Abstract

Infrared imaging provides invisible infrared pictures beyond that of normal human vision. However, common infrared imaging systems are incapable of capturing dynamical phenomena with high resolution and a wide field of view (FoV). The proposed modality purposefully selects the incident light with various instantaneous viewing angles and eventually combine them in different temporal sequences to form a larger FoV image, thus allowing one single cooled focal plane arrays to detect an area that appreciably exceeds what is possible with conventional counterparts. The primary principles of the 3.5 $\sim$ 5 $\mu$m imaging system involve contracting and splitting the FoV with the optical wedges and switching the splitted FoV using the micro-lens arrays, which are realized with the secondary imaging structure. In this technique, the entire FoVs are enlarged from 15$^\mathrm{o}$ to 30$^\mathrm{o}$ both in 2-D and 3-D modality when the resolutions keep at 49 lp/mm. Proof-of-concept results demonstrate significantly our mid-infrared imaging modality performs high-quality images in the FoV of -15$^\mathrm{o}$ to 15$^\mathrm{o}$. The present article has brought us a new class of wide FoV imaging configurations that permit the capture of moving objects in large area, which also preserves the high resolution.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Resolution-enhanced integral imaging using two micro-lens arrays with different focal lengths for capturing and display

Zi Wang, Anting Wang, Shulu Wang, Xiaohui Ma, and Hai Ming
Opt. Express 23(22) 28970-28977 (2015)

Depth-extended integral imaging system based on a birefringence lens array providing polarization switchable focal lengths

Chan-Kyu Park, Sang-Shin Lee, and Yong-Seok Hwang
Opt. Express 17(21) 19047-19054 (2009)

Polarization-independent infrared micro-lens array based on all-silicon metasurfaces

Mingze Liu, Qingbin Fan, Le Yu, and Ting Xu
Opt. Express 27(8) 10738-10744 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Vollmer and K. Mollmann, in Infrared thermal imaging, (Wiley-Vch, 2017).
  2. R. W. Ruddock, in Basic infrared thermography principles, (Reliabilityweb, 2013).
  3. R. C. Hardie, K. J. Barnard, J. G. Bognar, and E. A. Watson, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37(1), 247–260 (1998).
    [Crossref]
  4. T. Martinez, D. V. Wick, and S. R. Restaino, “Foveated, wide field-of-view imaging system using a liquid crystal spatial light modulator,” Opt. Express 8(10), 555–560 (2001).
    [Crossref]
  5. G. Korompili, G. Kanakaris, C. Ampatis, and N. Chronis, “A portable, optical scanning microsystem for large field of view, high resolution imaging of biological specimens,” Sens. Actuators, A 279, 367–375 (2018).
    [Crossref]
  6. N. Kaiser, J. L. Tonry, and G. A. Luppino, “A new strategy for deep wide-field high-resolution optical imaging scanning systems,” Publ. Astron. Soc. Pac. 112(772), 768–800 (2000).
    [Crossref]
  7. D. Jeong, H. Lee, H. Jeong, C. M. Ok, and H. Park, “Infrared dual-field-of-view optical system design with electro-optic/laser common-aperture optics,” Curr. Opt. Photonics 2, 241–249 (2018).
  8. M. B. Vincent and E. V. Ryan, “Simultaneous infrared-visible imager/spectrograph a multi-purpose instrument for the magdalena ridge observatory 2.4 m telescope,” Proc. SPIE 6269, 62692N (2006).
    [Crossref]
  9. X. Zhang and Y. G. Gao, “Large field of view imaging system for remote target capture and trajectory measurement based on cone rotation,” Rev. Sci. Instrum. 89(6), 063704 (2018).
    [Crossref]
  10. S. Y. Yi and Y. J. Ko, “Wide field-of-view imaging using a combined hyperbolic mirror,” Curr. Opt. Photonics 1, 336–343 (2017).
  11. W. B. Pang and D. J. Brady, “Field of view in monocentric multiscale cameras,” Appl. Opt. 57(24), 6999–7005 (2018).
    [Crossref]
  12. D. W. Prather, S. Y. Shi, and J. S. Bergey, “Field stitching algorithm for the analysis of electrically large diffractive optical elements,” Opt. Lett. 24(5), 273–275 (1999).
    [Crossref]
  13. Y. N. Chang, W. Lin, J. Y. Cheng, and S. C. Chen, “Compact high-resolution endomicroscopy based on fiber bundles and imaging stitching,” Opt. Lett. 43(17), 4168–4171 (2018).
    [Crossref]
  14. H. Yabu and M. Shimomura, “Simple fabrication of micro lens arrays,” Langmuir 21(5), 1709–1711 (2005).
    [Crossref]
  15. Q. H. Wang, H. Deng, T. T. Jiao, D. H. Li, and F. N. Wang, “Imitating micro-lens array for integral imaging,” Chin. Opt. Lett. 8(5), 512–514 (2010).
    [Crossref]
  16. C. T. Pan and C. H. Su, “Fabrication of gapless triangular micro-lens array,” Sens. Actuators, A 134(2), 631–640 (2007).
    [Crossref]
  17. H. W. Lee and B. S. Lin, “Improvement of illumination uniformity for led flat panel light by using micro-secondary lens array,” Opt. Express 20(S6), A788–A798 (2012).
    [Crossref]
  18. J.-S. Kim and T. Kanade, “Multi-aperture telecentric lens for 3d reconstruction,” Opt. Lett. 36(7), 1050–1052 (2011).
    [Crossref]
  19. N. Rajic and N. Street, “A performance comparison between cooled and uncooled infrared detectors for thermoelastic stress analysis,” Quant. InfraRed Thermogr. 11(2), 207–221 (2014).
    [Crossref]
  20. H. B. Xie, Y. P. Su, M. Zhu, L. Yang, S. S. Wang, X. B. Wang, and T. Yang, “Athermalization of infrared optical system through wavefront coding,” Opt. Commun. 441, 106–112 (2019).
    [Crossref]
  21. C. T. Amirault and C. A. DiMarzio, “Precision pointing using a dual-wedge scanner,” Appl. Opt. 24(9), 1302–1308 (1985).
    [Crossref]
  22. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20(24), 4152–4155 (1981).
    [Crossref]
  23. A. S. Lau, “The narcissus effect in infrared optical scanning systems,” Proc. SPIE 107, 590–599 (1976).
  24. P. C. Foote and R. A. Woodson, “Lens design and tolerance analysis methods and results,” J. Opt. Soc. Am. 38(7), 590–599 (1948).
    [Crossref]
  25. D. S. Grey, “Athermalization of optical systems,” J. Opt. Soc. Am. 38(6), 542–546 (1948).
    [Crossref]
  26. M. Bayar and O. F. Farsakoglu, “Mechanically active athermalization of a forward looking infrared system,” Infrared Phys. Technol. 43(2), 91–99 (2002).
    [Crossref]

2019 (1)

H. B. Xie, Y. P. Su, M. Zhu, L. Yang, S. S. Wang, X. B. Wang, and T. Yang, “Athermalization of infrared optical system through wavefront coding,” Opt. Commun. 441, 106–112 (2019).
[Crossref]

2018 (5)

G. Korompili, G. Kanakaris, C. Ampatis, and N. Chronis, “A portable, optical scanning microsystem for large field of view, high resolution imaging of biological specimens,” Sens. Actuators, A 279, 367–375 (2018).
[Crossref]

D. Jeong, H. Lee, H. Jeong, C. M. Ok, and H. Park, “Infrared dual-field-of-view optical system design with electro-optic/laser common-aperture optics,” Curr. Opt. Photonics 2, 241–249 (2018).

X. Zhang and Y. G. Gao, “Large field of view imaging system for remote target capture and trajectory measurement based on cone rotation,” Rev. Sci. Instrum. 89(6), 063704 (2018).
[Crossref]

W. B. Pang and D. J. Brady, “Field of view in monocentric multiscale cameras,” Appl. Opt. 57(24), 6999–7005 (2018).
[Crossref]

Y. N. Chang, W. Lin, J. Y. Cheng, and S. C. Chen, “Compact high-resolution endomicroscopy based on fiber bundles and imaging stitching,” Opt. Lett. 43(17), 4168–4171 (2018).
[Crossref]

2017 (1)

S. Y. Yi and Y. J. Ko, “Wide field-of-view imaging using a combined hyperbolic mirror,” Curr. Opt. Photonics 1, 336–343 (2017).

2014 (1)

N. Rajic and N. Street, “A performance comparison between cooled and uncooled infrared detectors for thermoelastic stress analysis,” Quant. InfraRed Thermogr. 11(2), 207–221 (2014).
[Crossref]

2012 (1)

2011 (1)

2010 (1)

2007 (1)

C. T. Pan and C. H. Su, “Fabrication of gapless triangular micro-lens array,” Sens. Actuators, A 134(2), 631–640 (2007).
[Crossref]

2006 (1)

M. B. Vincent and E. V. Ryan, “Simultaneous infrared-visible imager/spectrograph a multi-purpose instrument for the magdalena ridge observatory 2.4 m telescope,” Proc. SPIE 6269, 62692N (2006).
[Crossref]

2005 (1)

H. Yabu and M. Shimomura, “Simple fabrication of micro lens arrays,” Langmuir 21(5), 1709–1711 (2005).
[Crossref]

2002 (1)

M. Bayar and O. F. Farsakoglu, “Mechanically active athermalization of a forward looking infrared system,” Infrared Phys. Technol. 43(2), 91–99 (2002).
[Crossref]

2001 (1)

2000 (1)

N. Kaiser, J. L. Tonry, and G. A. Luppino, “A new strategy for deep wide-field high-resolution optical imaging scanning systems,” Publ. Astron. Soc. Pac. 112(772), 768–800 (2000).
[Crossref]

1999 (1)

1998 (1)

R. C. Hardie, K. J. Barnard, J. G. Bognar, and E. A. Watson, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37(1), 247–260 (1998).
[Crossref]

1985 (1)

1981 (1)

1976 (1)

A. S. Lau, “The narcissus effect in infrared optical scanning systems,” Proc. SPIE 107, 590–599 (1976).

1948 (2)

Amirault, C. T.

Ampatis, C.

G. Korompili, G. Kanakaris, C. Ampatis, and N. Chronis, “A portable, optical scanning microsystem for large field of view, high resolution imaging of biological specimens,” Sens. Actuators, A 279, 367–375 (2018).
[Crossref]

Barnard, K. J.

R. C. Hardie, K. J. Barnard, J. G. Bognar, and E. A. Watson, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37(1), 247–260 (1998).
[Crossref]

Bayar, M.

M. Bayar and O. F. Farsakoglu, “Mechanically active athermalization of a forward looking infrared system,” Infrared Phys. Technol. 43(2), 91–99 (2002).
[Crossref]

Bergey, J. S.

Bognar, J. G.

R. C. Hardie, K. J. Barnard, J. G. Bognar, and E. A. Watson, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37(1), 247–260 (1998).
[Crossref]

Brady, D. J.

Chang, Y. N.

Chen, S. C.

Cheng, J. Y.

Chronis, N.

G. Korompili, G. Kanakaris, C. Ampatis, and N. Chronis, “A portable, optical scanning microsystem for large field of view, high resolution imaging of biological specimens,” Sens. Actuators, A 279, 367–375 (2018).
[Crossref]

Deng, H.

DiMarzio, C. A.

Farsakoglu, O. F.

M. Bayar and O. F. Farsakoglu, “Mechanically active athermalization of a forward looking infrared system,” Infrared Phys. Technol. 43(2), 91–99 (2002).
[Crossref]

Foote, P. C.

Gao, Y. G.

X. Zhang and Y. G. Gao, “Large field of view imaging system for remote target capture and trajectory measurement based on cone rotation,” Rev. Sci. Instrum. 89(6), 063704 (2018).
[Crossref]

Grey, D. S.

Hardie, R. C.

R. C. Hardie, K. J. Barnard, J. G. Bognar, and E. A. Watson, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37(1), 247–260 (1998).
[Crossref]

Jeong, D.

D. Jeong, H. Lee, H. Jeong, C. M. Ok, and H. Park, “Infrared dual-field-of-view optical system design with electro-optic/laser common-aperture optics,” Curr. Opt. Photonics 2, 241–249 (2018).

Jeong, H.

D. Jeong, H. Lee, H. Jeong, C. M. Ok, and H. Park, “Infrared dual-field-of-view optical system design with electro-optic/laser common-aperture optics,” Curr. Opt. Photonics 2, 241–249 (2018).

Jiao, T. T.

Kaiser, N.

N. Kaiser, J. L. Tonry, and G. A. Luppino, “A new strategy for deep wide-field high-resolution optical imaging scanning systems,” Publ. Astron. Soc. Pac. 112(772), 768–800 (2000).
[Crossref]

Kanade, T.

Kanakaris, G.

G. Korompili, G. Kanakaris, C. Ampatis, and N. Chronis, “A portable, optical scanning microsystem for large field of view, high resolution imaging of biological specimens,” Sens. Actuators, A 279, 367–375 (2018).
[Crossref]

Kim, J.-S.

Ko, Y. J.

S. Y. Yi and Y. J. Ko, “Wide field-of-view imaging using a combined hyperbolic mirror,” Curr. Opt. Photonics 1, 336–343 (2017).

Korompili, G.

G. Korompili, G. Kanakaris, C. Ampatis, and N. Chronis, “A portable, optical scanning microsystem for large field of view, high resolution imaging of biological specimens,” Sens. Actuators, A 279, 367–375 (2018).
[Crossref]

Lau, A. S.

A. S. Lau, “The narcissus effect in infrared optical scanning systems,” Proc. SPIE 107, 590–599 (1976).

Lee, H.

D. Jeong, H. Lee, H. Jeong, C. M. Ok, and H. Park, “Infrared dual-field-of-view optical system design with electro-optic/laser common-aperture optics,” Curr. Opt. Photonics 2, 241–249 (2018).

Lee, H. W.

Li, D. H.

Lin, B. S.

Lin, W.

Luppino, G. A.

N. Kaiser, J. L. Tonry, and G. A. Luppino, “A new strategy for deep wide-field high-resolution optical imaging scanning systems,” Publ. Astron. Soc. Pac. 112(772), 768–800 (2000).
[Crossref]

Martinez, T.

Mollmann, K.

M. Vollmer and K. Mollmann, in Infrared thermal imaging, (Wiley-Vch, 2017).

Ok, C. M.

D. Jeong, H. Lee, H. Jeong, C. M. Ok, and H. Park, “Infrared dual-field-of-view optical system design with electro-optic/laser common-aperture optics,” Curr. Opt. Photonics 2, 241–249 (2018).

Pan, C. T.

C. T. Pan and C. H. Su, “Fabrication of gapless triangular micro-lens array,” Sens. Actuators, A 134(2), 631–640 (2007).
[Crossref]

Pang, W. B.

Park, H.

D. Jeong, H. Lee, H. Jeong, C. M. Ok, and H. Park, “Infrared dual-field-of-view optical system design with electro-optic/laser common-aperture optics,” Curr. Opt. Photonics 2, 241–249 (2018).

Powell, I.

Prather, D. W.

Rajic, N.

N. Rajic and N. Street, “A performance comparison between cooled and uncooled infrared detectors for thermoelastic stress analysis,” Quant. InfraRed Thermogr. 11(2), 207–221 (2014).
[Crossref]

Restaino, S. R.

Ruddock, R. W.

R. W. Ruddock, in Basic infrared thermography principles, (Reliabilityweb, 2013).

Ryan, E. V.

M. B. Vincent and E. V. Ryan, “Simultaneous infrared-visible imager/spectrograph a multi-purpose instrument for the magdalena ridge observatory 2.4 m telescope,” Proc. SPIE 6269, 62692N (2006).
[Crossref]

Shi, S. Y.

Shimomura, M.

H. Yabu and M. Shimomura, “Simple fabrication of micro lens arrays,” Langmuir 21(5), 1709–1711 (2005).
[Crossref]

Street, N.

N. Rajic and N. Street, “A performance comparison between cooled and uncooled infrared detectors for thermoelastic stress analysis,” Quant. InfraRed Thermogr. 11(2), 207–221 (2014).
[Crossref]

Su, C. H.

C. T. Pan and C. H. Su, “Fabrication of gapless triangular micro-lens array,” Sens. Actuators, A 134(2), 631–640 (2007).
[Crossref]

Su, Y. P.

H. B. Xie, Y. P. Su, M. Zhu, L. Yang, S. S. Wang, X. B. Wang, and T. Yang, “Athermalization of infrared optical system through wavefront coding,” Opt. Commun. 441, 106–112 (2019).
[Crossref]

Tonry, J. L.

N. Kaiser, J. L. Tonry, and G. A. Luppino, “A new strategy for deep wide-field high-resolution optical imaging scanning systems,” Publ. Astron. Soc. Pac. 112(772), 768–800 (2000).
[Crossref]

Vincent, M. B.

M. B. Vincent and E. V. Ryan, “Simultaneous infrared-visible imager/spectrograph a multi-purpose instrument for the magdalena ridge observatory 2.4 m telescope,” Proc. SPIE 6269, 62692N (2006).
[Crossref]

Vollmer, M.

M. Vollmer and K. Mollmann, in Infrared thermal imaging, (Wiley-Vch, 2017).

Wang, F. N.

Wang, Q. H.

Wang, S. S.

H. B. Xie, Y. P. Su, M. Zhu, L. Yang, S. S. Wang, X. B. Wang, and T. Yang, “Athermalization of infrared optical system through wavefront coding,” Opt. Commun. 441, 106–112 (2019).
[Crossref]

Wang, X. B.

H. B. Xie, Y. P. Su, M. Zhu, L. Yang, S. S. Wang, X. B. Wang, and T. Yang, “Athermalization of infrared optical system through wavefront coding,” Opt. Commun. 441, 106–112 (2019).
[Crossref]

Watson, E. A.

R. C. Hardie, K. J. Barnard, J. G. Bognar, and E. A. Watson, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37(1), 247–260 (1998).
[Crossref]

Wick, D. V.

Woodson, R. A.

Xie, H. B.

H. B. Xie, Y. P. Su, M. Zhu, L. Yang, S. S. Wang, X. B. Wang, and T. Yang, “Athermalization of infrared optical system through wavefront coding,” Opt. Commun. 441, 106–112 (2019).
[Crossref]

Yabu, H.

H. Yabu and M. Shimomura, “Simple fabrication of micro lens arrays,” Langmuir 21(5), 1709–1711 (2005).
[Crossref]

Yang, L.

H. B. Xie, Y. P. Su, M. Zhu, L. Yang, S. S. Wang, X. B. Wang, and T. Yang, “Athermalization of infrared optical system through wavefront coding,” Opt. Commun. 441, 106–112 (2019).
[Crossref]

Yang, T.

H. B. Xie, Y. P. Su, M. Zhu, L. Yang, S. S. Wang, X. B. Wang, and T. Yang, “Athermalization of infrared optical system through wavefront coding,” Opt. Commun. 441, 106–112 (2019).
[Crossref]

Yi, S. Y.

S. Y. Yi and Y. J. Ko, “Wide field-of-view imaging using a combined hyperbolic mirror,” Curr. Opt. Photonics 1, 336–343 (2017).

Zhang, X.

X. Zhang and Y. G. Gao, “Large field of view imaging system for remote target capture and trajectory measurement based on cone rotation,” Rev. Sci. Instrum. 89(6), 063704 (2018).
[Crossref]

Zhu, M.

H. B. Xie, Y. P. Su, M. Zhu, L. Yang, S. S. Wang, X. B. Wang, and T. Yang, “Athermalization of infrared optical system through wavefront coding,” Opt. Commun. 441, 106–112 (2019).
[Crossref]

Appl. Opt. (3)

Chin. Opt. Lett. (1)

Curr. Opt. Photonics (2)

D. Jeong, H. Lee, H. Jeong, C. M. Ok, and H. Park, “Infrared dual-field-of-view optical system design with electro-optic/laser common-aperture optics,” Curr. Opt. Photonics 2, 241–249 (2018).

S. Y. Yi and Y. J. Ko, “Wide field-of-view imaging using a combined hyperbolic mirror,” Curr. Opt. Photonics 1, 336–343 (2017).

Infrared Phys. Technol. (1)

M. Bayar and O. F. Farsakoglu, “Mechanically active athermalization of a forward looking infrared system,” Infrared Phys. Technol. 43(2), 91–99 (2002).
[Crossref]

J. Opt. Soc. Am. (2)

Langmuir (1)

H. Yabu and M. Shimomura, “Simple fabrication of micro lens arrays,” Langmuir 21(5), 1709–1711 (2005).
[Crossref]

Opt. Commun. (1)

H. B. Xie, Y. P. Su, M. Zhu, L. Yang, S. S. Wang, X. B. Wang, and T. Yang, “Athermalization of infrared optical system through wavefront coding,” Opt. Commun. 441, 106–112 (2019).
[Crossref]

Opt. Eng. (1)

R. C. Hardie, K. J. Barnard, J. G. Bognar, and E. A. Watson, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37(1), 247–260 (1998).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (2)

M. B. Vincent and E. V. Ryan, “Simultaneous infrared-visible imager/spectrograph a multi-purpose instrument for the magdalena ridge observatory 2.4 m telescope,” Proc. SPIE 6269, 62692N (2006).
[Crossref]

A. S. Lau, “The narcissus effect in infrared optical scanning systems,” Proc. SPIE 107, 590–599 (1976).

Publ. Astron. Soc. Pac. (1)

N. Kaiser, J. L. Tonry, and G. A. Luppino, “A new strategy for deep wide-field high-resolution optical imaging scanning systems,” Publ. Astron. Soc. Pac. 112(772), 768–800 (2000).
[Crossref]

Quant. InfraRed Thermogr. (1)

N. Rajic and N. Street, “A performance comparison between cooled and uncooled infrared detectors for thermoelastic stress analysis,” Quant. InfraRed Thermogr. 11(2), 207–221 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

X. Zhang and Y. G. Gao, “Large field of view imaging system for remote target capture and trajectory measurement based on cone rotation,” Rev. Sci. Instrum. 89(6), 063704 (2018).
[Crossref]

Sens. Actuators, A (2)

G. Korompili, G. Kanakaris, C. Ampatis, and N. Chronis, “A portable, optical scanning microsystem for large field of view, high resolution imaging of biological specimens,” Sens. Actuators, A 279, 367–375 (2018).
[Crossref]

C. T. Pan and C. H. Su, “Fabrication of gapless triangular micro-lens array,” Sens. Actuators, A 134(2), 631–640 (2007).
[Crossref]

Other (2)

M. Vollmer and K. Mollmann, in Infrared thermal imaging, (Wiley-Vch, 2017).

R. W. Ruddock, in Basic infrared thermography principles, (Reliabilityweb, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1. Conceptual diagram of the proposed infrared imaging modality.
Fig. 2.
Fig. 2. Block diagram of the newly-designed infrared imaging modality. OWs, optical wedges; FOL, front objective lens; BOL, back objective lens; MLAs, micro-lens arrays; D, detector.
Fig. 3.
Fig. 3. 1 × 2 switchable FoV infrared imaging modality. OWs, optical wedges; FOL, front objective lens; BOL, back objective lens; MLAs, micro-lens arrays; CS, cold shield; FPAs, focal plane arrays. The blue and green beam ray represent the sub-FoV I and II in this modality, respectively. The total length of the system is 452.8 mm.
Fig. 4.
Fig. 4. The module of double optical wedges. (a) Geometric model. The blue solid line, red dash-dotted and green dotted line represent the light beam, primary axis and normal vector, respectively. (b) Design diagram.
Fig. 5.
Fig. 5. The module of FOL with image-space telecentric system. (a) Geometric model. The FoV of FOL 2$\omega _2$ is 15$^\mathrm{o}$, focal length f$_2'$ is 100.87 mm, F-number is 2.83564, first image height 2y$_2'$ is 26.56 mm, and diameter of aperture stop is 34 mm. (b) Design diagram.
Fig. 6.
Fig. 6. The module of MLAs. (a) Geometric model. The ray from sub-FoV I pass through the MLAs, and ray from sub-FoV II is blocked by the back MLAs. Objective angular aperture is 10$^\mathrm{o}$, and image angular aperture is 5$^\mathrm{o}$. (b) Structure of single unit in back MLAs. (c) Design diagram.
Fig. 7.
Fig. 7. The module of BOL with object-space telecentric system. (a) Geometric model. The objective angular aperture u$_3$ is 5$^\mathrm{o}$, the image angular aperture u$_3'$ is 14$^\mathrm{o}$, objective height 2y$_3$ is 26.56 mm, and image height 2y$_3'$ is 34 mm. (d) Design diagram.
Fig. 8.
Fig. 8. The individual infrared imaging system with different sub-FoVs. (a) Sub-FoV I. (b) Sub-FoV II.
Fig. 9.
Fig. 9. MTFs of 1 × 2 switchable infrared imaging system. (a) Sub-FoV I. COSF=49 lp/mm. (b) Sub-FoV II. COSF=49 lp/mm.
Fig. 10.
Fig. 10. Spot diagrams of 1 × 2 switchable infrared imaging system. The blue cross, green square, red triangle represent the 3.5 $\mu$m, 4.25 $\mu$m and 5 $\mu$m wavelength of incident light, respectively. The number above the spot stands for the RMS radius in the unit of $\mu$m. (a) Sub-FoV I. (b) Sub-FoV II.
Fig. 11.
Fig. 11. 2 × 2 switchable infrared imaging modality. The diameter of entrance pupil is 34 mm, the focal lengths of FOL and BOL are 91.3 mm and 68 mm, respectively.
Fig. 12.
Fig. 12. Module of optical wedges. (a) Optical wedges in Y-Z plane. (b) Optical wedges in X-Z plane. (c) Model for contracting the sub-FoV I to IV.
Fig. 13.
Fig. 13. Module of micro-lens arrays for managing the beam ray in four sub-FoVs.
Fig. 14.
Fig. 14. MTFs of 2 × 2 switchable infrared imaging system. (a) Sub-FoV I. COSF=49 lp/mm. (b) Sub-FoV II. COSF=49 lp/mm. (c) Sub-FoV III. COSF=49 lp/mm. (d) Sub-FoV IV. COSF=49 lp/mm.
Fig. 15.
Fig. 15. Spot diagrams of 2 × 2 switchable infrared imaging system. The blue cross, green square, red triangle represent the 3.5 $\mu$m, 4.25 $\mu$m and 5 $\mu$m wavelength of incident light, respectively. The number above the spot stands for the RMS radius in the unit of $\mu$m. (a) Sub-FoV I. (b) Sub-FoV II. (c) Sub-FoV III. (d) Sub-FoV IV.
Fig. 16.
Fig. 16. Imaging results of 2 × 2 switchable infrared imaging modality. (a) Sub-FoV I. (b) Sub-FoV II. (c) Sub-FoV III. (d) Sub-FoV IV.
Fig. 17.
Fig. 17. MTFs of 2 × 2 switchable infrared imaging system (sub-FoV I) in various working temperatures. (a) -40$^\mathrm{o}$C. COSF=5 lp/mm. (b) -20$^\mathrm{o}$C. COSF=14 lp/mm. (c) 0$^\mathrm{o}$C. COSF=30 lp/mm. (d) 20$^\mathrm{o}$C. COSF=49 lp/mm. (e) 50$^\mathrm{o}$C. COSF=7 lp/mm. (f) 70$^\mathrm{o}$C. COSF=4 lp/mm.
Fig. 18.
Fig. 18. MTFs of 2 × 2 switchable infrared imaging system (sub-FoV I) with mechanical athermalization. (a) -40$^\mathrm{o}$C. $\Delta$z=-0.270 mm. (b) -20$^\mathrm{o}$C. $\Delta$z=-0.175 mm. (c) 0$^\mathrm{o}$C. $\Delta$z=-0.083 mm. (d) 20$^\mathrm{o}$C. $\Delta$z=0. (e) 50$^\mathrm{o}$C. $\Delta$z=0.150 mm. (f) 70$^\mathrm{o}$C. $\Delta$z=0.242 mm.

Tables (2)

Tables Icon

Table 1. Characteristics of 1 × 2 switchable imaging modality.

Tables Icon

Table 2. Characteristics of 2 × 2 switchable imaging modality.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

θ 1 n 0 = θ 2 n 1 θ 3 n 1 = θ 4 n 0 θ 3 = α 1 θ 2 θ 4 = n 1 n 0 α 1 θ 1
ω = θ 1 α 1 2 ω 1 = α 1 2 θ 4
ω 1 = ( 1 n 1 n 0 ) α 1 ω
ω 2 = ( 1 n 2 n 0 ) α 2 ω 1
ω 2 = ω ( ( 1 n 1 n 0 ) α 1 ( 1 n 2 n 0 ) α 2 )