Abstract

Electronically controlled optical beam steering is sensitive and reliable. It is significant for phased laser radar applications. We reported the experimental characterization of three-element coherent vertical cavity surface emitting laser arrays and demonstrated two-dimensional electronical beam steering. 2-D far-field patterns, near-field patterns, and the spectra of the beam under different current conditions were measured. It is demonstrated that beam steering is continuous and predicted. Above 17.9% of the total power of the array is concentrated in the central lobe, showing high coupling efficiency. Up to a 3.26° shift angle from normal is demonstrated. The beam steering mechanism of frequency detuning between the three cavities was analyzed via both theory and experiment.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phase tuning in two-dimensional coherently coupled vertical-cavity surface-emitting laser array

Meng Xun, Chen Xu, Yiyang Xie, Jun Deng, Guoqing Jiang, Guanzhong Pan, Yibo Dong, and Hongda Chen
Appl. Opt. 55(20) 5439-5443 (2016)

Analysis of optical coupling behavior in two-dimensional implant-defined coherently coupled vertical-cavity surface-emitting laser arrays

Guanzhong Pan, Yiyang Xie, Chen Xu, Yibo Dong, Jun Deng, Hongda Chen, and Jie Sun
Photon. Res. 6(11) 1048-1055 (2018)

Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers

Keyvan Sayyah, Oleg Efimov, Pamela Patterson, James Schaffner, Carson White, Jean-Francois Seurin, Guoyang Xu, and Alexander Miglo
Opt. Express 23(15) 19405-19416 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. D. A. Lundeberg, D. L. Boiko, and E. Kapon, “Coupled islands of photonic crystal heterostructures implemented with vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 87(24), 241120 (2005).
    [Crossref]
  2. D. G. Deppe, J. Leshin, L. Eifert, F. Tucker, and T. Hillyer, “Transverse mode confinement in lithographic VCSELs,” Electron. Lett. 53(24), 1598–1600 (2017).
    [Crossref]
  3. M. Yokoyama and S. Noda, “Polarization mode control of two-dimensional photonic crystal laser having a square lattice structure,” IEEE Journal of Quantum Electron. 39(9), 1074–1080 (2003).
    [Crossref]
  4. J. W. Zhang, Y. Q. Ning, X. Zhang, , et al., “910 nm vertical-cavity surface-emitting laser arrays with 100W output power level and low driving current,” Jpn. J. Appl. Phys. 57(10), 100302 (2018).
    [Crossref]
  5. J. S. Harris, T. O. Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26(1), 014010 (2011).
    [Crossref]
  6. G. R. Hadley, “Modes of a two-dimensional phase-locked array of vertical-cavity surface-emitting lasers,” Opt. Lett. 15(21), 1215–1217 (1990).
    [Crossref]
  7. D. Botez, L. Mawst, P. Hayashida, G. Peterson, and T. J. Roth, “High-power, diffraction-limited-beam operation from phase-locked diode-laser arrays of closely spaced “leaky” waveguides (antiguides),” Appl. Phys. Lett. 53(6), 464–466 (1988).
    [Crossref]
  8. M. Orenstein, E. Kapon, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Wullert, “Two-dimensional phase-locked arrays of vertical-cavity semiconductor lasers by mirror reflectivity modulation,” Appl. Phys. Lett. 58(8), 804–806 (1991).
    [Crossref]
  9. S. T. M. Fryslie, Z. H. Gao, H. Dave, B. J. Thompson, K. Lakomy, S. Y. Lin, P. J. Decker, D. K. Mcelfresh, and K. D. Choquette, “Modulation of Coherently Coupled Phased Photonic Crystal Vertical Cavity Laser Arrays,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
    [Crossref]
  10. Z. H. Gao, S. T. M. Fryslie, B. J. Thompson, P. S. Carney, and K. D. Choquette, “Parity-Time Symmetry in Coherently Coupled Vertical Cavity Laser Arrays,” Optica 4(3), 323–329 (2017).
    [Crossref]
  11. D. G. Deppe, J. P. van der Ziel, G. J. Zydzik, and S. N. G. Chu, “Phase coupled two dimensional AlxGa1-xAs-GaAs vertical cavity surface emitting laser array,” Appl. Phys. Lett. 56(21), 2089–2091 (1990).
    [Crossref]
  12. H. J. Yoo, A. Scherer, J. P. Harbison, L. T. Florez, E. G. Paek, V. Kapon, and E. Kwon, “Fabrication of a two-dimensional phased array of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 56(13), 1198–1200 (1990).
    [Crossref]
  13. D. Zhou and L. J. Mawst, “Two-dimensional phase-locked antiguided vertical-cavity surface-emitting laser arrays,” Appl. Phys. Lett. 77(15), 2307–2309 (2000).
    [Crossref]
  14. D. Zhou, L. J. Mawst, and Z. Dai, “Modal properties of two-dimensional antiguided vertical-cavity surface-emitting laser arrays,” IEEE J. Quantum Electron. 38(6), 652–664 (2002).
    [Crossref]
  15. A. C. Lehman and K. D. Choquette, “One- and two-dimensional coherently coupled implant defined vertical cavity laser arrays,” IEEE Photonics Technol. Lett. 19(19), 1421–1423 (2007).
    [Crossref]
  16. M. Xun, C. Xu, Y. Y. Xie, J. Deng, K. Xu, and H. D. Chen, “Modal Properties of 2-D Implant-Defined Coherently Coupled Vertical-Cavity Surface-Emitting Laser Array,” IEEE Journal of Quantum Electron. 51(1), 1–6 (2015).
    [Crossref]
  17. M. Xun, Y. Sun, J. T. Zhou, C. Xu, Y. Y. Xie, H. Wang, Q. Kan, X. Y. Liu, Z. Jin, and D. X. Wu, “Nineteen-element in-phase coherent vertical cavity surface-emitting laser array with low side lobe intensity,” Opt. Express 27(2), 774–782 (2019).
    [Crossref]
  18. A. C. Lehman, J. J. Raftery, A. J. Danner, P. O. Leisher, and K. D. Choquette, “Relative phase tuning of coupled defects in photonic crystal vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 88(2), 021102 (2006).
    [Crossref]
  19. A. C. Lehman, D. F. Siriani, and K. D. Choquette, “Two-dimensional electronic beam-steering with implant-defined coherent vcsel arrays,” Electron. Lett. 43(22), 1202 (2007).
    [Crossref]
  20. D. F. Siriani and K. D. Choquette, “Electronically Controlled Two-Dimensional Steering of In-Phase Coherently Coupled Vertical-Cavity Laser Arrays,” IEEE Photonics Technol. Lett. 23(3), 167–169 (2011).
    [Crossref]
  21. H. Li, P. Wolf, X. W. Jia, J. A. Lott, and D. Bimberg, “Thermal analysis of high-bandwidth and energy-efficient 980 nm VCSELs with optimized quantum well gain peak-to-cavity resonance wavelength offset,” Appl. Phys. Lett. 111(24), 243508 (2017).
    [Crossref]

2019 (1)

2018 (1)

J. W. Zhang, Y. Q. Ning, X. Zhang, , et al., “910 nm vertical-cavity surface-emitting laser arrays with 100W output power level and low driving current,” Jpn. J. Appl. Phys. 57(10), 100302 (2018).
[Crossref]

2017 (4)

D. G. Deppe, J. Leshin, L. Eifert, F. Tucker, and T. Hillyer, “Transverse mode confinement in lithographic VCSELs,” Electron. Lett. 53(24), 1598–1600 (2017).
[Crossref]

S. T. M. Fryslie, Z. H. Gao, H. Dave, B. J. Thompson, K. Lakomy, S. Y. Lin, P. J. Decker, D. K. Mcelfresh, and K. D. Choquette, “Modulation of Coherently Coupled Phased Photonic Crystal Vertical Cavity Laser Arrays,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

Z. H. Gao, S. T. M. Fryslie, B. J. Thompson, P. S. Carney, and K. D. Choquette, “Parity-Time Symmetry in Coherently Coupled Vertical Cavity Laser Arrays,” Optica 4(3), 323–329 (2017).
[Crossref]

H. Li, P. Wolf, X. W. Jia, J. A. Lott, and D. Bimberg, “Thermal analysis of high-bandwidth and energy-efficient 980 nm VCSELs with optimized quantum well gain peak-to-cavity resonance wavelength offset,” Appl. Phys. Lett. 111(24), 243508 (2017).
[Crossref]

2015 (1)

M. Xun, C. Xu, Y. Y. Xie, J. Deng, K. Xu, and H. D. Chen, “Modal Properties of 2-D Implant-Defined Coherently Coupled Vertical-Cavity Surface-Emitting Laser Array,” IEEE Journal of Quantum Electron. 51(1), 1–6 (2015).
[Crossref]

2011 (2)

J. S. Harris, T. O. Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26(1), 014010 (2011).
[Crossref]

D. F. Siriani and K. D. Choquette, “Electronically Controlled Two-Dimensional Steering of In-Phase Coherently Coupled Vertical-Cavity Laser Arrays,” IEEE Photonics Technol. Lett. 23(3), 167–169 (2011).
[Crossref]

2007 (2)

A. C. Lehman, D. F. Siriani, and K. D. Choquette, “Two-dimensional electronic beam-steering with implant-defined coherent vcsel arrays,” Electron. Lett. 43(22), 1202 (2007).
[Crossref]

A. C. Lehman and K. D. Choquette, “One- and two-dimensional coherently coupled implant defined vertical cavity laser arrays,” IEEE Photonics Technol. Lett. 19(19), 1421–1423 (2007).
[Crossref]

2006 (1)

A. C. Lehman, J. J. Raftery, A. J. Danner, P. O. Leisher, and K. D. Choquette, “Relative phase tuning of coupled defects in photonic crystal vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 88(2), 021102 (2006).
[Crossref]

2005 (1)

L. D. A. Lundeberg, D. L. Boiko, and E. Kapon, “Coupled islands of photonic crystal heterostructures implemented with vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 87(24), 241120 (2005).
[Crossref]

2003 (1)

M. Yokoyama and S. Noda, “Polarization mode control of two-dimensional photonic crystal laser having a square lattice structure,” IEEE Journal of Quantum Electron. 39(9), 1074–1080 (2003).
[Crossref]

2002 (1)

D. Zhou, L. J. Mawst, and Z. Dai, “Modal properties of two-dimensional antiguided vertical-cavity surface-emitting laser arrays,” IEEE J. Quantum Electron. 38(6), 652–664 (2002).
[Crossref]

2000 (1)

D. Zhou and L. J. Mawst, “Two-dimensional phase-locked antiguided vertical-cavity surface-emitting laser arrays,” Appl. Phys. Lett. 77(15), 2307–2309 (2000).
[Crossref]

1991 (1)

M. Orenstein, E. Kapon, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Wullert, “Two-dimensional phase-locked arrays of vertical-cavity semiconductor lasers by mirror reflectivity modulation,” Appl. Phys. Lett. 58(8), 804–806 (1991).
[Crossref]

1990 (3)

G. R. Hadley, “Modes of a two-dimensional phase-locked array of vertical-cavity surface-emitting lasers,” Opt. Lett. 15(21), 1215–1217 (1990).
[Crossref]

D. G. Deppe, J. P. van der Ziel, G. J. Zydzik, and S. N. G. Chu, “Phase coupled two dimensional AlxGa1-xAs-GaAs vertical cavity surface emitting laser array,” Appl. Phys. Lett. 56(21), 2089–2091 (1990).
[Crossref]

H. J. Yoo, A. Scherer, J. P. Harbison, L. T. Florez, E. G. Paek, V. Kapon, and E. Kwon, “Fabrication of a two-dimensional phased array of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 56(13), 1198–1200 (1990).
[Crossref]

1988 (1)

D. Botez, L. Mawst, P. Hayashida, G. Peterson, and T. J. Roth, “High-power, diffraction-limited-beam operation from phase-locked diode-laser arrays of closely spaced “leaky” waveguides (antiguides),” Appl. Phys. Lett. 53(6), 464–466 (1988).
[Crossref]

Bimberg, D.

H. Li, P. Wolf, X. W. Jia, J. A. Lott, and D. Bimberg, “Thermal analysis of high-bandwidth and energy-efficient 980 nm VCSELs with optimized quantum well gain peak-to-cavity resonance wavelength offset,” Appl. Phys. Lett. 111(24), 243508 (2017).
[Crossref]

Boiko, D. L.

L. D. A. Lundeberg, D. L. Boiko, and E. Kapon, “Coupled islands of photonic crystal heterostructures implemented with vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 87(24), 241120 (2005).
[Crossref]

Botez, D.

D. Botez, L. Mawst, P. Hayashida, G. Peterson, and T. J. Roth, “High-power, diffraction-limited-beam operation from phase-locked diode-laser arrays of closely spaced “leaky” waveguides (antiguides),” Appl. Phys. Lett. 53(6), 464–466 (1988).
[Crossref]

Carney, P. S.

Chen, H. D.

M. Xun, C. Xu, Y. Y. Xie, J. Deng, K. Xu, and H. D. Chen, “Modal Properties of 2-D Implant-Defined Coherently Coupled Vertical-Cavity Surface-Emitting Laser Array,” IEEE Journal of Quantum Electron. 51(1), 1–6 (2015).
[Crossref]

Choquette, K. D.

S. T. M. Fryslie, Z. H. Gao, H. Dave, B. J. Thompson, K. Lakomy, S. Y. Lin, P. J. Decker, D. K. Mcelfresh, and K. D. Choquette, “Modulation of Coherently Coupled Phased Photonic Crystal Vertical Cavity Laser Arrays,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

Z. H. Gao, S. T. M. Fryslie, B. J. Thompson, P. S. Carney, and K. D. Choquette, “Parity-Time Symmetry in Coherently Coupled Vertical Cavity Laser Arrays,” Optica 4(3), 323–329 (2017).
[Crossref]

D. F. Siriani and K. D. Choquette, “Electronically Controlled Two-Dimensional Steering of In-Phase Coherently Coupled Vertical-Cavity Laser Arrays,” IEEE Photonics Technol. Lett. 23(3), 167–169 (2011).
[Crossref]

A. C. Lehman, D. F. Siriani, and K. D. Choquette, “Two-dimensional electronic beam-steering with implant-defined coherent vcsel arrays,” Electron. Lett. 43(22), 1202 (2007).
[Crossref]

A. C. Lehman and K. D. Choquette, “One- and two-dimensional coherently coupled implant defined vertical cavity laser arrays,” IEEE Photonics Technol. Lett. 19(19), 1421–1423 (2007).
[Crossref]

A. C. Lehman, J. J. Raftery, A. J. Danner, P. O. Leisher, and K. D. Choquette, “Relative phase tuning of coupled defects in photonic crystal vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 88(2), 021102 (2006).
[Crossref]

Chu, S. N. G.

D. G. Deppe, J. P. van der Ziel, G. J. Zydzik, and S. N. G. Chu, “Phase coupled two dimensional AlxGa1-xAs-GaAs vertical cavity surface emitting laser array,” Appl. Phys. Lett. 56(21), 2089–2091 (1990).
[Crossref]

Dai, Z.

D. Zhou, L. J. Mawst, and Z. Dai, “Modal properties of two-dimensional antiguided vertical-cavity surface-emitting laser arrays,” IEEE J. Quantum Electron. 38(6), 652–664 (2002).
[Crossref]

Danner, A. J.

A. C. Lehman, J. J. Raftery, A. J. Danner, P. O. Leisher, and K. D. Choquette, “Relative phase tuning of coupled defects in photonic crystal vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 88(2), 021102 (2006).
[Crossref]

Dave, H.

S. T. M. Fryslie, Z. H. Gao, H. Dave, B. J. Thompson, K. Lakomy, S. Y. Lin, P. J. Decker, D. K. Mcelfresh, and K. D. Choquette, “Modulation of Coherently Coupled Phased Photonic Crystal Vertical Cavity Laser Arrays,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

Decker, P. J.

S. T. M. Fryslie, Z. H. Gao, H. Dave, B. J. Thompson, K. Lakomy, S. Y. Lin, P. J. Decker, D. K. Mcelfresh, and K. D. Choquette, “Modulation of Coherently Coupled Phased Photonic Crystal Vertical Cavity Laser Arrays,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

Deng, J.

M. Xun, C. Xu, Y. Y. Xie, J. Deng, K. Xu, and H. D. Chen, “Modal Properties of 2-D Implant-Defined Coherently Coupled Vertical-Cavity Surface-Emitting Laser Array,” IEEE Journal of Quantum Electron. 51(1), 1–6 (2015).
[Crossref]

Deppe, D. G.

D. G. Deppe, J. Leshin, L. Eifert, F. Tucker, and T. Hillyer, “Transverse mode confinement in lithographic VCSELs,” Electron. Lett. 53(24), 1598–1600 (2017).
[Crossref]

D. G. Deppe, J. P. van der Ziel, G. J. Zydzik, and S. N. G. Chu, “Phase coupled two dimensional AlxGa1-xAs-GaAs vertical cavity surface emitting laser array,” Appl. Phys. Lett. 56(21), 2089–2091 (1990).
[Crossref]

Eifert, L.

D. G. Deppe, J. Leshin, L. Eifert, F. Tucker, and T. Hillyer, “Transverse mode confinement in lithographic VCSELs,” Electron. Lett. 53(24), 1598–1600 (2017).
[Crossref]

Florez, L. T.

M. Orenstein, E. Kapon, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Wullert, “Two-dimensional phase-locked arrays of vertical-cavity semiconductor lasers by mirror reflectivity modulation,” Appl. Phys. Lett. 58(8), 804–806 (1991).
[Crossref]

H. J. Yoo, A. Scherer, J. P. Harbison, L. T. Florez, E. G. Paek, V. Kapon, and E. Kwon, “Fabrication of a two-dimensional phased array of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 56(13), 1198–1200 (1990).
[Crossref]

Fryslie, S. T. M.

S. T. M. Fryslie, Z. H. Gao, H. Dave, B. J. Thompson, K. Lakomy, S. Y. Lin, P. J. Decker, D. K. Mcelfresh, and K. D. Choquette, “Modulation of Coherently Coupled Phased Photonic Crystal Vertical Cavity Laser Arrays,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

Z. H. Gao, S. T. M. Fryslie, B. J. Thompson, P. S. Carney, and K. D. Choquette, “Parity-Time Symmetry in Coherently Coupled Vertical Cavity Laser Arrays,” Optica 4(3), 323–329 (2017).
[Crossref]

Gao, Z. H.

Z. H. Gao, S. T. M. Fryslie, B. J. Thompson, P. S. Carney, and K. D. Choquette, “Parity-Time Symmetry in Coherently Coupled Vertical Cavity Laser Arrays,” Optica 4(3), 323–329 (2017).
[Crossref]

S. T. M. Fryslie, Z. H. Gao, H. Dave, B. J. Thompson, K. Lakomy, S. Y. Lin, P. J. Decker, D. K. Mcelfresh, and K. D. Choquette, “Modulation of Coherently Coupled Phased Photonic Crystal Vertical Cavity Laser Arrays,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

Hadley, G. R.

Harbison, J. P.

M. Orenstein, E. Kapon, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Wullert, “Two-dimensional phase-locked arrays of vertical-cavity semiconductor lasers by mirror reflectivity modulation,” Appl. Phys. Lett. 58(8), 804–806 (1991).
[Crossref]

H. J. Yoo, A. Scherer, J. P. Harbison, L. T. Florez, E. G. Paek, V. Kapon, and E. Kwon, “Fabrication of a two-dimensional phased array of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 56(13), 1198–1200 (1990).
[Crossref]

Harris, J. S.

J. S. Harris, T. O. Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26(1), 014010 (2011).
[Crossref]

Hayashida, P.

D. Botez, L. Mawst, P. Hayashida, G. Peterson, and T. J. Roth, “High-power, diffraction-limited-beam operation from phase-locked diode-laser arrays of closely spaced “leaky” waveguides (antiguides),” Appl. Phys. Lett. 53(6), 464–466 (1988).
[Crossref]

Hillyer, T.

D. G. Deppe, J. Leshin, L. Eifert, F. Tucker, and T. Hillyer, “Transverse mode confinement in lithographic VCSELs,” Electron. Lett. 53(24), 1598–1600 (2017).
[Crossref]

Jia, X. W.

H. Li, P. Wolf, X. W. Jia, J. A. Lott, and D. Bimberg, “Thermal analysis of high-bandwidth and energy-efficient 980 nm VCSELs with optimized quantum well gain peak-to-cavity resonance wavelength offset,” Appl. Phys. Lett. 111(24), 243508 (2017).
[Crossref]

Jin, Z.

Kan, Q.

Kapon, E.

L. D. A. Lundeberg, D. L. Boiko, and E. Kapon, “Coupled islands of photonic crystal heterostructures implemented with vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 87(24), 241120 (2005).
[Crossref]

M. Orenstein, E. Kapon, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Wullert, “Two-dimensional phase-locked arrays of vertical-cavity semiconductor lasers by mirror reflectivity modulation,” Appl. Phys. Lett. 58(8), 804–806 (1991).
[Crossref]

Kapon, V.

H. J. Yoo, A. Scherer, J. P. Harbison, L. T. Florez, E. G. Paek, V. Kapon, and E. Kwon, “Fabrication of a two-dimensional phased array of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 56(13), 1198–1200 (1990).
[Crossref]

Kwon, E.

H. J. Yoo, A. Scherer, J. P. Harbison, L. T. Florez, E. G. Paek, V. Kapon, and E. Kwon, “Fabrication of a two-dimensional phased array of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 56(13), 1198–1200 (1990).
[Crossref]

Lakomy, K.

S. T. M. Fryslie, Z. H. Gao, H. Dave, B. J. Thompson, K. Lakomy, S. Y. Lin, P. J. Decker, D. K. Mcelfresh, and K. D. Choquette, “Modulation of Coherently Coupled Phased Photonic Crystal Vertical Cavity Laser Arrays,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

Lee, M. M.

J. S. Harris, T. O. Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26(1), 014010 (2011).
[Crossref]

Lehman, A. C.

A. C. Lehman, D. F. Siriani, and K. D. Choquette, “Two-dimensional electronic beam-steering with implant-defined coherent vcsel arrays,” Electron. Lett. 43(22), 1202 (2007).
[Crossref]

A. C. Lehman and K. D. Choquette, “One- and two-dimensional coherently coupled implant defined vertical cavity laser arrays,” IEEE Photonics Technol. Lett. 19(19), 1421–1423 (2007).
[Crossref]

A. C. Lehman, J. J. Raftery, A. J. Danner, P. O. Leisher, and K. D. Choquette, “Relative phase tuning of coupled defects in photonic crystal vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 88(2), 021102 (2006).
[Crossref]

Leisher, P. O.

A. C. Lehman, J. J. Raftery, A. J. Danner, P. O. Leisher, and K. D. Choquette, “Relative phase tuning of coupled defects in photonic crystal vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 88(2), 021102 (2006).
[Crossref]

Leshin, J.

D. G. Deppe, J. Leshin, L. Eifert, F. Tucker, and T. Hillyer, “Transverse mode confinement in lithographic VCSELs,” Electron. Lett. 53(24), 1598–1600 (2017).
[Crossref]

Li, H.

H. Li, P. Wolf, X. W. Jia, J. A. Lott, and D. Bimberg, “Thermal analysis of high-bandwidth and energy-efficient 980 nm VCSELs with optimized quantum well gain peak-to-cavity resonance wavelength offset,” Appl. Phys. Lett. 111(24), 243508 (2017).
[Crossref]

Lin, S. Y.

S. T. M. Fryslie, Z. H. Gao, H. Dave, B. J. Thompson, K. Lakomy, S. Y. Lin, P. J. Decker, D. K. Mcelfresh, and K. D. Choquette, “Modulation of Coherently Coupled Phased Photonic Crystal Vertical Cavity Laser Arrays,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

Liu, X. Y.

Lott, J. A.

H. Li, P. Wolf, X. W. Jia, J. A. Lott, and D. Bimberg, “Thermal analysis of high-bandwidth and energy-efficient 980 nm VCSELs with optimized quantum well gain peak-to-cavity resonance wavelength offset,” Appl. Phys. Lett. 111(24), 243508 (2017).
[Crossref]

Lundeberg, L. D. A.

L. D. A. Lundeberg, D. L. Boiko, and E. Kapon, “Coupled islands of photonic crystal heterostructures implemented with vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 87(24), 241120 (2005).
[Crossref]

Mawst, L.

D. Botez, L. Mawst, P. Hayashida, G. Peterson, and T. J. Roth, “High-power, diffraction-limited-beam operation from phase-locked diode-laser arrays of closely spaced “leaky” waveguides (antiguides),” Appl. Phys. Lett. 53(6), 464–466 (1988).
[Crossref]

Mawst, L. J.

D. Zhou, L. J. Mawst, and Z. Dai, “Modal properties of two-dimensional antiguided vertical-cavity surface-emitting laser arrays,” IEEE J. Quantum Electron. 38(6), 652–664 (2002).
[Crossref]

D. Zhou and L. J. Mawst, “Two-dimensional phase-locked antiguided vertical-cavity surface-emitting laser arrays,” Appl. Phys. Lett. 77(15), 2307–2309 (2000).
[Crossref]

Mcelfresh, D. K.

S. T. M. Fryslie, Z. H. Gao, H. Dave, B. J. Thompson, K. Lakomy, S. Y. Lin, P. J. Decker, D. K. Mcelfresh, and K. D. Choquette, “Modulation of Coherently Coupled Phased Photonic Crystal Vertical Cavity Laser Arrays,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

Ning, Y. Q.

J. W. Zhang, Y. Q. Ning, X. Zhang, , et al., “910 nm vertical-cavity surface-emitting laser arrays with 100W output power level and low driving current,” Jpn. J. Appl. Phys. 57(10), 100302 (2018).
[Crossref]

Noda, S.

M. Yokoyama and S. Noda, “Polarization mode control of two-dimensional photonic crystal laser having a square lattice structure,” IEEE Journal of Quantum Electron. 39(9), 1074–1080 (2003).
[Crossref]

Orenstein, M.

M. Orenstein, E. Kapon, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Wullert, “Two-dimensional phase-locked arrays of vertical-cavity semiconductor lasers by mirror reflectivity modulation,” Appl. Phys. Lett. 58(8), 804–806 (1991).
[Crossref]

Paek, E. G.

H. J. Yoo, A. Scherer, J. P. Harbison, L. T. Florez, E. G. Paek, V. Kapon, and E. Kwon, “Fabrication of a two-dimensional phased array of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 56(13), 1198–1200 (1990).
[Crossref]

Peterson, G.

D. Botez, L. Mawst, P. Hayashida, G. Peterson, and T. J. Roth, “High-power, diffraction-limited-beam operation from phase-locked diode-laser arrays of closely spaced “leaky” waveguides (antiguides),” Appl. Phys. Lett. 53(6), 464–466 (1988).
[Crossref]

Raftery, J. J.

A. C. Lehman, J. J. Raftery, A. J. Danner, P. O. Leisher, and K. D. Choquette, “Relative phase tuning of coupled defects in photonic crystal vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 88(2), 021102 (2006).
[Crossref]

Roth, T. J.

D. Botez, L. Mawst, P. Hayashida, G. Peterson, and T. J. Roth, “High-power, diffraction-limited-beam operation from phase-locked diode-laser arrays of closely spaced “leaky” waveguides (antiguides),” Appl. Phys. Lett. 53(6), 464–466 (1988).
[Crossref]

Sarmiento, T.

J. S. Harris, T. O. Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26(1), 014010 (2011).
[Crossref]

Scherer, A.

H. J. Yoo, A. Scherer, J. P. Harbison, L. T. Florez, E. G. Paek, V. Kapon, and E. Kwon, “Fabrication of a two-dimensional phased array of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 56(13), 1198–1200 (1990).
[Crossref]

Siriani, D. F.

D. F. Siriani and K. D. Choquette, “Electronically Controlled Two-Dimensional Steering of In-Phase Coherently Coupled Vertical-Cavity Laser Arrays,” IEEE Photonics Technol. Lett. 23(3), 167–169 (2011).
[Crossref]

A. C. Lehman, D. F. Siriani, and K. D. Choquette, “Two-dimensional electronic beam-steering with implant-defined coherent vcsel arrays,” Electron. Lett. 43(22), 1202 (2007).
[Crossref]

Stoffel, N. G.

M. Orenstein, E. Kapon, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Wullert, “Two-dimensional phase-locked arrays of vertical-cavity semiconductor lasers by mirror reflectivity modulation,” Appl. Phys. Lett. 58(8), 804–806 (1991).
[Crossref]

Sullivan, T. O.

J. S. Harris, T. O. Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26(1), 014010 (2011).
[Crossref]

Sun, Y.

Thompson, B. J.

Z. H. Gao, S. T. M. Fryslie, B. J. Thompson, P. S. Carney, and K. D. Choquette, “Parity-Time Symmetry in Coherently Coupled Vertical Cavity Laser Arrays,” Optica 4(3), 323–329 (2017).
[Crossref]

S. T. M. Fryslie, Z. H. Gao, H. Dave, B. J. Thompson, K. Lakomy, S. Y. Lin, P. J. Decker, D. K. Mcelfresh, and K. D. Choquette, “Modulation of Coherently Coupled Phased Photonic Crystal Vertical Cavity Laser Arrays,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

Tucker, F.

D. G. Deppe, J. Leshin, L. Eifert, F. Tucker, and T. Hillyer, “Transverse mode confinement in lithographic VCSELs,” Electron. Lett. 53(24), 1598–1600 (2017).
[Crossref]

van der Ziel, J. P.

D. G. Deppe, J. P. van der Ziel, G. J. Zydzik, and S. N. G. Chu, “Phase coupled two dimensional AlxGa1-xAs-GaAs vertical cavity surface emitting laser array,” Appl. Phys. Lett. 56(21), 2089–2091 (1990).
[Crossref]

Vo, S.

J. S. Harris, T. O. Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26(1), 014010 (2011).
[Crossref]

Wang, H.

Wolf, P.

H. Li, P. Wolf, X. W. Jia, J. A. Lott, and D. Bimberg, “Thermal analysis of high-bandwidth and energy-efficient 980 nm VCSELs with optimized quantum well gain peak-to-cavity resonance wavelength offset,” Appl. Phys. Lett. 111(24), 243508 (2017).
[Crossref]

Wu, D. X.

Wullert, J.

M. Orenstein, E. Kapon, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Wullert, “Two-dimensional phase-locked arrays of vertical-cavity semiconductor lasers by mirror reflectivity modulation,” Appl. Phys. Lett. 58(8), 804–806 (1991).
[Crossref]

Xie, Y. Y.

M. Xun, Y. Sun, J. T. Zhou, C. Xu, Y. Y. Xie, H. Wang, Q. Kan, X. Y. Liu, Z. Jin, and D. X. Wu, “Nineteen-element in-phase coherent vertical cavity surface-emitting laser array with low side lobe intensity,” Opt. Express 27(2), 774–782 (2019).
[Crossref]

M. Xun, C. Xu, Y. Y. Xie, J. Deng, K. Xu, and H. D. Chen, “Modal Properties of 2-D Implant-Defined Coherently Coupled Vertical-Cavity Surface-Emitting Laser Array,” IEEE Journal of Quantum Electron. 51(1), 1–6 (2015).
[Crossref]

Xu, C.

M. Xun, Y. Sun, J. T. Zhou, C. Xu, Y. Y. Xie, H. Wang, Q. Kan, X. Y. Liu, Z. Jin, and D. X. Wu, “Nineteen-element in-phase coherent vertical cavity surface-emitting laser array with low side lobe intensity,” Opt. Express 27(2), 774–782 (2019).
[Crossref]

M. Xun, C. Xu, Y. Y. Xie, J. Deng, K. Xu, and H. D. Chen, “Modal Properties of 2-D Implant-Defined Coherently Coupled Vertical-Cavity Surface-Emitting Laser Array,” IEEE Journal of Quantum Electron. 51(1), 1–6 (2015).
[Crossref]

Xu, K.

M. Xun, C. Xu, Y. Y. Xie, J. Deng, K. Xu, and H. D. Chen, “Modal Properties of 2-D Implant-Defined Coherently Coupled Vertical-Cavity Surface-Emitting Laser Array,” IEEE Journal of Quantum Electron. 51(1), 1–6 (2015).
[Crossref]

Xun, M.

M. Xun, Y. Sun, J. T. Zhou, C. Xu, Y. Y. Xie, H. Wang, Q. Kan, X. Y. Liu, Z. Jin, and D. X. Wu, “Nineteen-element in-phase coherent vertical cavity surface-emitting laser array with low side lobe intensity,” Opt. Express 27(2), 774–782 (2019).
[Crossref]

M. Xun, C. Xu, Y. Y. Xie, J. Deng, K. Xu, and H. D. Chen, “Modal Properties of 2-D Implant-Defined Coherently Coupled Vertical-Cavity Surface-Emitting Laser Array,” IEEE Journal of Quantum Electron. 51(1), 1–6 (2015).
[Crossref]

Yokoyama, M.

M. Yokoyama and S. Noda, “Polarization mode control of two-dimensional photonic crystal laser having a square lattice structure,” IEEE Journal of Quantum Electron. 39(9), 1074–1080 (2003).
[Crossref]

Yoo, H. J.

H. J. Yoo, A. Scherer, J. P. Harbison, L. T. Florez, E. G. Paek, V. Kapon, and E. Kwon, “Fabrication of a two-dimensional phased array of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 56(13), 1198–1200 (1990).
[Crossref]

Zhang, J. W.

J. W. Zhang, Y. Q. Ning, X. Zhang, , et al., “910 nm vertical-cavity surface-emitting laser arrays with 100W output power level and low driving current,” Jpn. J. Appl. Phys. 57(10), 100302 (2018).
[Crossref]

Zhang, X.

J. W. Zhang, Y. Q. Ning, X. Zhang, , et al., “910 nm vertical-cavity surface-emitting laser arrays with 100W output power level and low driving current,” Jpn. J. Appl. Phys. 57(10), 100302 (2018).
[Crossref]

Zhou, D.

D. Zhou, L. J. Mawst, and Z. Dai, “Modal properties of two-dimensional antiguided vertical-cavity surface-emitting laser arrays,” IEEE J. Quantum Electron. 38(6), 652–664 (2002).
[Crossref]

D. Zhou and L. J. Mawst, “Two-dimensional phase-locked antiguided vertical-cavity surface-emitting laser arrays,” Appl. Phys. Lett. 77(15), 2307–2309 (2000).
[Crossref]

Zhou, J. T.

Zydzik, G. J.

D. G. Deppe, J. P. van der Ziel, G. J. Zydzik, and S. N. G. Chu, “Phase coupled two dimensional AlxGa1-xAs-GaAs vertical cavity surface emitting laser array,” Appl. Phys. Lett. 56(21), 2089–2091 (1990).
[Crossref]

Appl. Phys. Lett. (8)

L. D. A. Lundeberg, D. L. Boiko, and E. Kapon, “Coupled islands of photonic crystal heterostructures implemented with vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 87(24), 241120 (2005).
[Crossref]

D. Botez, L. Mawst, P. Hayashida, G. Peterson, and T. J. Roth, “High-power, diffraction-limited-beam operation from phase-locked diode-laser arrays of closely spaced “leaky” waveguides (antiguides),” Appl. Phys. Lett. 53(6), 464–466 (1988).
[Crossref]

M. Orenstein, E. Kapon, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Wullert, “Two-dimensional phase-locked arrays of vertical-cavity semiconductor lasers by mirror reflectivity modulation,” Appl. Phys. Lett. 58(8), 804–806 (1991).
[Crossref]

D. G. Deppe, J. P. van der Ziel, G. J. Zydzik, and S. N. G. Chu, “Phase coupled two dimensional AlxGa1-xAs-GaAs vertical cavity surface emitting laser array,” Appl. Phys. Lett. 56(21), 2089–2091 (1990).
[Crossref]

H. J. Yoo, A. Scherer, J. P. Harbison, L. T. Florez, E. G. Paek, V. Kapon, and E. Kwon, “Fabrication of a two-dimensional phased array of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 56(13), 1198–1200 (1990).
[Crossref]

D. Zhou and L. J. Mawst, “Two-dimensional phase-locked antiguided vertical-cavity surface-emitting laser arrays,” Appl. Phys. Lett. 77(15), 2307–2309 (2000).
[Crossref]

A. C. Lehman, J. J. Raftery, A. J. Danner, P. O. Leisher, and K. D. Choquette, “Relative phase tuning of coupled defects in photonic crystal vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 88(2), 021102 (2006).
[Crossref]

H. Li, P. Wolf, X. W. Jia, J. A. Lott, and D. Bimberg, “Thermal analysis of high-bandwidth and energy-efficient 980 nm VCSELs with optimized quantum well gain peak-to-cavity resonance wavelength offset,” Appl. Phys. Lett. 111(24), 243508 (2017).
[Crossref]

Electron. Lett. (2)

A. C. Lehman, D. F. Siriani, and K. D. Choquette, “Two-dimensional electronic beam-steering with implant-defined coherent vcsel arrays,” Electron. Lett. 43(22), 1202 (2007).
[Crossref]

D. G. Deppe, J. Leshin, L. Eifert, F. Tucker, and T. Hillyer, “Transverse mode confinement in lithographic VCSELs,” Electron. Lett. 53(24), 1598–1600 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Zhou, L. J. Mawst, and Z. Dai, “Modal properties of two-dimensional antiguided vertical-cavity surface-emitting laser arrays,” IEEE J. Quantum Electron. 38(6), 652–664 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. T. M. Fryslie, Z. H. Gao, H. Dave, B. J. Thompson, K. Lakomy, S. Y. Lin, P. J. Decker, D. K. Mcelfresh, and K. D. Choquette, “Modulation of Coherently Coupled Phased Photonic Crystal Vertical Cavity Laser Arrays,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2017).
[Crossref]

IEEE Journal of Quantum Electron. (2)

M. Yokoyama and S. Noda, “Polarization mode control of two-dimensional photonic crystal laser having a square lattice structure,” IEEE Journal of Quantum Electron. 39(9), 1074–1080 (2003).
[Crossref]

M. Xun, C. Xu, Y. Y. Xie, J. Deng, K. Xu, and H. D. Chen, “Modal Properties of 2-D Implant-Defined Coherently Coupled Vertical-Cavity Surface-Emitting Laser Array,” IEEE Journal of Quantum Electron. 51(1), 1–6 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. F. Siriani and K. D. Choquette, “Electronically Controlled Two-Dimensional Steering of In-Phase Coherently Coupled Vertical-Cavity Laser Arrays,” IEEE Photonics Technol. Lett. 23(3), 167–169 (2011).
[Crossref]

A. C. Lehman and K. D. Choquette, “One- and two-dimensional coherently coupled implant defined vertical cavity laser arrays,” IEEE Photonics Technol. Lett. 19(19), 1421–1423 (2007).
[Crossref]

Jpn. J. Appl. Phys. (1)

J. W. Zhang, Y. Q. Ning, X. Zhang, , et al., “910 nm vertical-cavity surface-emitting laser arrays with 100W output power level and low driving current,” Jpn. J. Appl. Phys. 57(10), 100302 (2018).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optica (1)

Semicond. Sci. Technol. (1)

J. S. Harris, T. O. Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26(1), 014010 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Schematic representation of a 3-element array (b) Top view of actual electrodes.
Fig. 2.
Fig. 2. Output power and voltage for an injection current to (a) Element 1 only, (b) Element 2 only, (c) Element 3 only and (d) whole array. Inset shows the corresponding near-field profiles.
Fig. 3.
Fig. 3. Experimental setups used to obtain (a) near-field and (b) far-field patterns.
Fig. 4.
Fig. 4. Far-field profiles for different current combinations.
Fig. 5.
Fig. 5. Proportion of power concentrated in central lobe in far-field versus deflection angle from normal.
Fig. 6.
Fig. 6. Spatially resolved spectral data wavelength versus current for Elements Right while I1=4.5 mA and I2=4.3 mA.
Fig. 7.
Fig. 7. Wavelength detuning, λ3-λ1(λ2), versus current to Element 3. Insets: measured near-field profiles under some current values.
Fig. 8.
Fig. 8. Simulated 3-D and 2D far-field patterns along A-A’ direction with the varied wavelength of Element 3 as the wavelength of other elements keeps a constant of 846.5 nm.