Abstract

In this work, we study plasmon antenna array lasers for solid-state lighting (SSL). Optically pumped plasmon antenna array lasers can provide benefits suitable for SSL including efficient pump-light absorption, high brightness, and good directivity. However, applying lasers in SSL is difficult because of speckle formation. To overcome this issue, we propose two types of lasers based on patchworks of small plasmon lattices with different lattice constants, tessellating an extended surface. The premise is that they could ultimately form a blue-LED pumped broad-area directional emitter with reduced coherence to suppress speckle. An important question is whether different patches couple when assembled together, and how this affects spatial and spectral profiles. In this paper, we show measurement results on the plasmon patchwork lasers, and discuss their modelling and potential application as low etendue and speckle free sources in SSL.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime

Falko Riechert, Gordon Craggs, Youri Meuret, Bart Van Giel, Hugo Thienpont, Uli Lemmer, and Guy Verschaffelt
Appl. Opt. 48(4) 792-798 (2009)

Decoherence of fiber supercontinuum light source for speckle-free imaging

Rui Ma, Wei Li Zhang, Jia Yu Guo, and Yun Jiang Rao
Opt. Express 26(20) 26758-26765 (2018)

Lasing in quasi-periodic and aperiodic plasmon lattices

A. Hinke Schokker and A. Femius Koenderink
Optica 3(7) 686-693 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
    [Crossref]
  2. Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(1), 31206 (2016).
    [Crossref]
  3. A. F. George, S. Al-waisawy, J. T. Wright, W. M. Jadwisienczak, and F. Rahman, “Laser-driven phosphor-converted white light source for solid-state illumination,” Appl. Opt. 55(8), 1899–1905 (2016).
    [Crossref]
  4. R. Knize, “Full color solid state laser projector system,” US Pat. 5,317,348 (1994).
  5. B. D. Silverstein, A. F. Kurtz, J. R. Bietry, and G. E. Nothhard, “25.4: A laser-based digital cinema projector,” SID Symp. Dig. Tech. Pap. 42(1), 326–329 (2011).
    [Crossref]
  6. J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts and Company Publishers, 2007).
  7. J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
    [Crossref]
  8. T.-T.-K. Tran, Ø. Svensen, X. Chen, and M. N. Akram, “Speckle reduction in laser projection displays through angle and wavelength diversity,” Appl. Opt. 55(6), 1267–1274 (2016).
    [Crossref]
  9. E. Rawson, “Speckle minimization in projection displays by reducing spatial coherence of the image light,” US Pat. 4,035,068 (1977).
  10. E. G. Rawson, A. B. Nafarrate, R. E. Norton, and J. W. Goodman, “Speckle-free rear-projection screen using two close screens in slow relative motion,” J. Opt. Soc. Am. 66(11), 1290–1294 (1976).
    [Crossref]
  11. L. Wang, T. Tschudi, T. Halldórsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37(10), 1770–1775 (1998).
    [Crossref]
  12. S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27(3), 91–96 (2006).
    [Crossref]
  13. T.-K.-T. Tran, X. Chen, Ø. Svensen, and M. N. Akram, “Speckle reduction in laser projection using a dynamic deformable mirror,” Opt. Express 22(9), 11152–11166 (2014).
    [Crossref]
  14. X. Meng, J. Liu, A. V. Kildishev, and V. M. Shalaev, “Highly directional spaser array for the red wavelength region,” Laser Photonics Rev. 8(6), 896–903 (2014).
    [Crossref]
  15. J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15(20), 1726–1729 (2003).
    [Crossref]
  16. J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
    [Crossref]
  17. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
    [Crossref]
  18. A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6(1), 6939 (2015).
    [Crossref]
  19. A. Yang, Z. Li, M. P. Knudson, A. J. Hryn, W. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
    [Crossref]
  20. A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90(15), 155452 (2014).
    [Crossref]
  21. M. Ramezani, A. Halpin, A. I. Fernández-Domínguez, J. Feist, S. R.-K. Rodriguez, F. J. García-Vidal, and J. G. Rivas, “Plasmon-exciton-polariton lasing,” Optica 4(1), 31–37 (2017).
    [Crossref]
  22. T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8(1), 13687 (2017).
    [Crossref]
  23. H. T. Rekola, T. K. Hakala, and P. Törmä, “One-dimensional plasmonic nanoparticle chain lasers,” ACS Photonics 5(5), 1822–1826 (2018).
    [Crossref]
  24. K. S. Daskalakis, A. I. Väkeväinen, J.-P. Martikainen, T. K. Hakala, and P. Törmä, “Ultrafast pulse generation in an organic nanoparticle-array laser,” Nano Lett. 18(4), 2658–2665 (2018).
    [Crossref]
  25. A. H. Schokker and A. F. Koenderink, “Statistics of randomized plasmonic lattice lasers,” ACS Photonics 2(9), 1289–1297 (2015).
    [Crossref]
  26. A. H. Schokker and A. F. Koenderink, “Lasing in quasi-periodic and aperiodic plasmon lattices,” Optica 3(7), 686–693 (2016).
    [Crossref]
  27. D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12(9), 889–894 (2017).
    [Crossref]
  28. G. Lozano, D. J. Louwers, S. R. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
    [Crossref]
  29. G. Lozano, S. R. K. Rodriguez, M. A. Verschuuren, and J. G. Rivas, “Metallic nanostructures for efficient LED lighting,” Light: Sci. Appl. 5(6), e16080 (2016).
    [Crossref]
  30. A. H. Schokker, F. van Riggelen, Y. Hadad, A. Alú, and A. F. Koenderink, “Systematic study of the hybrid plasmonic-photonic band structure underlying lasing action of diffractive plasmon particle lattices,” Phys. Rev. B 95(8), 085409 (2017).
    [Crossref]
  31. K. Guo, M. Du, C. I. Osorio, and A. F. Koenderink, “Broadband light scattering and photoluminescence enhancement from plasmonic vogel’s golden spirals,” Laser Photonics Rev. 11(3), 1600235 (2017).
    [Crossref]
  32. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
    [Crossref]
  33. K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square-lattice photonic crystal lasers with te polarization,” IEEE J. Quantum Electron. 46(5), 788–795 (2010).
    [Crossref]
  34. K. Sakai, E. Miyai, and S. Noda, “Two-dimensional coupled wave theory for square-lattice photonic-crystal lasers with tm-polarization,” Opt. Express 15(7), 3981–3990 (2007).
    [Crossref]
  35. M. P. van Exter, V. T. Tenner, F. van Beijnum, M. J. A. de Dood, P. J. van Veldhoven, E. J. Geluk, and G. W. ’t Hooft, “Surface plasmon dispersion in metal hole array lasers,” Opt. Express 21(22), 27422–27437 (2013).
    [Crossref]
  36. G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “Uhp lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38(17), 2995–3010 (2005).
    [Crossref]
  37. D. K. G. de Boer, D. Bruls, and H. Jagt, “High-brightness source based on luminescent concentration,” Opt. Express 24(14), A1069–A1074 (2016).
    [Crossref]
  38. C. A. Thompson, K. J. Webb, and A. M. Weiner, “Diffusive media characterization with laser speckle,” Appl. Opt. 36(16), 3726–3734 (1997).
    [Crossref]
  39. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
    [Crossref]
  40. O. L. Muskens, T. van der Beek, and A. Lagendijk, “Angle dependence of the frequency correlation in random photonic media: Diffusive regime and its breakdown near localization,” Phys. Rev. B 84(3), 035106 (2011).
    [Crossref]
  41. P. M. Johnson, T. van der Beek, and A. Lagendijk, “Diffuse imaging and radius dependent frequency correlations in strongly scattering media,” Opt. Express 22(11), 13330–13342 (2014).
    [Crossref]
  42. A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
    [Crossref]

2018 (2)

H. T. Rekola, T. K. Hakala, and P. Törmä, “One-dimensional plasmonic nanoparticle chain lasers,” ACS Photonics 5(5), 1822–1826 (2018).
[Crossref]

K. S. Daskalakis, A. I. Väkeväinen, J.-P. Martikainen, T. K. Hakala, and P. Törmä, “Ultrafast pulse generation in an organic nanoparticle-array laser,” Nano Lett. 18(4), 2658–2665 (2018).
[Crossref]

2017 (5)

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12(9), 889–894 (2017).
[Crossref]

A. H. Schokker, F. van Riggelen, Y. Hadad, A. Alú, and A. F. Koenderink, “Systematic study of the hybrid plasmonic-photonic band structure underlying lasing action of diffractive plasmon particle lattices,” Phys. Rev. B 95(8), 085409 (2017).
[Crossref]

K. Guo, M. Du, C. I. Osorio, and A. F. Koenderink, “Broadband light scattering and photoluminescence enhancement from plasmonic vogel’s golden spirals,” Laser Photonics Rev. 11(3), 1600235 (2017).
[Crossref]

M. Ramezani, A. Halpin, A. I. Fernández-Domínguez, J. Feist, S. R.-K. Rodriguez, F. J. García-Vidal, and J. G. Rivas, “Plasmon-exciton-polariton lasing,” Optica 4(1), 31–37 (2017).
[Crossref]

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8(1), 13687 (2017).
[Crossref]

2016 (7)

Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(1), 31206 (2016).
[Crossref]

A. F. George, S. Al-waisawy, J. T. Wright, W. M. Jadwisienczak, and F. Rahman, “Laser-driven phosphor-converted white light source for solid-state illumination,” Appl. Opt. 55(8), 1899–1905 (2016).
[Crossref]

T.-T.-K. Tran, Ø. Svensen, X. Chen, and M. N. Akram, “Speckle reduction in laser projection displays through angle and wavelength diversity,” Appl. Opt. 55(6), 1267–1274 (2016).
[Crossref]

A. H. Schokker and A. F. Koenderink, “Lasing in quasi-periodic and aperiodic plasmon lattices,” Optica 3(7), 686–693 (2016).
[Crossref]

D. K. G. de Boer, D. Bruls, and H. Jagt, “High-brightness source based on luminescent concentration,” Opt. Express 24(14), A1069–A1074 (2016).
[Crossref]

G. Lozano, S. R. K. Rodriguez, M. A. Verschuuren, and J. G. Rivas, “Metallic nanostructures for efficient LED lighting,” Light: Sci. Appl. 5(6), e16080 (2016).
[Crossref]

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

2015 (3)

A. H. Schokker and A. F. Koenderink, “Statistics of randomized plasmonic lattice lasers,” ACS Photonics 2(9), 1289–1297 (2015).
[Crossref]

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6(1), 6939 (2015).
[Crossref]

A. Yang, Z. Li, M. P. Knudson, A. J. Hryn, W. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref]

2014 (4)

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90(15), 155452 (2014).
[Crossref]

T.-K.-T. Tran, X. Chen, Ø. Svensen, and M. N. Akram, “Speckle reduction in laser projection using a dynamic deformable mirror,” Opt. Express 22(9), 11152–11166 (2014).
[Crossref]

X. Meng, J. Liu, A. V. Kildishev, and V. M. Shalaev, “Highly directional spaser array for the red wavelength region,” Laser Photonics Rev. 8(6), 896–903 (2014).
[Crossref]

P. M. Johnson, T. van der Beek, and A. Lagendijk, “Diffuse imaging and radius dependent frequency correlations in strongly scattering media,” Opt. Express 22(11), 13330–13342 (2014).
[Crossref]

2013 (4)

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref]

G. Lozano, D. J. Louwers, S. R. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

M. P. van Exter, V. T. Tenner, F. van Beijnum, M. J. A. de Dood, P. J. van Veldhoven, E. J. Geluk, and G. W. ’t Hooft, “Surface plasmon dispersion in metal hole array lasers,” Opt. Express 21(22), 27422–27437 (2013).
[Crossref]

2012 (2)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref]

2011 (2)

B. D. Silverstein, A. F. Kurtz, J. R. Bietry, and G. E. Nothhard, “25.4: A laser-based digital cinema projector,” SID Symp. Dig. Tech. Pap. 42(1), 326–329 (2011).
[Crossref]

O. L. Muskens, T. van der Beek, and A. Lagendijk, “Angle dependence of the frequency correlation in random photonic media: Diffusive regime and its breakdown near localization,” Phys. Rev. B 84(3), 035106 (2011).
[Crossref]

2010 (1)

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square-lattice photonic crystal lasers with te polarization,” IEEE J. Quantum Electron. 46(5), 788–795 (2010).
[Crossref]

2007 (1)

2006 (1)

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27(3), 91–96 (2006).
[Crossref]

2005 (1)

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “Uhp lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38(17), 2995–3010 (2005).
[Crossref]

2003 (1)

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15(20), 1726–1729 (2003).
[Crossref]

2002 (1)

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[Crossref]

1998 (1)

1997 (1)

1976 (1)

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

’t Hooft, G. W.

Akram, M. N.

Alú, A.

A. H. Schokker, F. van Riggelen, Y. Hadad, A. Alú, and A. F. Koenderink, “Systematic study of the hybrid plasmonic-photonic band structure underlying lasing action of diffractive plasmon particle lattices,” Phys. Rev. B 95(8), 085409 (2017).
[Crossref]

Al-waisawy, S.

Aubry, A.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

Aydin, K.

A. Yang, Z. Li, M. P. Knudson, A. J. Hryn, W. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref]

Badon, A.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

Bietry, J. R.

B. D. Silverstein, A. F. Kurtz, J. R. Bietry, and G. E. Nothhard, “25.4: A laser-based digital cinema projector,” SID Symp. Dig. Tech. Pap. 42(1), 326–329 (2011).
[Crossref]

Boccara, A. C.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

Bruls, D.

Cantore, M.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Chen, X.

Co, D. T.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref]

Crewett, J.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15(20), 1726–1729 (2003).
[Crossref]

Daskalakis, K. S.

K. S. Daskalakis, A. I. Väkeväinen, J.-P. Martikainen, T. K. Hakala, and P. Törmä, “Ultrafast pulse generation in an organic nanoparticle-array laser,” Nano Lett. 18(4), 2658–2665 (2018).
[Crossref]

de Boer, D. K. G.

de Dood, M. J. A.

Deeb, C.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6(1), 6939 (2015).
[Crossref]

Denault, K. A.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

DenBaars, S. P.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Derra, G.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “Uhp lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38(17), 2995–3010 (2005).
[Crossref]

Dridi, M.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6(1), 6939 (2015).
[Crossref]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref]

Du, M.

K. Guo, M. Du, C. I. Osorio, and A. F. Koenderink, “Broadband light scattering and photoluminescence enhancement from plasmonic vogel’s golden spirals,” Laser Photonics Rev. 11(3), 1600235 (2017).
[Crossref]

Feist, J.

Feldmann, J.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15(20), 1726–1729 (2003).
[Crossref]

Fernández-Domínguez, A. I.

Fink, M.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Fischer, E.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “Uhp lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38(17), 2995–3010 (2005).
[Crossref]

Forster, M.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15(20), 1726–1729 (2003).
[Crossref]

García-Vidal, F. J.

Geluk, E. J.

George, A. F.

Giese, H.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “Uhp lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38(17), 2995–3010 (2005).
[Crossref]

Gómez Rivas, J.

G. Lozano, D. J. Louwers, S. R. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Goodman, J. W.

Guo, K.

K. Guo, M. Du, C. I. Osorio, and A. F. Koenderink, “Broadband light scattering and photoluminescence enhancement from plasmonic vogel’s golden spirals,” Laser Photonics Rev. 11(3), 1600235 (2017).
[Crossref]

Hadad, Y.

A. H. Schokker, F. van Riggelen, Y. Hadad, A. Alú, and A. F. Koenderink, “Systematic study of the hybrid plasmonic-photonic band structure underlying lasing action of diffractive plasmon particle lattices,” Phys. Rev. B 95(8), 085409 (2017).
[Crossref]

Hakala, T. K.

H. T. Rekola, T. K. Hakala, and P. Törmä, “One-dimensional plasmonic nanoparticle chain lasers,” ACS Photonics 5(5), 1822–1826 (2018).
[Crossref]

K. S. Daskalakis, A. I. Väkeväinen, J.-P. Martikainen, T. K. Hakala, and P. Törmä, “Ultrafast pulse generation in an organic nanoparticle-array laser,” Nano Lett. 18(4), 2658–2665 (2018).
[Crossref]

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8(1), 13687 (2017).
[Crossref]

Halldórsson, T.

Halpin, A.

Hechtfischer, U.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “Uhp lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38(17), 2995–3010 (2005).
[Crossref]

Heusler, G.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “Uhp lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38(17), 2995–3010 (2005).
[Crossref]

Hoang, T. B.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6(1), 6939 (2015).
[Crossref]

Holleitner, A.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15(20), 1726–1729 (2003).
[Crossref]

Hryn, A. J.

A. Yang, Z. Li, M. P. Knudson, A. J. Hryn, W. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref]

Hua, Y.

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12(9), 889–894 (2017).
[Crossref]

Huntington, M. D.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref]

Jadwisienczak, W. M.

Jagt, H.

Jansen, O. T.

G. Lozano, D. J. Louwers, S. R. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Jeong, B. W.

Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(1), 31206 (2016).
[Crossref]

Ji, E. K.

Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(1), 31206 (2016).
[Crossref]

Johnson, P. M.

Jung, M. K.

Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(1), 31206 (2016).
[Crossref]

Kildishev, A. V.

X. Meng, J. Liu, A. V. Kildishev, and V. M. Shalaev, “Highly directional spaser array for the red wavelength region,” Laser Photonics Rev. 8(6), 896–903 (2014).
[Crossref]

Kim, C. H.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref]

Kim, E. Y.

Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(1), 31206 (2016).
[Crossref]

Klar, T.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15(20), 1726–1729 (2003).
[Crossref]

Knize, R.

R. Knize, “Full color solid state laser projector system,” US Pat. 5,317,348 (1994).

Knudson, M. P.

A. Yang, Z. Li, M. P. Knudson, A. J. Hryn, W. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref]

Koenderink, A. F.

A. H. Schokker, F. van Riggelen, Y. Hadad, A. Alú, and A. F. Koenderink, “Systematic study of the hybrid plasmonic-photonic band structure underlying lasing action of diffractive plasmon particle lattices,” Phys. Rev. B 95(8), 085409 (2017).
[Crossref]

K. Guo, M. Du, C. I. Osorio, and A. F. Koenderink, “Broadband light scattering and photoluminescence enhancement from plasmonic vogel’s golden spirals,” Laser Photonics Rev. 11(3), 1600235 (2017).
[Crossref]

A. H. Schokker and A. F. Koenderink, “Lasing in quasi-periodic and aperiodic plasmon lattices,” Optica 3(7), 686–693 (2016).
[Crossref]

A. H. Schokker and A. F. Koenderink, “Statistics of randomized plasmonic lattice lasers,” ACS Photonics 2(9), 1289–1297 (2015).
[Crossref]

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90(15), 155452 (2014).
[Crossref]

Koerber, A.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “Uhp lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38(17), 2995–3010 (2005).
[Crossref]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

Kurtz, A. F.

B. D. Silverstein, A. F. Kurtz, J. R. Bietry, and G. E. Nothhard, “25.4: A laser-based digital cinema projector,” SID Symp. Dig. Tech. Pap. 42(1), 326–329 (2011).
[Crossref]

Kwon, J. W.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27(3), 91–96 (2006).
[Crossref]

Lagendijk, A.

P. M. Johnson, T. van der Beek, and A. Lagendijk, “Diffuse imaging and radius dependent frequency correlations in strongly scattering media,” Opt. Express 22(11), 13330–13342 (2014).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

O. L. Muskens, T. van der Beek, and A. Lagendijk, “Angle dependence of the frequency correlation in random photonic media: Diffusive regime and its breakdown near localization,” Phys. Rev. B 84(3), 035106 (2011).
[Crossref]

Lee, S. Y.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27(3), 91–96 (2006).
[Crossref]

Lee, S.-G.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27(3), 91–96 (2006).
[Crossref]

Lemmer, U.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15(20), 1726–1729 (2003).
[Crossref]

Lerosey, G.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Li, D.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

Li, Z.

A. Yang, Z. Li, M. P. Knudson, A. J. Hryn, W. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref]

Liu, J.

X. Meng, J. Liu, A. V. Kildishev, and V. M. Shalaev, “Highly directional spaser array for the red wavelength region,” Laser Photonics Rev. 8(6), 896–903 (2014).
[Crossref]

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Lozano, G.

G. Lozano, S. R. K. Rodriguez, M. A. Verschuuren, and J. G. Rivas, “Metallic nanostructures for efficient LED lighting,” Light: Sci. Appl. 5(6), e16080 (2016).
[Crossref]

G. Lozano, D. J. Louwers, S. R. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Lupton, J.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15(20), 1726–1729 (2003).
[Crossref]

Martikainen, J.-P.

K. S. Daskalakis, A. I. Väkeväinen, J.-P. Martikainen, T. K. Hakala, and P. Törmä, “Ultrafast pulse generation in an organic nanoparticle-array laser,” Nano Lett. 18(4), 2658–2665 (2018).
[Crossref]

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8(1), 13687 (2017).
[Crossref]

Meng, X.

X. Meng, J. Liu, A. V. Kildishev, and V. M. Shalaev, “Highly directional spaser array for the red wavelength region,” Laser Photonics Rev. 8(6), 896–903 (2014).
[Crossref]

Mikkelsen, M. H.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6(1), 6939 (2015).
[Crossref]

Miyai, E.

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square-lattice photonic crystal lasers with te polarization,” IEEE J. Quantum Electron. 46(5), 788–795 (2010).
[Crossref]

K. Sakai, E. Miyai, and S. Noda, “Two-dimensional coupled wave theory for square-lattice photonic-crystal lasers with tm-polarization,” Opt. Express 15(7), 3981–3990 (2007).
[Crossref]

Moench, H.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “Uhp lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38(17), 2995–3010 (2005).
[Crossref]

Moilanen, A. J.

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8(1), 13687 (2017).
[Crossref]

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Murai, S.

G. Lozano, D. J. Louwers, S. R. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Muskens, O. L.

O. L. Muskens, T. van der Beek, and A. Lagendijk, “Angle dependence of the frequency correlation in random photonic media: Diffusive regime and its breakdown near localization,” Phys. Rev. B 84(3), 035106 (2011).
[Crossref]

Nafarrate, A. B.

Nakamura, S.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Necada, M.

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8(1), 13687 (2017).
[Crossref]

Niemann, U.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “Uhp lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38(17), 2995–3010 (2005).
[Crossref]

Noda, S.

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square-lattice photonic crystal lasers with te polarization,” IEEE J. Quantum Electron. 46(5), 788–795 (2010).
[Crossref]

K. Sakai, E. Miyai, and S. Noda, “Two-dimensional coupled wave theory for square-lattice photonic-crystal lasers with tm-polarization,” Opt. Express 15(7), 3981–3990 (2007).
[Crossref]

Noertemann, F.-C.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “Uhp lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38(17), 2995–3010 (2005).
[Crossref]

Norton, R. E.

Nothhard, G. E.

B. D. Silverstein, A. F. Kurtz, J. R. Bietry, and G. E. Nothhard, “25.4: A laser-based digital cinema projector,” SID Symp. Dig. Tech. Pap. 42(1), 326–329 (2011).
[Crossref]

Odom, T. W.

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12(9), 889–894 (2017).
[Crossref]

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6(1), 6939 (2015).
[Crossref]

A. Yang, Z. Li, M. P. Knudson, A. J. Hryn, W. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref]

Osorio, C. I.

K. Guo, M. Du, C. I. Osorio, and A. F. Koenderink, “Broadband light scattering and photoluminescence enhancement from plasmonic vogel’s golden spirals,” Laser Photonics Rev. 11(3), 1600235 (2017).
[Crossref]

Park, C.-Y.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27(3), 91–96 (2006).
[Crossref]

Park, S.-Y.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27(3), 91–96 (2006).
[Crossref]

Pekarski, P.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “Uhp lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38(17), 2995–3010 (2005).
[Crossref]

Pétursson, P. R.

Pollmann-Retsch, J.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “Uhp lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38(17), 2995–3010 (2005).
[Crossref]

Rahman, F.

Ramezani, M.

Rawson, E.

E. Rawson, “Speckle minimization in projection displays by reducing spatial coherence of the image light,” US Pat. 4,035,068 (1977).

Rawson, E. G.

Rekola, H. T.

H. T. Rekola, T. K. Hakala, and P. Törmä, “One-dimensional plasmonic nanoparticle chain lasers,” ACS Photonics 5(5), 1822–1826 (2018).
[Crossref]

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8(1), 13687 (2017).
[Crossref]

Ritz, A.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “Uhp lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38(17), 2995–3010 (2005).
[Crossref]

Rivas, J. G.

M. Ramezani, A. Halpin, A. I. Fernández-Domínguez, J. Feist, S. R.-K. Rodriguez, F. J. García-Vidal, and J. G. Rivas, “Plasmon-exciton-polariton lasing,” Optica 4(1), 31–37 (2017).
[Crossref]

G. Lozano, S. R. K. Rodriguez, M. A. Verschuuren, and J. G. Rivas, “Metallic nanostructures for efficient LED lighting,” Light: Sci. Appl. 5(6), e16080 (2016).
[Crossref]

Rodriguez, S. R.

G. Lozano, D. J. Louwers, S. R. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Rodriguez, S. R. K.

G. Lozano, S. R. K. Rodriguez, M. A. Verschuuren, and J. G. Rivas, “Metallic nanostructures for efficient LED lighting,” Light: Sci. Appl. 5(6), e16080 (2016).
[Crossref]

Rodriguez, S. R.-K.

Sakai, K.

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square-lattice photonic crystal lasers with te polarization,” IEEE J. Quantum Electron. 46(5), 788–795 (2010).
[Crossref]

K. Sakai, E. Miyai, and S. Noda, “Two-dimensional coupled wave theory for square-lattice photonic-crystal lasers with tm-polarization,” Opt. Express 15(7), 3981–3990 (2007).
[Crossref]

Schaller, R. D.

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12(9), 889–894 (2017).
[Crossref]

Schatz, G. C.

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12(9), 889–894 (2017).
[Crossref]

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6(1), 6939 (2015).
[Crossref]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref]

Scherf, U.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15(20), 1726–1729 (2003).
[Crossref]

Schindler, F.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15(20), 1726–1729 (2003).
[Crossref]

Schokker, A. H.

A. H. Schokker, F. van Riggelen, Y. Hadad, A. Alú, and A. F. Koenderink, “Systematic study of the hybrid plasmonic-photonic band structure underlying lasing action of diffractive plasmon particle lattices,” Phys. Rev. B 95(8), 085409 (2017).
[Crossref]

A. H. Schokker and A. F. Koenderink, “Lasing in quasi-periodic and aperiodic plasmon lattices,” Optica 3(7), 686–693 (2016).
[Crossref]

A. H. Schokker and A. F. Koenderink, “Statistics of randomized plasmonic lattice lasers,” ACS Photonics 2(9), 1289–1297 (2015).
[Crossref]

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90(15), 155452 (2014).
[Crossref]

Seshadri, R.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Shalaev, V. M.

X. Meng, J. Liu, A. V. Kildishev, and V. M. Shalaev, “Highly directional spaser array for the red wavelength region,” Laser Photonics Rev. 8(6), 896–903 (2014).
[Crossref]

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

Shin, S. C.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27(3), 91–96 (2006).
[Crossref]

Silverstein, B. D.

B. D. Silverstein, A. F. Kurtz, J. R. Bietry, and G. E. Nothhard, “25.4: A laser-based digital cinema projector,” SID Symp. Dig. Tech. Pap. 42(1), 326–329 (2011).
[Crossref]

Song, Y. H.

Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(1), 31206 (2016).
[Crossref]

Sperling, R.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15(20), 1726–1729 (2003).
[Crossref]

Stehr, J.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15(20), 1726–1729 (2003).
[Crossref]

Suh, J. Y.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref]

Svensen, Ø.

Tenner, V. T.

Thompson, C. A.

Törmä, P.

K. S. Daskalakis, A. I. Väkeväinen, J.-P. Martikainen, T. K. Hakala, and P. Törmä, “Ultrafast pulse generation in an organic nanoparticle-array laser,” Nano Lett. 18(4), 2658–2665 (2018).
[Crossref]

H. T. Rekola, T. K. Hakala, and P. Törmä, “One-dimensional plasmonic nanoparticle chain lasers,” ACS Photonics 5(5), 1822–1826 (2018).
[Crossref]

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8(1), 13687 (2017).
[Crossref]

Tran, T.-K.-T.

Tran, T.-T.-K.

Trisnadi, J. I.

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[Crossref]

Tschudi, T.

Väkeväinen, A. I.

K. S. Daskalakis, A. I. Väkeväinen, J.-P. Martikainen, T. K. Hakala, and P. Törmä, “Ultrafast pulse generation in an organic nanoparticle-array laser,” Nano Lett. 18(4), 2658–2665 (2018).
[Crossref]

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8(1), 13687 (2017).
[Crossref]

van Beijnum, F.

van der Beek, T.

P. M. Johnson, T. van der Beek, and A. Lagendijk, “Diffuse imaging and radius dependent frequency correlations in strongly scattering media,” Opt. Express 22(11), 13330–13342 (2014).
[Crossref]

O. L. Muskens, T. van der Beek, and A. Lagendijk, “Angle dependence of the frequency correlation in random photonic media: Diffusive regime and its breakdown near localization,” Phys. Rev. B 84(3), 035106 (2011).
[Crossref]

van Exter, M. P.

van Riggelen, F.

A. H. Schokker, F. van Riggelen, Y. Hadad, A. Alú, and A. F. Koenderink, “Systematic study of the hybrid plasmonic-photonic band structure underlying lasing action of diffractive plasmon particle lattices,” Phys. Rev. B 95(8), 085409 (2017).
[Crossref]

van Veldhoven, P. J.

Verschuuren, M. A.

G. Lozano, S. R. K. Rodriguez, M. A. Verschuuren, and J. G. Rivas, “Metallic nanostructures for efficient LED lighting,” Light: Sci. Appl. 5(6), e16080 (2016).
[Crossref]

G. Lozano, D. J. Louwers, S. R. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

von Plessen, G.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15(20), 1726–1729 (2003).
[Crossref]

Wang, D.

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12(9), 889–894 (2017).
[Crossref]

Wang, L.

Wang, W.

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12(9), 889–894 (2017).
[Crossref]

A. Yang, Z. Li, M. P. Knudson, A. J. Hryn, W. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref]

Wasielewski, M. R.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref]

Webb, K. J.

Weichmann, U.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “Uhp lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38(17), 2995–3010 (2005).
[Crossref]

Weiner, A. M.

Wright, J. T.

Yang, A.

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12(9), 889–894 (2017).
[Crossref]

A. Yang, Z. Li, M. P. Knudson, A. J. Hryn, W. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref]

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6(1), 6939 (2015).
[Crossref]

Yoo, S. S.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27(3), 91–96 (2006).
[Crossref]

Yoon, D. H.

Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(1), 31206 (2016).
[Crossref]

Zhou, W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref]

ACS Nano (1)

A. Yang, Z. Li, M. P. Knudson, A. J. Hryn, W. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref]

ACS Photonics (2)

H. T. Rekola, T. K. Hakala, and P. Törmä, “One-dimensional plasmonic nanoparticle chain lasers,” ACS Photonics 5(5), 1822–1826 (2018).
[Crossref]

A. H. Schokker and A. F. Koenderink, “Statistics of randomized plasmonic lattice lasers,” ACS Photonics 2(9), 1289–1297 (2015).
[Crossref]

Adv. Mater. (1)

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15(20), 1726–1729 (2003).
[Crossref]

AIP Adv. (1)

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Appl. Opt. (4)

Displays (1)

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27(3), 91–96 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square-lattice photonic crystal lasers with te polarization,” IEEE J. Quantum Electron. 46(5), 788–795 (2010).
[Crossref]

J. Appl. Phys. (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. D: Appl. Phys. (1)

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F.-C. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, “Uhp lamp systems for projection applications,” J. Phys. D: Appl. Phys. 38(17), 2995–3010 (2005).
[Crossref]

Laser Photonics Rev. (2)

K. Guo, M. Du, C. I. Osorio, and A. F. Koenderink, “Broadband light scattering and photoluminescence enhancement from plasmonic vogel’s golden spirals,” Laser Photonics Rev. 11(3), 1600235 (2017).
[Crossref]

X. Meng, J. Liu, A. V. Kildishev, and V. M. Shalaev, “Highly directional spaser array for the red wavelength region,” Laser Photonics Rev. 8(6), 896–903 (2014).
[Crossref]

Light: Sci. Appl. (2)

G. Lozano, D. J. Louwers, S. R. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

G. Lozano, S. R. K. Rodriguez, M. A. Verschuuren, and J. G. Rivas, “Metallic nanostructures for efficient LED lighting,” Light: Sci. Appl. 5(6), e16080 (2016).
[Crossref]

Nano Lett. (2)

K. S. Daskalakis, A. I. Väkeväinen, J.-P. Martikainen, T. K. Hakala, and P. Törmä, “Ultrafast pulse generation in an organic nanoparticle-array laser,” Nano Lett. 18(4), 2658–2665 (2018).
[Crossref]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref]

Nat. Commun. (2)

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6(1), 6939 (2015).
[Crossref]

T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8(1), 13687 (2017).
[Crossref]

Nat. Nanotechnol. (2)

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12(9), 889–894 (2017).
[Crossref]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref]

Nat. Photonics (1)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Opt. Express (5)

Optica (2)

Phys. Rev. B (3)

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90(15), 155452 (2014).
[Crossref]

A. H. Schokker, F. van Riggelen, Y. Hadad, A. Alú, and A. F. Koenderink, “Systematic study of the hybrid plasmonic-photonic band structure underlying lasing action of diffractive plasmon particle lattices,” Phys. Rev. B 95(8), 085409 (2017).
[Crossref]

O. L. Muskens, T. van der Beek, and A. Lagendijk, “Angle dependence of the frequency correlation in random photonic media: Diffusive regime and its breakdown near localization,” Phys. Rev. B 84(3), 035106 (2011).
[Crossref]

Proc. SPIE (1)

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[Crossref]

Sci. Adv. (1)

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref]

Sci. Rep. (1)

Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(1), 31206 (2016).
[Crossref]

SID Symp. Dig. Tech. Pap. (1)

B. D. Silverstein, A. F. Kurtz, J. R. Bietry, and G. E. Nothhard, “25.4: A laser-based digital cinema projector,” SID Symp. Dig. Tech. Pap. 42(1), 326–329 (2011).
[Crossref]

Other (3)

J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts and Company Publishers, 2007).

E. Rawson, “Speckle minimization in projection displays by reducing spatial coherence of the image light,” US Pat. 4,035,068 (1977).

R. Knize, “Full color solid state laser projector system,” US Pat. 5,317,348 (1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. A schematic of the sample design. An $N\times N$ square array is divided into patches of $n\times n$. To make a checkerboard array, we change the pitch of the B patches from $d$ to $d+\delta$. The particle numbers are reduced so that the resulting B’ patches are not larger than the original B patches. For the Random patchwork arrays, we change the pitches in every patch to $d+\delta _{\textrm {ij}}$ and also change the particle numbers accordingly to fit in the original patch size.
Fig. 2.
Fig. 2. (a) Calculated absolute value of Fourier transform of a A-B’ dimer with $n=10$ and $\delta =1$ nm. (b) Calculated absolute value of Fourier transform of a checkerboard laser with $n=10$ and $\delta =1$ nm (left). Groups of peaks occur near the base lattice reciprocal lattice vectors $(\pm 1,0)G$ and $(0,\pm 1)G$ (right shows zoom). (c) similar zoom of Fourier transform of a checkerboard laser with $n=40$, showing that the supercell features come closer together. (b-c) are normalized to $1/10$ of the maximum at $k_x=k_y=0$. (d-e) Calculated band structures of checkerboard lasers with $\delta =1$ nm at (d) $\omega _0$ and (e-f) $k_y=0$ for (e) $n=10$ and (f) $n=40$, obtained by convolving the structure factor with the ‘free photon’ waveguide dispersion. Red lines indicate dominant features expected taking just dominant peaks in the structure factor.
Fig. 3.
Fig. 3. (a) Calculated root mean square of Fourier transforms of 20 realizations of random patchwork lasers with $n=10, 20, 40, 60$ and $|\delta _{ij}|<10$ nm near $(G,0)$. All images are normalized to $1/5$ of the maximum at $k_x=k_y=0$. (b) Calculated band structures of random patchwork arrays with $n=10$, 40 and $|\delta _{ij}|<10$ nm. They are normalized to 1.5 times the normalization factor (norm) in Fig. 2(g).
Fig. 4.
Fig. 4. Measured band structures at $k_y=0$ of (a) checkerboard and (b) random patchwork lasers with $n=10, 40, 60$, $\delta =$ 1 nm and $|\delta _{ij}|<5$ nm. The images are obtained by dividing the spectrometer camera images by the corresponding spectra (sum over $k_x$) along the frequency direction for optimum contrast. The resulting images are normalized to the maxima or half maxima of each image. (a) is obtained with 1000 pulses at 7 % pump power. (b) is obtained with 1000 pulses at 10 % pump power.(c) Measured spectra at $k_x=0$ of checkerboard lasers as a function of pump power. $n=$ 10, 20, 40 and 60, $\delta$=1 nm, (d) Measured spectra at $k_y=0$ of random patchwork lasers as a function of pump power. $n=$ 10, 20, 40 and 60, $\delta _{\textrm {ij}}<$10 nm. (c-d) are normalized to the maxima of each image. (e) Emission intensity at $k_x=0$ as a function of pump power of the lowest threshold lasing mode measured from checkerboard lasers with $n=$ 10, 20, 40, 60, and $\delta$=1 nm. (f) Lasing thresholds of the lowest threshold modes of checkerboard and random patchwork lasers, with $n=$ 10, 20, 40, 60, $\delta$=1, 2, 4 nm for the checkerboard lasers and $\delta _{\textrm {ij}}<$10 nm for the random patchwork lasers. White arrows point at the lowest threshold lasing mode.
Fig. 5.
Fig. 5. (a-c) Measured above threshold lasing spectra of checkerboard lasers at 60% pump power. $n=$ 10, 20, 40, 60. (a) $\delta =1$ nm, (b) $\delta =2$ nm (c) $\delta =4$ nm. (d) Measured above threshold lasing spectra of random patchwork lasers at 50% pump power. $n= 10$, 20, 40, 60, and $\delta _{\textrm {ij}}<10$ nm. (e) Measured above threshold spectra of dimers of two $n=60$ patches spaced by 370 nm, and with $\delta = 1, 2, 4$ nm, compared with spectrum of a single patch excited in a checkerboard array with $\delta =4$ nm and $n=60$.
Fig. 6.
Fig. 6. (a) Measured real space spectral images of checkerboard lasers with $\delta =1$ nm, $n=10$, 20, 40, 60. The colorbar runs from 0 intensity to halfway the maximum intensity of each measurement. (b) Measured double slit interference of the delocalized mode(s) at $3.29\times 10^{15}$ rad/s from the $n=10$ sample. Data are taken at maximum pump power.
Fig. 7.
Fig. 7. COMSOL coupled wave solutions for intensity envelope functions ($|R_x|^2 +|S_x|^2+|R_y|^2+|S_y|^2$, normalized) in dimers of square patches in the case of (a-c) undercoupling, $|\kappa _2| L =0.2$ and (d-f) overcoupling, $|\kappa _2| L=2$. The quantity $g/g_{\textrm {single}}$ indicates the threshold gain normalized to that for the fundamental lasing mode of a single square patch at the same coupling strength. The threshold gain for a square patch in the case $|\kappa _2| L =0.2$ is about 6.8 times higher than that in case of $|\kappa _2| L = 2$. The simulated patches are $L=5\times 5~\mu$m across, making the dimer maps $10\times 5~\mu$m$^2$. The color scale spans in panels (a-c) from 0 to the maxima of each image, and in panels (d-f) from the minima to the maxima, where the minima are at fractions (d) 0.25, 0.32,0.13, (e) 0.23, 0.12, 0.10, (f) 0.09, 0.07, 0.03 of the maxima. The ”phase slip” cases (c,f) are pertinent for a shift of one patch relative to the other by a half pitch, as is effectively the case of our samples.
Fig. 8.
Fig. 8. (a) Above-threshold Fourier images of checkerboard lasers with $\delta =1$ nm and $n = 10, 20, 40, 60$ excited at 60 % pump power and measured after an OD 1 filter. (b) Intensity distribution as a function of polar angle $\theta$ obtained from (a) by averaging over the azimuthal angle. (c) Measured above-threshold Fourier images of random patchwork lasers with $\delta _{\textrm {ij}}<10$ nm and $n = 10, 20, 40, 60$ at 50 % pump power. (d) Intensity distribution as a function of $\theta$ obtained from (c). The Fourier images are normalized to the maxima of each image.

Tables (1)

Tables Icon

Table 1. Angle at the half maximum ($\theta _{{1/2}}$) and etendue of the checkerboard and random patchwork lasers estimated from the angular intensity distribution in Fig. 8(b)(d).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

2 E x 2 + 2 E y 2 + k 2 E = 0
k 2 = β 2 + 2 i α β + 2 β G 0 κ ( G ) e i G . r .
E z = R x ( x , y ) e i β 1 x + S x ( x , y ) e i β 1 x + R y ( x , y ) e i β 1 y + S y ( x , y ) e i β 1 y ,
x R x + ( α i δ β ) R x = i κ 2 S x e 2 i Δ β i x 2 i ϕ i + i κ 1 , 1 S y e i Δ β i x i Δ β i y i ϕ i + i κ 1 , 1 R y e i Δ β i x + i Δ β i y i ϕ i
x S x + ( α i δ β ) S x = i κ 2 R x e 2 i Δ β i x + 2 i ϕ i + i κ 1 , 1 S y e i Δ β i x i Δ β i y + i ϕ i + i κ 1 , 1 R y e i Δ β i x + i Δ β i y + i ϕ i
x R y + ( α i δ β ) R y = i κ 2 S y e 2 i Δ β i y + i κ 1 , 1 S x e i Δ β i x i Δ β i y i ϕ i + i κ 1 , 1 R x e i Δ β i x i Δ β i y + i ϕ i
x S y + ( α i δ β ) S y = i κ 2 R y e 2 i Δ β i y + i κ 1 , 1 S x e i Δ β i x + i Δ β i y i ϕ i + i κ 1 , 1 R x e i Δ β i x + i Δ β i y + i ϕ i .

Metrics