Abstract

Dual-comb spectroscopy (DCS) is useful for gas spectroscopy due to the high potential of optical frequency comb (OFC). However, fast Fourier transform (FFT) calculation of a huge amount of temporal data spends significantly longer time than the acquisition time of an interferogram. In this article, we demonstrate frequency-domain DCS by a combination of DCS with lock-in detection, namely LID-DCS. LID-DCS directly extracts an arbitrary OFC mode from a vast number of OFC modes without the need for FFT calculation. Usefulness of LID-DCS is demonstrated in the rapid monitoring of transient signal change and spectroscopy of hydrogen cyanide gas.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-comb spectroscopy

Ian Coddington, Nathan Newbury, and William Swann
Optica 3(4) 414-426 (2016)

Sensitivity improvement of dual-comb spectroscopy using mode-filtering technique

Akiko Nishiyama, Satoru Yoshida, Takuya Hariki, Yoshiaki Nakajima, and Kaoru Minoshima
Opt. Express 25(25) 31730-31738 (2017)

Coherent cavity-enhanced dual-comb spectroscopy

Adam J. Fleisher, David A. Long, Zachary D. Reed, Joseph T. Hodges, and David F. Plusquellic
Opt. Express 24(10) 10424-10434 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
    [Crossref]
  2. M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
    [Crossref]
  3. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref]
  4. P. R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy (Wiley, 1975).
  5. P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
    [Crossref]
  6. S. A. Diddams, L. Holloberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
    [Crossref]
  7. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16(4), 2387–2397 (2008).
    [Crossref]
  8. A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5(13), 2241–2246 (2014).
    [Crossref]
  9. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996).
    [Crossref]
  10. S. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for ≥1000 channels in the C-band,” Opt. Express 12(13), 2895–2902 (2004).
    [Crossref]
  11. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
    [Crossref]
  12. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
    [Crossref]
  13. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
    [Crossref]
  14. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  15. A. M. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
    [Crossref]
  16. Y. Shimizu, S. Okubo, A. Onae, K. M. T. Yamada, and H. Inaba, “Molecular gas thermometry on acetylene using dual-comb spectroscopy: analysis of rotational energy distribution,” Appl. Phys. B: Lasers Opt. 124(4), 71 (2018).
    [Crossref]
  17. A. Asahara, A. Nishiyama, S. Yoshida, K. Kondo, Y. Nakajima, and K. Minoshima, “Dual-comb spectroscopy for rapid characterization of complex optical properties of solids,” Opt. Lett. 41(21), 4971–4974 (2016).
    [Crossref]
  18. T. Minamikawa, Y. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
    [Crossref]
  19. K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
    [Crossref]
  20. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
    [Crossref]
  21. S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9µm,” Appl. Phys. Express 8(8), 082402 (2015).
    [Crossref]
  22. G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of green gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
    [Crossref]
  23. K. C. Cossel, E. M. Waxman, F. R. Giorgetta, M. Cermak, I. R. Coddington, D. Hesselius, S. Ruben, W. C. Swann, G.-W. Truong, G. B. Rieker, and N. R. Newbury, “Open-path dual-comb spectroscopy to an airborne retroreflector,” Optica 4(7), 724–728 (2017).
    [Crossref]
  24. P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
    [Crossref]
  25. B. Berinhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picque, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B: Lasers Opt. 100(1), 3–8 (2010).
    [Crossref]
  26. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multi-frequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
    [Crossref]
  27. Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4(1), 3816 (2015).
    [Crossref]
  28. S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui, “A distance meter using a terahertz intermode beat in an optical frequency comb,” Opt. Express 17(20), 17324–17333 (2009).
    [Crossref]
  29. R. Yang, F. Pollinge, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
    [Crossref]
  30. W. C. Swann and S. L. Gilbert, “Line centers, pressure shift, and pressure broadening of 1530-1560 nm hydrogen cyanide wavelength calibration lines,” J. Opt. Soc. Am. B 22(8), 1749–1756 (2005).
    [Crossref]
  31. Z. Tang, S. Pan, and J. Yao, “A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator,” Opt. Express 20(6), 6555–6560 (2012).
    [Crossref]
  32. N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70(2), 023811 (2004).
    [Crossref]
  33. P. Mao, Z. Wang, W. Dang, and Y. Wenga, “Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background,” Rev. Sci. Instrum. 86(12), 123113 (2015).
    [Crossref]
  34. Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, and S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13(10), R103–R115 (2002).
    [Crossref]

2018 (1)

Y. Shimizu, S. Okubo, A. Onae, K. M. T. Yamada, and H. Inaba, “Molecular gas thermometry on acetylene using dual-comb spectroscopy: analysis of rotational energy distribution,” Appl. Phys. B: Lasers Opt. 124(4), 71 (2018).
[Crossref]

2017 (4)

T. Minamikawa, Y. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref]

K. C. Cossel, E. M. Waxman, F. R. Giorgetta, M. Cermak, I. R. Coddington, D. Hesselius, S. Ruben, W. C. Swann, G.-W. Truong, G. B. Rieker, and N. R. Newbury, “Open-path dual-comb spectroscopy to an airborne retroreflector,” Optica 4(7), 724–728 (2017).
[Crossref]

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

2016 (3)

A. Asahara, A. Nishiyama, S. Yoshida, K. Kondo, Y. Nakajima, and K. Minoshima, “Dual-comb spectroscopy for rapid characterization of complex optical properties of solids,” Opt. Lett. 41(21), 4971–4974 (2016).
[Crossref]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

2015 (4)

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4(1), 3816 (2015).
[Crossref]

R. Yang, F. Pollinge, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
[Crossref]

P. Mao, Z. Wang, W. Dang, and Y. Wenga, “Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background,” Rev. Sci. Instrum. 86(12), 123113 (2015).
[Crossref]

2014 (2)

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of green gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
[Crossref]

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5(13), 2241–2246 (2014).
[Crossref]

2013 (2)

A. M. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

2012 (1)

2010 (1)

B. Berinhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picque, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B: Lasers Opt. 100(1), 3–8 (2010).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

S. A. Diddams, L. Holloberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref]

2006 (2)

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multi-frequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

2005 (1)

2004 (3)

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70(2), 023811 (2004).
[Crossref]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
[Crossref]

S. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for ≥1000 channels in the C-band,” Opt. Express 12(13), 2895–2902 (2004).
[Crossref]

2002 (3)

S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, and S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13(10), R103–R115 (2002).
[Crossref]

2000 (1)

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref]

1999 (1)

1996 (1)

Abe, Y.

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, and S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13(10), R103–R115 (2002).
[Crossref]

Abgrall, M.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref]

Adachi, S.

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70(2), 023811 (2004).
[Crossref]

Araki, T.

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4(1), 3816 (2015).
[Crossref]

S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui, “A distance meter using a terahertz intermode beat in an optical frequency comb,” Opt. Express 17(20), 17324–17333 (2009).
[Crossref]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multi-frequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Asahara, A.

Balslev-Clausen, D.

Baumann, E.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of green gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
[Crossref]

A. M. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
[Crossref]

Becker, T.

B. Berinhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picque, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B: Lasers Opt. 100(1), 3–8 (2010).
[Crossref]

Berinhardt, B.

B. Berinhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picque, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B: Lasers Opt. 100(1), 3–8 (2010).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Bjork, B. J.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5(13), 2241–2246 (2014).
[Crossref]

Bosse, H.

R. Yang, F. Pollinge, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
[Crossref]

Bui, T. Q.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5(13), 2241–2246 (2014).
[Crossref]

Cermak, M.

Clairon, A.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref]

Coburn, S.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

Coddington, I.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of green gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
[Crossref]

A. M. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
[Crossref]

Coddington, I. R.

Cossel, K. C.

K. C. Cossel, E. M. Waxman, F. R. Giorgetta, M. Cermak, I. R. Coddington, D. Hesselius, S. Ruben, W. C. Swann, G.-W. Truong, G. B. Rieker, and N. R. Newbury, “Open-path dual-comb spectroscopy to an airborne retroreflector,” Optica 4(7), 724–728 (2017).
[Crossref]

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5(13), 2241–2246 (2014).
[Crossref]

Cromer, C.

Dang, W.

P. Mao, Z. Wang, W. Dang, and Y. Wenga, “Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background,” Rev. Sci. Instrum. 86(12), 123113 (2015).
[Crossref]

Deguchi, Y.

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, and S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13(10), R103–R115 (2002).
[Crossref]

Diddams, S. A.

S. A. Diddams, L. Holloberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref]

Droste, S.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

Endo, Y.

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, and S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13(10), R103–R115 (2002).
[Crossref]

Fermann, M. E.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Fleisher, A. J.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5(13), 2241–2246 (2014).
[Crossref]

Foltynowicz, A.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Fukuda, Y.

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, and S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13(10), R103–R115 (2002).
[Crossref]

Gilbert, S. L.

Giorgetta, F.

A. M. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
[Crossref]

Giorgetta, F. R.

Gohle, C.

Griffiths, P. R.

P. R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy (Wiley, 1975).

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Hagihara, Y.

Hänsch, T. W.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

B. Berinhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picque, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B: Lasers Opt. 100(1), 3–8 (2010).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref]

Hase, E.

T. Minamikawa, Y. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref]

Hesselius, D.

Hindle, F.

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4(1), 3816 (2015).
[Crossref]

Holloberg, L.

S. A. Diddams, L. Holloberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Holzwarth, R.

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref]

Hong, F. L.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Hosaka, K.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Hsieh, Y.

T. Minamikawa, Y. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref]

Hsieh, Y. D.

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4(1), 3816 (2015).
[Crossref]

Ichinose, Y.

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, and S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13(10), R103–R115 (2002).
[Crossref]

Ideguchi, T.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Inaba, H.

Y. Shimizu, S. Okubo, A. Onae, K. M. T. Yamada, and H. Inaba, “Molecular gas thermometry on acetylene using dual-comb spectroscopy: analysis of rotational energy distribution,” Appl. Phys. B: Lasers Opt. 124(4), 71 (2018).
[Crossref]

T. Minamikawa, Y. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref]

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4(1), 3816 (2015).
[Crossref]

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Inada, M.

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, and S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13(10), R103–R115 (2002).
[Crossref]

Ishii, N.

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70(2), 023811 (2004).
[Crossref]

Iwakuni, K.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Iwasaki, S.

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, and S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13(10), R103–R115 (2002).
[Crossref]

Iwata, T.

T. Minamikawa, Y. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref]

Iyonaga, Y.

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4(1), 3816 (2015).
[Crossref]

Jacquet, P.

B. Berinhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picque, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B: Lasers Opt. 100(1), 3–8 (2010).
[Crossref]

Jiang, J.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Johansson, A. C.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Kabetani, Y.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multi-frequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Kaneoka, Y.

T. Minamikawa, Y. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref]

Keilmann, F.

Khodabakhsh, A.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Kimura, T.

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70(2), 023811 (2004).
[Crossref]

Kirchner, M. S.

Kobayashi, T.

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70(2), 023811 (2004).
[Crossref]

Kofler, J.

Kondo, K.

Kowzan, G.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Krystek, M.

R. Yang, F. Pollinge, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
[Crossref]

Laurent, P.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref]

Lee, K. F.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Lemonde, P.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref]

Mao, P.

P. Mao, Z. Wang, W. Dang, and Y. Wenga, “Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background,” Rev. Sci. Instrum. 86(12), 123113 (2015).
[Crossref]

Maslowski, P.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Matsuda, H.

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70(2), 023811 (2004).
[Crossref]

Mbele, V.

S. A. Diddams, L. Holloberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref]

Meiners-Hagen, K.

R. Yang, F. Pollinge, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
[Crossref]

Mills, A. A.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Minamikawa, T.

T. Minamikawa, Y. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref]

Minoshima, K.

Mizutani, Y.

T. Minamikawa, Y. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref]

Mohr, C.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Nakajima, Y.

Newbury, N.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

A. M. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
[Crossref]

Newbury, N. R.

Niering, M.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref]

Nishiyama, A.

Noda, M.

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, and S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13(10), R103–R115 (2002).
[Crossref]

Okubo, S.

Y. Shimizu, S. Okubo, A. Onae, K. M. T. Yamada, and H. Inaba, “Molecular gas thermometry on acetylene using dual-comb spectroscopy: analysis of rotational energy distribution,” Appl. Phys. B: Lasers Opt. 124(4), 71 (2018).
[Crossref]

T. Minamikawa, Y. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref]

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Okumura, M.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5(13), 2241–2246 (2014).
[Crossref]

Onae, A.

Y. Shimizu, S. Okubo, A. Onae, K. M. T. Yamada, and H. Inaba, “Molecular gas thermometry on acetylene using dual-comb spectroscopy: analysis of rotational energy distribution,” Appl. Phys. B: Lasers Opt. 124(4), 71 (2018).
[Crossref]

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Pan, S.

Petron, G.

Picque, N.

B. Berinhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picque, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B: Lasers Opt. 100(1), 3–8 (2010).
[Crossref]

Picqué, N.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Pokasov, P.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref]

Pollinge, F.

R. Yang, F. Pollinge, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
[Crossref]

Reichert, J.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref]

Rieker, G. B.

Ruben, S.

Rutkowski, L.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Sakaguchi, Y.

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4(1), 3816 (2015).
[Crossref]

Salomon, C.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref]

Saneyoshi, E.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multi-frequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Santarelli, G.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref]

Sasada, H.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Schiller, S.

Schroeder, P. J.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

Shibuya, K.

T. Minamikawa, Y. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref]

Shimizu, Y.

Y. Shimizu, S. Okubo, A. Onae, K. M. T. Yamada, and H. Inaba, “Molecular gas thermometry on acetylene using dual-comb spectroscopy: analysis of rotational energy distribution,” Appl. Phys. B: Lasers Opt. 124(4), 71 (2018).
[Crossref]

Shirasaki, M.

Sinclair, L. C.

Sodergren, B.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

Sorokin, E.

B. Berinhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picque, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B: Lasers Opt. 100(1), 3–8 (2010).
[Crossref]

Sorokina, I. T.

B. Berinhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picque, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B: Lasers Opt. 100(1), 3–8 (2010).
[Crossref]

Swann, W.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

A. M. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
[Crossref]

Swann, W. C.

Sweeney, C.

Tan, J.

R. Yang, F. Pollinge, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
[Crossref]

Tang, Z.

Tans, P. P.

Thon, R.

B. Berinhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picque, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B: Lasers Opt. 100(1), 3–8 (2010).
[Crossref]

Thorpe, M. J.

Tokunaga, E.

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70(2), 023811 (2004).
[Crossref]

Truong, G. W.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

Truong, G.-W.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref]

Wang, Z.

P. Mao, Z. Wang, W. Dang, and Y. Wenga, “Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background,” Rev. Sci. Instrum. 86(12), 123113 (2015).
[Crossref]

Waxman, E. M.

Weiner, A. M.

Weitz, M.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref]

Wenga, Y.

P. Mao, Z. Wang, W. Dang, and Y. Wenga, “Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background,” Rev. Sci. Instrum. 86(12), 123113 (2015).
[Crossref]

Wright, R. J.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

Xiao, S.

Yamada, K. M. T.

Y. Shimizu, S. Okubo, A. Onae, K. M. T. Yamada, and H. Inaba, “Molecular gas thermometry on acetylene using dual-comb spectroscopy: analysis of rotational energy distribution,” Appl. Phys. B: Lasers Opt. 124(4), 71 (2018).
[Crossref]

Yamamoto, H.

T. Minamikawa, Y. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref]

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref]

Yang, R.

R. Yang, F. Pollinge, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
[Crossref]

Yao, J.

Yasui, T.

K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25(18), 21947–21957 (2017).
[Crossref]

T. Minamikawa, Y. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref]

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4(1), 3816 (2015).
[Crossref]

S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui, “A distance meter using a terahertz intermode beat in an optical frequency comb,” Opt. Express 17(20), 17324–17333 (2009).
[Crossref]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multi-frequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Ye, J.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5(13), 2241–2246 (2014).
[Crossref]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16(4), 2387–2397 (2008).
[Crossref]

Yokoyama, S.

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4(1), 3816 (2015).
[Crossref]

S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui, “A distance meter using a terahertz intermode beat in an optical frequency comb,” Opt. Express 17(20), 17324–17333 (2009).
[Crossref]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multi-frequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

Yokoyama, T.

Yoshida, S.

Zolot, A. M.

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of green gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
[Crossref]

A. M. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
[Crossref]

Appl. Phys. B: Lasers Opt. (2)

Y. Shimizu, S. Okubo, A. Onae, K. M. T. Yamada, and H. Inaba, “Molecular gas thermometry on acetylene using dual-comb spectroscopy: analysis of rotational energy distribution,” Appl. Phys. B: Lasers Opt. 124(4), 71 (2018).
[Crossref]

B. Berinhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picque, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 µm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B: Lasers Opt. 100(1), 3–8 (2010).
[Crossref]

Appl. Phys. Express (1)

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Appl. Phys. Lett. (2)

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multi-frequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5(13), 2241–2246 (2014).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

A. M. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
[Crossref]

Meas. Sci. Technol. (2)

R. Yang, F. Pollinge, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
[Crossref]

Y. Deguchi, M. Noda, Y. Fukuda, Y. Ichinose, Y. Endo, M. Inada, Y. Abe, and S. Iwasaki, “Industrial applications of temperature and species concentration monitoring using laser diagnostics,” Meas. Sci. Technol. 13(10), R103–R115 (2002).
[Crossref]

Nat. Commun. (1)

T. Minamikawa, Y. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref]

Nature (3)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

S. A. Diddams, L. Holloberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Optica (3)

Phys. Rev. A (2)

N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70(2), 023811 (2004).
[Crossref]

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
[Crossref]

Phys. Rev. Lett. (1)

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref]

Proc. Combust. Inst. (1)

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

Rev. Sci. Instrum. (1)

P. Mao, Z. Wang, W. Dang, and Y. Wenga, “Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background,” Rev. Sci. Instrum. 86(12), 123113 (2015).
[Crossref]

Sci. Rep. (1)

Y. D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4(1), 3816 (2015).
[Crossref]

Other (1)

P. R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy (Wiley, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Principle of operation and (b) experimental setup of LID-DCS. Signal and local OFCs, signal and local optical frequency combs; CWL, narrow-linewidth CW laser; Rb-FS, rubidium frequency standard; λ/4, a quarter waveplate; λ/2, half waveplate; BS, beam splitter; BPF, 1550 ± 10 nm band-pass filter; PBS, polarization beam splitter; PD, photodetector; RF-LIA1 and RF-LIA2, radio-frequency lock-in amplifiers; RF-WG, RF waveform generator.
Fig. 2.
Fig. 2. Performance evaluation of LID-DCS and DCS. Fluctuation of spectral amplitude in (a) LID-DCS and (b) DCS. (c) Comparison of SNR of spectral amplitude and optical resolution between LID-DCS and DCS.
Fig. 3.
Fig. 3. Temporal response of spectral amplitude for (a) LID-DCS and (b) DCS when the optical beam of the signal light was chopped by a glass plate. Lower insets show the magnified temporal response of upper figures.
Fig. 4.
Fig. 4. (a) Amplitude spectrum around a P(9) absorption line of cyanide gas (H13C14N) measured by LID-DCS (red lines, sampling interval = 1 GHz) and DCS (blue lines, sampling interval = 100 MHz), and its difference plot (upper). (b) Experimental data for the amplitude spectrum (red lines, sampling interval = 1 GHz) and its corresponding curve fitting analysis around the same absorption line. Green line shows a literature value of this absorption line position [30].