applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Manikandan, E.

E. Manikandan, B. S. Sreeja, S. Radha, and R. N. Bathe, “Direct laser fabrication of five-band symmetric terahertz metamaterial with Fano resonance,” Mater. Lett. 229, 320–323 (2018).
[Crossref]

McGee, D. J.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref]

Mei, J.

C. Shu, Q. Chen, J. Mei, and J. Yin, “Analogue of tunable electromagnetically induced transparency in terahertz metal-graphene metamaterial,” Mater. Res. Express 6(5), 055808 (2019).
[Crossref]

Min, B.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Misra, S.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Mittendorff, M.

M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-Based Waveguide-Integrated Terahertz Modulator,” ACS Photonics 4(2), 316–321 (2017).
[Crossref]

Moloney, J. V.

N. Born, M. Scheller, M. Koch, and J. V. Moloney, “Cavity enhanced terahertz modulation,” Appl. Phys. Lett. 104(10), 103508 (2014).
[Crossref]

Mu, X.

C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. J. Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
[Crossref]

Murphy, T. E.

M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-Based Waveguide-Integrated Terahertz Modulator,” ACS Photonics 4(2), 316–321 (2017).
[Crossref]

Naik, G. V.

D. M. Wu, M. L. Solomon, G. V. Naik, A. Garcia-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

Nogan, J.

L. Huang, C. C. Chang, B. Zeng, J. Nogan, S. N. Luo, A. J. Taylor, A. K. Azad, and H. T. Chen, “Bilayer Metasurfaces for Dual- and Broadband Optical Antireflection,” ACS Photonics 4(9), 2111–2116 (2017).
[Crossref]

Padilla, W. J.

H. T. Chen, W. J. Padilla, J. M. O. Aide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Park, J.

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Pitchappa, P.

K. Shih, P. Pitchappa, L. Jin, C. H. Chen, R. Singh, and C. Lee, “Nanofluidic terahertz metasensor for sensing in aqueous environment,” Appl. Phys. Lett. 113(7), 071105 (2018).
[Crossref]

L. Q. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, “Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms,” Adv. Opt. Mater. 5(2), 1600716 (2017).
[Crossref]

Qi, H. J.

C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. J. Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
[Crossref]

Radha, S.

E. Manikandan, B. S. Sreeja, S. Radha, and R. N. Bathe, “Direct laser fabrication of five-band symmetric terahertz metamaterial with Fano resonance,” Mater. Lett. 229, 320–323 (2018).
[Crossref]

Rhee, J. Y.

Ribeiro, F. H.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Salleo, A.

D. M. Wu, M. L. Solomon, G. V. Naik, A. Garcia-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

Sarma, A. K.

K. M. Devi, D. R. Chowdhury, G. Kumar, and A. K. Sarma, “Dual-band electromagnetically induced transparency effect in a concentrically coupled asymmetric terahertz metamaterial,” J. Appl. Phys. 124(6), 063106 (2018).
[Crossref]

K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, and G. Kumar, “Plasmon-induced transparency in graphene-based terahertz metamaterials,” EPL 120(2), 27005 (2017).
[Crossref]

K. M. Devi, A. K. Sarma, D. R. Chowdhury, and G. Kumar, “Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial,” Opt. Express 25(9), 10484–10493 (2017).
[Crossref]

Scheller, M.

N. Born, M. Scheller, M. Koch, and J. V. Moloney, “Cavity enhanced terahertz modulation,” Appl. Phys. Lett. 104(10), 103508 (2014).
[Crossref]

Shi, Q.

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic Photoinduced Controlling of the Large Phase Shift of Terahertz Waves via Vanadium Dioxide Coupling Nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Shih, K.

K. Shih, P. Pitchappa, L. Jin, C. H. Chen, R. Singh, and C. Lee, “Nanofluidic terahertz metasensor for sensing in aqueous environment,” Appl. Phys. Lett. 113(7), 071105 (2018).
[Crossref]

Shu, C.

C. Shu, Q. Chen, J. Mei, and J. Yin, “Analogue of tunable electromagnetically induced transparency in terahertz metal-graphene metamaterial,” Mater. Res. Express 6(5), 055808 (2019).
[Crossref]

Simovski, C. R.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref]

Singh, N.

L. Q. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, “Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms,” Adv. Opt. Mater. 5(2), 1600716 (2017).
[Crossref]

Singh, R.

K. Shih, P. Pitchappa, L. Jin, C. H. Chen, R. Singh, and C. Lee, “Nanofluidic terahertz metasensor for sensing in aqueous environment,” Appl. Phys. Lett. 113(7), 071105 (2018).
[Crossref]

L. Q. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, “Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms,” Adv. Opt. Mater. 5(2), 1600716 (2017).
[Crossref]

D. R. Chowdhury, N. Xu, W. Zhang, and R. Singh, “Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials,” J. Appl. Phys. 118(2), 023104 (2015).
[Crossref]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Solomon, M. L.

D. M. Wu, M. L. Solomon, G. V. Naik, A. Garcia-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis, M. Kafesaki, and E. N. Economou, “Negative-Index Materials: New Frontiers in Optics,” Adv. Mater. 18(15), 1941–1952 (2006).
[Crossref]

Sreeja, B. S.

E. Manikandan, B. S. Sreeja, S. Radha, and R. N. Bathe, “Direct laser fabrication of five-band symmetric terahertz metamaterial with Fano resonance,” Mater. Lett. 229, 320–323 (2018).
[Crossref]

Tan, C. Z.

C. Z. Tan, “Review and analysis of refractive index temperature dependence in amorphous SiO2,” J. Non-Cryst. Solids 238(1-2), 30–36 (1998).
[Crossref]

Taylor, A. J.

L. Huang, C. C. Chang, B. Zeng, J. Nogan, S. N. Luo, A. J. Taylor, A. K. Azad, and H. T. Chen, “Bilayer Metasurfaces for Dual- and Broadband Optical Antireflection,” ACS Photonics 4(9), 2111–2116 (2017).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. O. Aide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Tong, Y.

Unlu, M.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708 (2015).
[Crossref]

Wang, C.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold Nanoparticle-Based Terahertz Metamaterial Sensors: Mechanisms and Applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Wang, H.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Wang, J.

Wang, Q. J.

G. Liang and Q. J. Wang, “Integrated terahertz optoelectronics,” Proc. SPIE 10030, 100300T (2016).
[Crossref]

Wang, S.

S. Wang, L. Kang, and D. H. Werner, “Active Terahertz Chiral Metamaterials Based on Phase Transition of Vanadium Dioxide (VO2),” Sci. Rep. 8(1), 189 (2018).
[Crossref]

Wang, T.

C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. J. Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
[Crossref]

Wang, X.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Wen, Q. Y.

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Werner, D. H.

S. Wang, L. Kang, and D. H. Werner, “Active Terahertz Chiral Metamaterials Based on Phase Transition of Vanadium Dioxide (VO2),” Sci. Rep. 8(1), 189 (2018).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Wu, D. M.

D. M. Wu, M. L. Solomon, G. V. Naik, A. Garcia-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

Wu, Y.

L. Q. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, “Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms,” Adv. Opt. Mater. 5(2), 1600716 (2017).
[Crossref]

Wu, Z. R.

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

Xie, L.

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold Nanoparticle-Based Terahertz Metamaterial Sensors: Mechanisms and Applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Xie, Y. S.

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Xu, J.

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353, 83–89 (2015).
[Crossref]

Xu, N.

D. R. Chowdhury, N. Xu, W. Zhang, and R. Singh, “Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials,” J. Appl. Phys. 118(2), 023104 (2015).
[Crossref]

Xu, R.

Xu, W.

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold Nanoparticle-Based Terahertz Metamaterial Sensors: Mechanisms and Applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Xu, X.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold Nanoparticle-Based Terahertz Metamaterial Sensors: Mechanisms and Applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Xu, Z.

Xue, Q.

Yang, H.

L. Q. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, “Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms,” Adv. Opt. Mater. 5(2), 1600716 (2017).
[Crossref]

Yang, Q. H.

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Yang, S. H.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708 (2015).
[Crossref]

Yang, T.

X. Li, T. Yang, W. Zhu, and X. Li, “Continuously tunable terahertz metamaterial employing a thermal actuator,” Microsyst. Technol. 19(8), 1145–1151 (2013).
[Crossref]

Yang, Z.

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic Photoinduced Controlling of the Large Phase Shift of Terahertz Waves via Vanadium Dioxide Coupling Nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Ye, Z.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold Nanoparticle-Based Terahertz Metamaterial Sensors: Mechanisms and Applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Yin, J.

C. Shu, Q. Chen, J. Mei, and J. Yin, “Analogue of tunable electromagnetically induced transparency in terahertz metal-graphene metamaterial,” Mater. Res. Express 6(5), 055808 (2019).
[Crossref]

Yin, X.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Ying, Y.

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold Nanoparticle-Based Terahertz Metamaterial Sensors: Mechanisms and Applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Yoo, Y. J.

Yuan, B.

Yuan, C.

C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. J. Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
[Crossref]

Zemlyanov, D.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Zeng, B.

L. Huang, C. C. Chang, B. Zeng, J. Nogan, S. N. Luo, A. J. Taylor, A. K. Azad, and H. T. Chen, “Bilayer Metasurfaces for Dual- and Broadband Optical Antireflection,” ACS Photonics 4(9), 2111–2116 (2017).
[Crossref]

Zhang, B.

Zhang, H. W.

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Zhang, W.

D. R. Chowdhury, N. Xu, W. Zhang, and R. Singh, “Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials,” J. Appl. Phys. 118(2), 023104 (2015).
[Crossref]

Zhang, X.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Zhang, Y.

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic Photoinduced Controlling of the Large Phase Shift of Terahertz Waves via Vanadium Dioxide Coupling Nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Zhao, J. M.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Zhao, Y.

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic Photoinduced Controlling of the Large Phase Shift of Terahertz Waves via Vanadium Dioxide Coupling Nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

Zheng, H. Y.

Zhu, B.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Zhu, J.

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold Nanoparticle-Based Terahertz Metamaterial Sensors: Mechanisms and Applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Zhu, W.

X. Li, T. Yang, W. Zhu, and X. Li, “Continuously tunable terahertz metamaterial employing a thermal actuator,” Microsyst. Technol. 19(8), 1145–1151 (2013).
[Crossref]

Zhu, Y.

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353, 83–89 (2015).
[Crossref]

ACS Appl. Mater. Interfaces (1)

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

ACS Photonics (4)

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic Photoinduced Controlling of the Large Phase Shift of Terahertz Waves via Vanadium Dioxide Coupling Nanostructures,” ACS Photonics 5(8), 3040–3050 (2018).
[Crossref]

L. Huang, C. C. Chang, B. Zeng, J. Nogan, S. N. Luo, A. J. Taylor, A. K. Azad, and H. T. Chen, “Bilayer Metasurfaces for Dual- and Broadband Optical Antireflection,” ACS Photonics 4(9), 2111–2116 (2017).
[Crossref]

M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-Based Waveguide-Integrated Terahertz Modulator,” ACS Photonics 4(2), 316–321 (2017).
[Crossref]

W. Xu, L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, “Gold Nanoparticle-Based Terahertz Metamaterial Sensors: Mechanisms and Applications,” ACS Photonics 3(12), 2308–2314 (2016).
[Crossref]

Adv. Funct. Mater. (1)

C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. J. Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
[Crossref]

Adv. Mater. (3)

D. M. Wu, M. L. Solomon, G. V. Naik, A. Garcia-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref]

C. M. Soukoulis, M. Kafesaki, and E. N. Economou, “Negative-Index Materials: New Frontiers in Optics,” Adv. Mater. 18(15), 1941–1952 (2006).
[Crossref]

Adv. Opt. Mater. (1)

L. Q. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, “Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms,” Adv. Opt. Mater. 5(2), 1600716 (2017).
[Crossref]

Appl. Phys. Lett. (4)

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

N. Born, M. Scheller, M. Koch, and J. V. Moloney, “Cavity enhanced terahertz modulation,” Appl. Phys. Lett. 104(10), 103508 (2014).
[Crossref]

K. Shih, P. Pitchappa, L. Jin, C. H. Chen, R. Singh, and C. Lee, “Nanofluidic terahertz metasensor for sensing in aqueous environment,” Appl. Phys. Lett. 113(7), 071105 (2018).
[Crossref]

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Chin. Phys. B (1)

R. Jiang, Z. R. Wu, Z. Y. Han, and H. S. Jung, “HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial,” Chin. Phys. B 25(10), 106803 (2016).
[Crossref]

EPL (1)

K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, and G. Kumar, “Plasmon-induced transparency in graphene-based terahertz metamaterials,” EPL 120(2), 27005 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. S. Lin, C. Y. Huang, and C. Lee, “Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism,” IEEE J. Sel. Top. Quantum Electron. 21, 2700207 (2015).
[Crossref]

J. Appl. Phys. (2)

K. M. Devi, D. R. Chowdhury, G. Kumar, and A. K. Sarma, “Dual-band electromagnetically induced transparency effect in a concentrically coupled asymmetric terahertz metamaterial,” J. Appl. Phys. 124(6), 063106 (2018).
[Crossref]

D. R. Chowdhury, N. Xu, W. Zhang, and R. Singh, “Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials,” J. Appl. Phys. 118(2), 023104 (2015).
[Crossref]

J. Non-Cryst. Solids (1)

C. Z. Tan, “Review and analysis of refractive index temperature dependence in amorphous SiO2,” J. Non-Cryst. Solids 238(1-2), 30–36 (1998).
[Crossref]

Mater. Lett. (1)

E. Manikandan, B. S. Sreeja, S. Radha, and R. N. Bathe, “Direct laser fabrication of five-band symmetric terahertz metamaterial with Fano resonance,” Mater. Lett. 229, 320–323 (2018).
[Crossref]

Mater. Res. Express (1)

C. Shu, Q. Chen, J. Mei, and J. Yin, “Analogue of tunable electromagnetically induced transparency in terahertz metal-graphene metamaterial,” Mater. Res. Express 6(5), 055808 (2019).
[Crossref]

Microelectron. Eng. (1)

W. Y. Chang and Y. S. Hsihe, “Multilayer microheater based on glass substrate using MEMS technology,” Microelectron. Eng. 149, 25–30 (2016).
[Crossref]

Microsyst. Technol. (1)

X. Li, T. Yang, W. Zhu, and X. Li, “Continuously tunable terahertz metamaterial employing a thermal actuator,” Microsyst. Technol. 19(8), 1145–1151 (2013).
[Crossref]

Nanoscale (1)

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]

Nat. Mater. (1)

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref]

Nature (1)

H. T. Chen, W. J. Padilla, J. M. O. Aide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Opt. Commun. (2)

J. Liu and Z. Hong, “Mechanically tunable dual frequency THz metamaterial filter,” Opt. Commun. 426, 598–601 (2018).
[Crossref]

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353, 83–89 (2015).
[Crossref]

Opt. Express (4)

OSA Continuum (1)

Proc. SPIE (1)

G. Liang and Q. J. Wang, “Integrated terahertz optoelectronics,” Proc. SPIE 10030, 100300T (2016).
[Crossref]

Sci. Rep. (2)

S. Wang, L. Kang, and D. H. Werner, “Active Terahertz Chiral Metamaterials Based on Phase Transition of Vanadium Dioxide (VO2),” Sci. Rep. 8(1), 189 (2018).
[Crossref]

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708 (2015).
[Crossref]

Science (2)

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic drawing of CSSM-S. (b) The corresponding denotations of CSSM-S, where w is spiral width and θ is spiral angle. (c-e) are optical microscopy images of CSSM-S with θ = 360°, θ = 540°, and θ = 720°, respectively.
Fig. 2.
Fig. 2. Transmission spectra of CSSM-S with (a) θ = 360°, (b) θ = 540°, and (c) θ = 720° at TE and TM modes.
Fig. 3.
Fig. 3. (a-c) E-field and (d-f) H-field distributions of CSSM-S with different θ at TE mode, respectively. (g-i) E-field and (j-l) H-field distributions of CSSM-S with different θ at TM mode, respectively. The inserted denotations on top images are monitored frequencies for CSSM-S with different θ.
Fig. 4.
Fig. 4. (a) Schematic drawing of tunable CSSM-S applied a dc bias voltage. (b) Transmission spectra of CSSM-S applied a dc bias voltage from 0 V to 30 V at TE mode.
Fig. 5.
Fig. 5. Transmission spectra of CSSM-H with (a) θ = 360°, (b) θ = 540°, (c) θ = 720°, (d) θ = 360°+540°, (e) θ = 360°+720°, and (f) θ = 540°+720° at TE and TM modes.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f L C = 1 2 π P ε c w l
T T 0 = P × R s = V 2 R t × R s = V 2 R 0 [ 1 + α ( T T 0 ) ] × R s
1 n s d n d T = ( n s 2 1 ) E g ( n s 2 ) E g 2 ( h γ ) 2 3 β n s 2 1 2 n s 2

Metrics