Abstract

A highly sensitive vector curvature sensor based on a triple-core fiber (TCF) interferometer is proposed and demonstrated. The TCF interferometer is composed of a piece of TCF that is fusion spliced to a standard single mode fiber (SMF). A taper is fabricated at the TCF near the TCF-SMF junction to couple the light from the input SMF into the three cores of the TCF and recouple the reflected light from the end of the TCF back to the SMF, which forms a three-beam Michelson interferometer in the TCF. Such a three-beam interferometer has the unique characteristic that its sensitivity is greatly affected by the optical path differences (OPD) and light intensities of the light transmitted in the cores of the TCF. As a result, choosing a TCF with proper refractive index differences between three cores or designing a proper splitting ratio of the TCF taper can effectively enhance the sensitivity of the TCF interferometer. The bending responses of the TCF interferometer were tested in the curvature range of 0-1.305 m−1. Experimental results show that the curvature sensitivities at the opposite bending directions along the cores’ connection are about 91.61 nm/m−1 and -95.22 nm/m−1, respectively.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In-fiber directional coupler for high-sensitivity curvature measurement

J. R. Guzman-Sepulveda and D. A. May-Arrioja
Opt. Express 21(10) 11853-11861 (2013)

Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing

Zhilong Ou, Yongqin Yu, Peiguang Yan, Jishun Wang, Quandong Huang, Xue Chen, Chenlin Du, and Huifeng Wei
Opt. Express 21(20) 23812-23821 (2013)

Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method

Changyu Shen, Chuan Zhong, Yang You, Jinlei Chu, Xin Zou, Xinyong Dong, Yongxing Jin, Jianfeng Wang, and Huaping Gong
Opt. Express 20(14) 15406-15417 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Q. Wang and W. M. Zhao, “A comprehensive review of lossy mode resonance-based fiber optic sensors,” Opt. Laser Eng. 100, 47–60 (2018).
    [Crossref]
  2. Y. Zhao, Q. L. Wu, and Y. N. Zhang, “Theoretical analysis of high-sensitive seawater temperature and salinity measurement based on C-type micro-structured fiber,” Sens. Actuators, B 258, 822–828 (2018).
    [Crossref]
  3. N. Paliwal and Joseph John, “Design and modeling of highly sensitive lossy mode resonance-based fiber-optic pressure sensor,” IEEE Sens. J. 18(1), 209–215 (2018).
    [Crossref]
  4. Q. Wang and W. M. Zhao, “Optical methods of antibiotic residues detections: A comprehensive review,” Sens. Actuators, B 269, 238–256 (2018).
    [Crossref]
  5. A. V. Newkirk, J. E. A. Lopez, A. V. Benitez, J. Albert, R. A. Correa, and A. Schulzgen, “Bending sensor combining multicore fiber with a mode-selective photonic lantern,” Opt. Lett. 40(22), 5188–5191 (2015).
    [Crossref]
  6. X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
    [Crossref]
  7. J. Kong, A. Zhou, C. Cheng, J. Yang, and L. B. Yuan, “Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
    [Crossref]
  8. G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
    [Crossref]
  9. M. J. Gander, W. N. Macpherson, R. Mcbride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
    [Crossref]
  10. S. Wang, W. G. Zhang, L. Chen, Y. X. Zhang, P. C. Geng, Y. S. Zhang, T. Y. Yan, L. Yu, W. Hu, and Y. P. Li, “Two-dimensional microbend sensor based on long-period fiber gratings in an isosceles triangle arrangement three-core fiber,” Opt. Lett. 42(23), 4938–4941 (2017).
    [Crossref]
  11. D. Barrera, I. Gasulla, and S. Sales, “Multipoint Two-Dimensional Curvature Optical Fiber Sensor Based on a Nontwisted Homogeneous Four-Core Fiber,” J. Lightwave Technol. 33(12), 2445–2450 (2015).
    [Crossref]
  12. D. H. Zhao, X. F. Chen, K. M. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. C. Jones, “Bend sensors with direction recognition based on long-period gratings written in D-shaped fiber,” Appl. Opt. 43(29), 5425–5428 (2004).
    [Crossref]
  13. Y. G. Han, G. Kim, K. Lee, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Bending sensitivity of long-period fiber gratings inscribed in holey fibers depending on an axial rotation angle,” Opt. Express 15(20), 12866–12871 (2007).
    [Crossref]
  14. Z. H. He, Y. N. Zhu, and H. Du, “Effect of macro-bending on resonant wavelength and intensity of long-period gratings in photonic crystal fiber,” Opt. Express 15(4), 1804–1810 (2007).
    [Crossref]
  15. L. Jin, W. Jin, and J. Ju, “Directional bend sensing with a CO2-laser inscribed long period grating in a photonic crystal fiber,” J. Lightwave Technol. 27(21), 4884–4891 (2009).
    [Crossref]
  16. Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
    [Crossref]
  17. Q. Zhou, W. G. Zhang, L. Chen, Z. Y. Bai, L. Y. Zhang, L. Wang, B. Wang, and T. Y. Yan, “Bending Vector Sensor Based on a Sector-Shaped Long-Period Grating,” IEEE Photonics Technol. Lett. 27(7), 713–716 (2015).
    [Crossref]
  18. L. Y. Zhang, W. G. Zhang, L. Chen, T. Y. Yan, L. Wang, B. Wang, and Q. Zhou, “A fiber bending vector sensor based on M–Z interferometer exploiting two hump-shaped tapers,” IEEE Photonics Technol. Lett. 27(11), 1173–1176 (2015).
    [Crossref]
  19. S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach–Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett. 37(21), 4480–4482 (2012).
    [Crossref]
  20. S. Wang, W. Zhang, L. Chen, Y. Zhang, P. Geng, B. Wang, T. Yan, Y. Li, S. Wang, G. Zhang W, and L. Chen, “Bending vector sensor based on the multimode-2-core-multimode fiber structure,” IEEE Photonics Technol. Lett. 28(19), 2066–2069 (2016).
    [Crossref]
  21. H. Qu, G. F. Yan, and M. Skorobogatiy, “Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber,” Opt. Lett. 39(16), 4835–4838 (2014).
    [Crossref]
  22. G. L. Yin, S. Q. Lou, W. L. Lu, and X. Wang, “A high-sensitive fiber curvature sensor using twin core fiber-based filter,” Appl. Phys. B 115(1), 99–104 (2014).
    [Crossref]
  23. Y. Zhao, A. Zhou, H. Guo, Z. Zheng, Y. Xu, C. Zhou, and L. Yuan, “An Integrated fiber Michelson interferometer based on twin-core and side-hole fibers for multi-parameter sensing,” J. Lightwave Technol. 36(23), C1 (2018).
    [Crossref]
  24. Y. Wu, L. Pei, W. X. Jin, Y. C. Jiang, Y. G. Yang, Y. Shen, and S. S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
    [Crossref]
  25. J. R. Guzman-Sepulveda and D. A. May-Arrioja, “In-fiber directional coupler for high-sensitivity curvature measurement,” Opt. Express 21(10), 11853 (2013).
    [Crossref]
  26. G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, and R. Amezcua Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett. 40(7), 1468–1471 (2015).
    [Crossref]
  27. J. Villatoro, A. V. Newkirk, E. A. Lopez, J. Zubia, A. Schülzgen, and R. A. Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41(4), 832–835 (2016).
    [Crossref]
  28. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66(4), 311–320 (1976).
    [Crossref]

2018 (5)

Q. Wang and W. M. Zhao, “A comprehensive review of lossy mode resonance-based fiber optic sensors,” Opt. Laser Eng. 100, 47–60 (2018).
[Crossref]

Y. Zhao, Q. L. Wu, and Y. N. Zhang, “Theoretical analysis of high-sensitive seawater temperature and salinity measurement based on C-type micro-structured fiber,” Sens. Actuators, B 258, 822–828 (2018).
[Crossref]

N. Paliwal and Joseph John, “Design and modeling of highly sensitive lossy mode resonance-based fiber-optic pressure sensor,” IEEE Sens. J. 18(1), 209–215 (2018).
[Crossref]

Q. Wang and W. M. Zhao, “Optical methods of antibiotic residues detections: A comprehensive review,” Sens. Actuators, B 269, 238–256 (2018).
[Crossref]

Y. Zhao, A. Zhou, H. Guo, Z. Zheng, Y. Xu, C. Zhou, and L. Yuan, “An Integrated fiber Michelson interferometer based on twin-core and side-hole fibers for multi-parameter sensing,” J. Lightwave Technol. 36(23), C1 (2018).
[Crossref]

2017 (2)

Y. Wu, L. Pei, W. X. Jin, Y. C. Jiang, Y. G. Yang, Y. Shen, and S. S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
[Crossref]

S. Wang, W. G. Zhang, L. Chen, Y. X. Zhang, P. C. Geng, Y. S. Zhang, T. Y. Yan, L. Yu, W. Hu, and Y. P. Li, “Two-dimensional microbend sensor based on long-period fiber gratings in an isosceles triangle arrangement three-core fiber,” Opt. Lett. 42(23), 4938–4941 (2017).
[Crossref]

2016 (3)

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. B. Yuan, “Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

S. Wang, W. Zhang, L. Chen, Y. Zhang, P. Geng, B. Wang, T. Yan, Y. Li, S. Wang, G. Zhang W, and L. Chen, “Bending vector sensor based on the multimode-2-core-multimode fiber structure,” IEEE Photonics Technol. Lett. 28(19), 2066–2069 (2016).
[Crossref]

J. Villatoro, A. V. Newkirk, E. A. Lopez, J. Zubia, A. Schülzgen, and R. A. Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41(4), 832–835 (2016).
[Crossref]

2015 (5)

2014 (2)

H. Qu, G. F. Yan, and M. Skorobogatiy, “Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber,” Opt. Lett. 39(16), 4835–4838 (2014).
[Crossref]

G. L. Yin, S. Q. Lou, W. L. Lu, and X. Wang, “A high-sensitive fiber curvature sensor using twin core fiber-based filter,” Appl. Phys. B 115(1), 99–104 (2014).
[Crossref]

2013 (1)

2012 (1)

2010 (1)

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

2009 (1)

2007 (2)

2005 (1)

Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
[Crossref]

2004 (1)

2003 (1)

2000 (1)

M. J. Gander, W. N. Macpherson, R. Mcbride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

1976 (1)

Albert, J.

Amezcua Correa, R.

Antonio-Lopez, J. E.

Bai, Z. Y.

Q. Zhou, W. G. Zhang, L. Chen, Z. Y. Bai, L. Y. Zhang, L. Wang, B. Wang, and T. Y. Yan, “Bending Vector Sensor Based on a Sector-Shaped Long-Period Grating,” IEEE Photonics Technol. Lett. 27(7), 713–716 (2015).
[Crossref]

Barrera, D.

Barton, J. S.

Benitez, A. V.

Bennion, I.

Blanchard, P. M.

M. J. Gander, W. N. Macpherson, R. Mcbride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

Burnett, J. G.

M. J. Gander, W. N. Macpherson, R. Mcbride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

Chen, L.

S. Wang, W. G. Zhang, L. Chen, Y. X. Zhang, P. C. Geng, Y. S. Zhang, T. Y. Yan, L. Yu, W. Hu, and Y. P. Li, “Two-dimensional microbend sensor based on long-period fiber gratings in an isosceles triangle arrangement three-core fiber,” Opt. Lett. 42(23), 4938–4941 (2017).
[Crossref]

S. Wang, W. Zhang, L. Chen, Y. Zhang, P. Geng, B. Wang, T. Yan, Y. Li, S. Wang, G. Zhang W, and L. Chen, “Bending vector sensor based on the multimode-2-core-multimode fiber structure,” IEEE Photonics Technol. Lett. 28(19), 2066–2069 (2016).
[Crossref]

S. Wang, W. Zhang, L. Chen, Y. Zhang, P. Geng, B. Wang, T. Yan, Y. Li, S. Wang, G. Zhang W, and L. Chen, “Bending vector sensor based on the multimode-2-core-multimode fiber structure,” IEEE Photonics Technol. Lett. 28(19), 2066–2069 (2016).
[Crossref]

Q. Zhou, W. G. Zhang, L. Chen, Z. Y. Bai, L. Y. Zhang, L. Wang, B. Wang, and T. Y. Yan, “Bending Vector Sensor Based on a Sector-Shaped Long-Period Grating,” IEEE Photonics Technol. Lett. 27(7), 713–716 (2015).
[Crossref]

L. Y. Zhang, W. G. Zhang, L. Chen, T. Y. Yan, L. Wang, B. Wang, and Q. Zhou, “A fiber bending vector sensor based on M–Z interferometer exploiting two hump-shaped tapers,” IEEE Photonics Technol. Lett. 27(11), 1173–1176 (2015).
[Crossref]

Chen, X.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Chen, X. F.

Cheng, C.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. B. Yuan, “Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Correa, R. A.

Du, H.

Flockhart, G. M. H.

Gander, M. J.

M. J. Gander, W. N. Macpherson, R. Mcbride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

Gao, S.

Gasulla, I.

Geng, P.

S. Wang, W. Zhang, L. Chen, Y. Zhang, P. Geng, B. Wang, T. Yan, Y. Li, S. Wang, G. Zhang W, and L. Chen, “Bending vector sensor based on the multimode-2-core-multimode fiber structure,” IEEE Photonics Technol. Lett. 28(19), 2066–2069 (2016).
[Crossref]

S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach–Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett. 37(21), 4480–4482 (2012).
[Crossref]

Geng, P. C.

Greenaway, A. H.

M. J. Gander, W. N. Macpherson, R. Mcbride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

Guo, H.

Y. Zhao, A. Zhou, H. Guo, Z. Zheng, Y. Xu, C. Zhou, and L. Yuan, “An Integrated fiber Michelson interferometer based on twin-core and side-hole fibers for multi-parameter sensing,” J. Lightwave Technol. 36(23), C1 (2018).
[Crossref]

Guzman-Sepulveda, J. R.

Han, Y. G.

He, Z. H.

Hu, W.

Jeong, C. H.

Jian, S. S.

Y. Wu, L. Pei, W. X. Jin, Y. C. Jiang, Y. G. Yang, Y. Shen, and S. S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
[Crossref]

Jiang, Y. C.

Y. Wu, L. Pei, W. X. Jin, Y. C. Jiang, Y. G. Yang, Y. Shen, and S. S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
[Crossref]

Jin, L.

Jin, W.

Jin, W. X.

Y. Wu, L. Pei, W. X. Jin, Y. C. Jiang, Y. G. Yang, Y. Shen, and S. S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
[Crossref]

John, Joseph

N. Paliwal and Joseph John, “Design and modeling of highly sensitive lossy mode resonance-based fiber-optic pressure sensor,” IEEE Sens. J. 18(1), 209–215 (2018).
[Crossref]

Jones, J. D. C.

Ju, J.

Kalli, K.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Kang, H. J.

Kim, G.

Kong, J.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. B. Yuan, “Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Lee, K.

Lee, S. B.

Li, Y.

S. Wang, W. Zhang, L. Chen, Y. Zhang, P. Geng, B. Wang, T. Yan, Y. Li, S. Wang, G. Zhang W, and L. Chen, “Bending vector sensor based on the multimode-2-core-multimode fiber structure,” IEEE Photonics Technol. Lett. 28(19), 2066–2069 (2016).
[Crossref]

Li, Y. P.

Lopez, E. A.

Lopez, J. E. A.

Lou, S. Q.

G. L. Yin, S. Q. Lou, W. L. Lu, and X. Wang, “A high-sensitive fiber curvature sensor using twin core fiber-based filter,” Appl. Phys. B 115(1), 99–104 (2014).
[Crossref]

Lu, W. L.

G. L. Yin, S. Q. Lou, W. L. Lu, and X. Wang, “A high-sensitive fiber curvature sensor using twin core fiber-based filter,” Appl. Phys. B 115(1), 99–104 (2014).
[Crossref]

MacPherson, W. N.

Marcuse, D.

Martinez-Rios, A.

May-Arrioja, D. A.

Mcbride, R.

M. J. Gander, W. N. Macpherson, R. Mcbride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

Newkirk, A. V.

Oh, C. H.

Paliwal, N.

N. Paliwal and Joseph John, “Design and modeling of highly sensitive lossy mode resonance-based fiber-optic pressure sensor,” IEEE Sens. J. 18(1), 209–215 (2018).
[Crossref]

Pei, L.

Y. Wu, L. Pei, W. X. Jin, Y. C. Jiang, Y. G. Yang, Y. Shen, and S. S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
[Crossref]

Peng, G.-D.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Qu, H.

Rao, Y. J.

Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
[Crossref]

Salceda-Delgado, G.

Sales, S.

Schulzgen, A.

Schülzgen, A.

Shen, Y.

Y. Wu, L. Pei, W. X. Jin, Y. C. Jiang, Y. G. Yang, Y. Shen, and S. S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
[Crossref]

Skorobogatiy, M.

Van Newkirk, A.

Villatoro, J.

Wang, B.

S. Wang, W. Zhang, L. Chen, Y. Zhang, P. Geng, B. Wang, T. Yan, Y. Li, S. Wang, G. Zhang W, and L. Chen, “Bending vector sensor based on the multimode-2-core-multimode fiber structure,” IEEE Photonics Technol. Lett. 28(19), 2066–2069 (2016).
[Crossref]

L. Y. Zhang, W. G. Zhang, L. Chen, T. Y. Yan, L. Wang, B. Wang, and Q. Zhou, “A fiber bending vector sensor based on M–Z interferometer exploiting two hump-shaped tapers,” IEEE Photonics Technol. Lett. 27(11), 1173–1176 (2015).
[Crossref]

Q. Zhou, W. G. Zhang, L. Chen, Z. Y. Bai, L. Y. Zhang, L. Wang, B. Wang, and T. Y. Yan, “Bending Vector Sensor Based on a Sector-Shaped Long-Period Grating,” IEEE Photonics Technol. Lett. 27(7), 713–716 (2015).
[Crossref]

Wang, L.

L. Y. Zhang, W. G. Zhang, L. Chen, T. Y. Yan, L. Wang, B. Wang, and Q. Zhou, “A fiber bending vector sensor based on M–Z interferometer exploiting two hump-shaped tapers,” IEEE Photonics Technol. Lett. 27(11), 1173–1176 (2015).
[Crossref]

Q. Zhou, W. G. Zhang, L. Chen, Z. Y. Bai, L. Y. Zhang, L. Wang, B. Wang, and T. Y. Yan, “Bending Vector Sensor Based on a Sector-Shaped Long-Period Grating,” IEEE Photonics Technol. Lett. 27(7), 713–716 (2015).
[Crossref]

Wang, Q.

Q. Wang and W. M. Zhao, “Optical methods of antibiotic residues detections: A comprehensive review,” Sens. Actuators, B 269, 238–256 (2018).
[Crossref]

Q. Wang and W. M. Zhao, “A comprehensive review of lossy mode resonance-based fiber optic sensors,” Opt. Laser Eng. 100, 47–60 (2018).
[Crossref]

Wang, S.

S. Wang, W. G. Zhang, L. Chen, Y. X. Zhang, P. C. Geng, Y. S. Zhang, T. Y. Yan, L. Yu, W. Hu, and Y. P. Li, “Two-dimensional microbend sensor based on long-period fiber gratings in an isosceles triangle arrangement three-core fiber,” Opt. Lett. 42(23), 4938–4941 (2017).
[Crossref]

S. Wang, W. Zhang, L. Chen, Y. Zhang, P. Geng, B. Wang, T. Yan, Y. Li, S. Wang, G. Zhang W, and L. Chen, “Bending vector sensor based on the multimode-2-core-multimode fiber structure,” IEEE Photonics Technol. Lett. 28(19), 2066–2069 (2016).
[Crossref]

S. Wang, W. Zhang, L. Chen, Y. Zhang, P. Geng, B. Wang, T. Yan, Y. Li, S. Wang, G. Zhang W, and L. Chen, “Bending vector sensor based on the multimode-2-core-multimode fiber structure,” IEEE Photonics Technol. Lett. 28(19), 2066–2069 (2016).
[Crossref]

Wang, X.

G. L. Yin, S. Q. Lou, W. L. Lu, and X. Wang, “A high-sensitive fiber curvature sensor using twin core fiber-based filter,” Appl. Phys. B 115(1), 99–104 (2014).
[Crossref]

Wang, Y. P.

Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
[Crossref]

Webb, D. J.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Wu, Q. L.

Y. Zhao, Q. L. Wu, and Y. N. Zhang, “Theoretical analysis of high-sensitive seawater temperature and salinity measurement based on C-type micro-structured fiber,” Sens. Actuators, B 258, 822–828 (2018).
[Crossref]

Wu, Y.

Y. Wu, L. Pei, W. X. Jin, Y. C. Jiang, Y. G. Yang, Y. Shen, and S. S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
[Crossref]

Xu, Y.

Y. Zhao, A. Zhou, H. Guo, Z. Zheng, Y. Xu, C. Zhou, and L. Yuan, “An Integrated fiber Michelson interferometer based on twin-core and side-hole fibers for multi-parameter sensing,” J. Lightwave Technol. 36(23), C1 (2018).
[Crossref]

Xue, X.

Yan, G. F.

Yan, T.

S. Wang, W. Zhang, L. Chen, Y. Zhang, P. Geng, B. Wang, T. Yan, Y. Li, S. Wang, G. Zhang W, and L. Chen, “Bending vector sensor based on the multimode-2-core-multimode fiber structure,” IEEE Photonics Technol. Lett. 28(19), 2066–2069 (2016).
[Crossref]

Yan, T. Y.

S. Wang, W. G. Zhang, L. Chen, Y. X. Zhang, P. C. Geng, Y. S. Zhang, T. Y. Yan, L. Yu, W. Hu, and Y. P. Li, “Two-dimensional microbend sensor based on long-period fiber gratings in an isosceles triangle arrangement three-core fiber,” Opt. Lett. 42(23), 4938–4941 (2017).
[Crossref]

L. Y. Zhang, W. G. Zhang, L. Chen, T. Y. Yan, L. Wang, B. Wang, and Q. Zhou, “A fiber bending vector sensor based on M–Z interferometer exploiting two hump-shaped tapers,” IEEE Photonics Technol. Lett. 27(11), 1173–1176 (2015).
[Crossref]

Q. Zhou, W. G. Zhang, L. Chen, Z. Y. Bai, L. Y. Zhang, L. Wang, B. Wang, and T. Y. Yan, “Bending Vector Sensor Based on a Sector-Shaped Long-Period Grating,” IEEE Photonics Technol. Lett. 27(7), 713–716 (2015).
[Crossref]

Yang, J.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. B. Yuan, “Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Yang, Y. G.

Y. Wu, L. Pei, W. X. Jin, Y. C. Jiang, Y. G. Yang, Y. Shen, and S. S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
[Crossref]

Yin, G. L.

G. L. Yin, S. Q. Lou, W. L. Lu, and X. Wang, “A high-sensitive fiber curvature sensor using twin core fiber-based filter,” Appl. Phys. B 115(1), 99–104 (2014).
[Crossref]

Yu, L.

Yuan, L.

Y. Zhao, A. Zhou, H. Guo, Z. Zheng, Y. Xu, C. Zhou, and L. Yuan, “An Integrated fiber Michelson interferometer based on twin-core and side-hole fibers for multi-parameter sensing,” J. Lightwave Technol. 36(23), C1 (2018).
[Crossref]

Yuan, L. B.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. B. Yuan, “Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Zhang, C.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Zhang, L.

Zhang, L. Y.

L. Y. Zhang, W. G. Zhang, L. Chen, T. Y. Yan, L. Wang, B. Wang, and Q. Zhou, “A fiber bending vector sensor based on M–Z interferometer exploiting two hump-shaped tapers,” IEEE Photonics Technol. Lett. 27(11), 1173–1176 (2015).
[Crossref]

Q. Zhou, W. G. Zhang, L. Chen, Z. Y. Bai, L. Y. Zhang, L. Wang, B. Wang, and T. Y. Yan, “Bending Vector Sensor Based on a Sector-Shaped Long-Period Grating,” IEEE Photonics Technol. Lett. 27(7), 713–716 (2015).
[Crossref]

Zhang, S.

Zhang, W.

S. Wang, W. Zhang, L. Chen, Y. Zhang, P. Geng, B. Wang, T. Yan, Y. Li, S. Wang, G. Zhang W, and L. Chen, “Bending vector sensor based on the multimode-2-core-multimode fiber structure,” IEEE Photonics Technol. Lett. 28(19), 2066–2069 (2016).
[Crossref]

S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach–Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett. 37(21), 4480–4482 (2012).
[Crossref]

Zhang, W. G.

S. Wang, W. G. Zhang, L. Chen, Y. X. Zhang, P. C. Geng, Y. S. Zhang, T. Y. Yan, L. Yu, W. Hu, and Y. P. Li, “Two-dimensional microbend sensor based on long-period fiber gratings in an isosceles triangle arrangement three-core fiber,” Opt. Lett. 42(23), 4938–4941 (2017).
[Crossref]

Q. Zhou, W. G. Zhang, L. Chen, Z. Y. Bai, L. Y. Zhang, L. Wang, B. Wang, and T. Y. Yan, “Bending Vector Sensor Based on a Sector-Shaped Long-Period Grating,” IEEE Photonics Technol. Lett. 27(7), 713–716 (2015).
[Crossref]

L. Y. Zhang, W. G. Zhang, L. Chen, T. Y. Yan, L. Wang, B. Wang, and Q. Zhou, “A fiber bending vector sensor based on M–Z interferometer exploiting two hump-shaped tapers,” IEEE Photonics Technol. Lett. 27(11), 1173–1176 (2015).
[Crossref]

Zhang, Y.

S. Wang, W. Zhang, L. Chen, Y. Zhang, P. Geng, B. Wang, T. Yan, Y. Li, S. Wang, G. Zhang W, and L. Chen, “Bending vector sensor based on the multimode-2-core-multimode fiber structure,” IEEE Photonics Technol. Lett. 28(19), 2066–2069 (2016).
[Crossref]

Zhang, Y. N.

Y. Zhao, Q. L. Wu, and Y. N. Zhang, “Theoretical analysis of high-sensitive seawater temperature and salinity measurement based on C-type micro-structured fiber,” Sens. Actuators, B 258, 822–828 (2018).
[Crossref]

Zhang, Y. S.

Zhang, Y. X.

Zhang W, G.

S. Wang, W. Zhang, L. Chen, Y. Zhang, P. Geng, B. Wang, T. Yan, Y. Li, S. Wang, G. Zhang W, and L. Chen, “Bending vector sensor based on the multimode-2-core-multimode fiber structure,” IEEE Photonics Technol. Lett. 28(19), 2066–2069 (2016).
[Crossref]

Zhao, D. H.

Zhao, W. M.

Q. Wang and W. M. Zhao, “Optical methods of antibiotic residues detections: A comprehensive review,” Sens. Actuators, B 269, 238–256 (2018).
[Crossref]

Q. Wang and W. M. Zhao, “A comprehensive review of lossy mode resonance-based fiber optic sensors,” Opt. Laser Eng. 100, 47–60 (2018).
[Crossref]

Zhao, Y.

Y. Zhao, Q. L. Wu, and Y. N. Zhang, “Theoretical analysis of high-sensitive seawater temperature and salinity measurement based on C-type micro-structured fiber,” Sens. Actuators, B 258, 822–828 (2018).
[Crossref]

Y. Zhao, A. Zhou, H. Guo, Z. Zheng, Y. Xu, C. Zhou, and L. Yuan, “An Integrated fiber Michelson interferometer based on twin-core and side-hole fibers for multi-parameter sensing,” J. Lightwave Technol. 36(23), C1 (2018).
[Crossref]

Zheng, Z.

Y. Zhao, A. Zhou, H. Guo, Z. Zheng, Y. Xu, C. Zhou, and L. Yuan, “An Integrated fiber Michelson interferometer based on twin-core and side-hole fibers for multi-parameter sensing,” J. Lightwave Technol. 36(23), C1 (2018).
[Crossref]

Zhou, A.

Y. Zhao, A. Zhou, H. Guo, Z. Zheng, Y. Xu, C. Zhou, and L. Yuan, “An Integrated fiber Michelson interferometer based on twin-core and side-hole fibers for multi-parameter sensing,” J. Lightwave Technol. 36(23), C1 (2018).
[Crossref]

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. B. Yuan, “Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Zhou, C.

Y. Zhao, A. Zhou, H. Guo, Z. Zheng, Y. Xu, C. Zhou, and L. Yuan, “An Integrated fiber Michelson interferometer based on twin-core and side-hole fibers for multi-parameter sensing,” J. Lightwave Technol. 36(23), C1 (2018).
[Crossref]

Zhou, K. M.

Zhou, Q.

L. Y. Zhang, W. G. Zhang, L. Chen, T. Y. Yan, L. Wang, B. Wang, and Q. Zhou, “A fiber bending vector sensor based on M–Z interferometer exploiting two hump-shaped tapers,” IEEE Photonics Technol. Lett. 27(11), 1173–1176 (2015).
[Crossref]

Q. Zhou, W. G. Zhang, L. Chen, Z. Y. Bai, L. Y. Zhang, L. Wang, B. Wang, and T. Y. Yan, “Bending Vector Sensor Based on a Sector-Shaped Long-Period Grating,” IEEE Photonics Technol. Lett. 27(7), 713–716 (2015).
[Crossref]

Zhu, Y. N.

Zubia, J.

Appl. Opt. (1)

Appl. Phys. B (1)

G. L. Yin, S. Q. Lou, W. L. Lu, and X. Wang, “A high-sensitive fiber curvature sensor using twin core fiber-based filter,” Appl. Phys. B 115(1), 99–104 (2014).
[Crossref]

Electron. Lett. (1)

M. J. Gander, W. N. Macpherson, R. Mcbride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (5)

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. B. Yuan, “Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Q. Zhou, W. G. Zhang, L. Chen, Z. Y. Bai, L. Y. Zhang, L. Wang, B. Wang, and T. Y. Yan, “Bending Vector Sensor Based on a Sector-Shaped Long-Period Grating,” IEEE Photonics Technol. Lett. 27(7), 713–716 (2015).
[Crossref]

L. Y. Zhang, W. G. Zhang, L. Chen, T. Y. Yan, L. Wang, B. Wang, and Q. Zhou, “A fiber bending vector sensor based on M–Z interferometer exploiting two hump-shaped tapers,” IEEE Photonics Technol. Lett. 27(11), 1173–1176 (2015).
[Crossref]

S. Wang, W. Zhang, L. Chen, Y. Zhang, P. Geng, B. Wang, T. Yan, Y. Li, S. Wang, G. Zhang W, and L. Chen, “Bending vector sensor based on the multimode-2-core-multimode fiber structure,” IEEE Photonics Technol. Lett. 28(19), 2066–2069 (2016).
[Crossref]

IEEE Sens. J. (2)

Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
[Crossref]

N. Paliwal and Joseph John, “Design and modeling of highly sensitive lossy mode resonance-based fiber-optic pressure sensor,” IEEE Sens. J. 18(1), 209–215 (2018).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. (1)

Opt. Express (3)

Opt. Laser Eng. (1)

Q. Wang and W. M. Zhao, “A comprehensive review of lossy mode resonance-based fiber optic sensors,” Opt. Laser Eng. 100, 47–60 (2018).
[Crossref]

Opt. Laser Technol. (1)

Y. Wu, L. Pei, W. X. Jin, Y. C. Jiang, Y. G. Yang, Y. Shen, and S. S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
[Crossref]

Opt. Lett. (7)

H. Qu, G. F. Yan, and M. Skorobogatiy, “Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber,” Opt. Lett. 39(16), 4835–4838 (2014).
[Crossref]

G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, and R. Amezcua Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett. 40(7), 1468–1471 (2015).
[Crossref]

J. Villatoro, A. V. Newkirk, E. A. Lopez, J. Zubia, A. Schülzgen, and R. A. Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41(4), 832–835 (2016).
[Crossref]

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[Crossref]

S. Wang, W. G. Zhang, L. Chen, Y. X. Zhang, P. C. Geng, Y. S. Zhang, T. Y. Yan, L. Yu, W. Hu, and Y. P. Li, “Two-dimensional microbend sensor based on long-period fiber gratings in an isosceles triangle arrangement three-core fiber,” Opt. Lett. 42(23), 4938–4941 (2017).
[Crossref]

A. V. Newkirk, J. E. A. Lopez, A. V. Benitez, J. Albert, R. A. Correa, and A. Schulzgen, “Bending sensor combining multicore fiber with a mode-selective photonic lantern,” Opt. Lett. 40(22), 5188–5191 (2015).
[Crossref]

S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach–Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett. 37(21), 4480–4482 (2012).
[Crossref]

Sens. Actuators, B (2)

Y. Zhao, Q. L. Wu, and Y. N. Zhang, “Theoretical analysis of high-sensitive seawater temperature and salinity measurement based on C-type micro-structured fiber,” Sens. Actuators, B 258, 822–828 (2018).
[Crossref]

Q. Wang and W. M. Zhao, “Optical methods of antibiotic residues detections: A comprehensive review,” Sens. Actuators, B 269, 238–256 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) The schematic configuration of the TCF based MI interferometer. (b) The cross-section image of the triple-core fiber.
Fig. 2.
Fig. 2. (a) Transmission spectrum of the MI based on TCF with no taper (blue line) and with taper (black line) (b) is spatial spectrum with taper.
Fig. 3.
Fig. 3. The schematic diagram of (a) the cross-section of triple-core fiber and (b) lateral curvature.
Fig. 4.
Fig. 4. The schematic of the experimental setup for vector curvature sensing.
Fig. 5.
Fig. 5. The interference spectrum shift of the MI based on the TCF with different curvature at (a)-(b) 0°, (c)-(d) 90°, (e)-(f) 180° and (g)-(h) 270°.
Fig. 6.
Fig. 6. The wavelengths shift of dip with different curvature at (a) 0° and 90°, (b) 180° and 270°. (c) The wavelength shift with the different curvature at 0°, 90°, 180° and 270°.
Fig. 7.
Fig. 7. Effect of the total length of the TCF on the sensitivity of the TCF interferometer with a fixed bended length.
Fig. 8.
Fig. 8. Effect of the bended length of the TCF on the sensitivity of the TCF interferometer with a fixed TCF length.
Fig. 9.
Fig. 9. (a) The interference spectrum shift of the MI based on the TCF with different from at 30 °C to100 ℃. (b) The wavelength shift of two dips with different temperatures from 30 °C to 100℃.

Tables (2)

Tables Icon

Table 1. Effect of Splitting Ratio of the TCF on the Curvature Sensitivity of the TCF-Based MI

Tables Icon

Table 2. Comparisons Between the Sensors for Curvature Measurement

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

f = 2 Δ n e f f i , j L λ 2
I = | a ~ | 2 + | b ~ | 2 + | c ~ | 2 + 2 a ~ b ~ c o s ϕ 12 + 2 b ~ c ~ c o s ϕ 23 + 2 a ~ c ~ c o s ϕ 31
ϕ i j = 2 π L b Δ n e f f i , j λ + 2 π ( L L b ) Δ n e f f i , j λ
n e f f i = n i ( 1 + C h c o s θ )
{ Δ n e f f 1 , 2 = n 1 ( 1 + C h c o s θ ) n 2 Δ n e f f 2 , 3 = n 2 n 3 ( 1 C h c o s θ ) Δ n e f f 3 , 1 = n 3 ( 1 C h c o s θ ) n 1 ( 1 + C h c o s θ )
S 1 = | d λ d C | | I / I C C I / I λ λ | = | λ L b n 1 h L ( n 1 n 2 ) + L b C h a ~ b ~ s i n k 1 + b ~ c ~ s i n k 2 + 2 a ~ c ~ s i n k 3 a ~ b ~ s i n ( A 1 + k 1 ) + A 2 + k 2 A 1 + k 1 b ~ c ~ s i n ( A 2 + k 2 ) + k 3 A 1 + k 1 2 a ~ c ~ s i n k 3 |
{ A 1 = 2 π ( L L b ) ( n 1 n 2 ) λ A 2 = 2 π ( L L b ) ( n 2 n 3 ) λ
{ k 1 = 2 π L b λ ( n 1 + n 1 C h n 2 ) k 2 = 2 π L b λ ( n 2 n 1 + n 1 C h ) k 3 = 2 π L b λ ( 2 n 1 C h )
S 2 = | λ L b n 1 h L ( n 1 n 2 ) + L b C h |
F = S 1 S 2 = | a ~ b ~ s i n k 1 + b ~ c ~ s i n k 2 + 2 a ~ c ~ s i n k 3 a ~ b ~ s i n ( A 1 + k 1 ) + A 2 + k 2 A 1 + k 1 b ~ c ~ ( A 2 + k 2 ) + k 3 A 1 + k 1 2 a ~ c ~ s i n k 3 |
Δ C = Δ λ Δ λ T C S T C S T S C