Abstract

A non-mechanical scanning method based on a liquid-crystal spatial light modulator (LC-SLM) is proposed to increase the viewing angle of electronic holographic three-dimensional (3D) displays. A scanning off-axis Fresnel lens is simulated by the LC-SLM to deflect the reconstructed light beam. Using the time-division multiplexing method, the viewing zones are sequentially projected to different positions. When the eyes of the observer are located at the viewing zones, the reconstructed 3D images can be observed. The experimental results and analyses show the feasibility and advantages of the proposed method.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Table screen 360-degree holographic display using circular viewing-zone scanning

Tatsuaki Inoue and Yasuhiro Takaki
Opt. Express 23(5) 6533-6542 (2015)

Binocular holographic three-dimensional display using a single spatial light modulator and a grating

Yanfeng Su, Zhijian Cai, Quan Liu, Lingyan Shi, Feng Zhou, and Jianhong Wu
J. Opt. Soc. Am. A 35(8) 1477-1486 (2018)

Scalable screen-size enlargement by multi-channel viewing-zone scanning holography

Yasuhiro Takaki and Mitsuki Nakaoka
Opt. Express 24(16) 18772-18781 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi, F. Okano, and J. Y. Son, Three-dimensional Imaging, Visualization, and Display (Springer, 2009).
  2. G. Finke, T. Kozacki, and M. Kujawińska, “Wide-viewing-angle holographic display with a multi-spatial light modulator array,” Proc. SPIE,  772377230A (2010).
    [Crossref]
  3. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide-viewing-angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16(16), 12372 (2008).
    [Crossref]
  4. H. Y. Chen and T. D. Wilkinson, “Field of view expansion for 3-D holographic display using a single spatial light modulator with scanning reconstruction light,” in 3DTV Conference: The True Vision-Capture, Transmission, and Display of 3D Video , (IEEE, 2009), pp. 1–4
  5. Y. Z. Liu, X. N. Pang, S. Jiang, and J. W. Dong, “Viewing-angle enlargement in augmented holographic reality using time division and spatial tiling,” Opt. Express 21(10), 12068–12076 (2013).
    [Crossref]
  6. D. Teng, L. Liu, Z. Wang, B. Sun, and B. Wang, “All-around holographic three-dimensional light field display,” Opt. Commun. 285(21-22), 4235–4240 (2012).
    [Crossref]
  7. H. E. Kim, M. Park, K. Moon, and J. W. Kim, “Table-top three-dimensional holographic display using ellipsoid mirror,” Proc. 3DSA 2014 Korea (3DSA, 2014), pp. 4–15
  8. T. Inoue and Y. Takaki, “Table screen 360° holographic display using circular viewing-zone scanning,” Opt. Express 23(5), 6533 (2015).
    [Crossref]
  9. J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966).
    [Crossref]
  10. M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
    [Crossref]
  11. S. C. Kim and E. S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47(19), D55 (2008).
    [Crossref]
  12. P. F. Mcmanamon, P. J. Bos, M. J. Escuti, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
    [Crossref]
  13. Y. Hao, Y. Huang, Q. Wu, and W. Xiao, “The research of methods to improve the control bandwidth for liquid crystal beam steering system,” Proc. SPIE 8906, 89061T (2013).
    [Crossref]
  14. S. Serati and J. Harriman, “Spatial light modulator considerations for beam control in optical manipulation applications,” Proc. SPIE 6326, 63262W (2006).
    [Crossref]
  15. P. Mcmanamon, “An overview of optical phased array technology and status,” Proc. SPIE 5947, 59470I (2005).
    [Crossref]
  16. P. Q. Lin, C. F. Ying, Z. B. Xu, H. Pang, and F. Lou, “Implementation of the controllable zoom lens based on phase-only liquid crystal spatial light modulator,” J. Appl. Optics 31(3), 376–380 (2010).
  17. J. Q. Qu, L. M. Zou, Y. J. Chen, and X. M. Ding, “Realization of non-mechanical lateral and axial confocal microscopic laser scanning with a phase-only liquid-crystal spatial light modulator,” Key Eng. Mater. 613, 167–172 (2014).
    [Crossref]
  18. L. Shi, J. Shi, P. F. McManamon, and P. J. Bos, “Design considerations for high efficiency liquid crystal decentered microlens arrays for steering light,” Appl. Opt. 49(3), 409–421 (2010).
    [Crossref]
  19. J. L. Gibson, B. D. Duncan, E. A. Watson, and J. S. Loomis, “Wide-angle decentered lens beam steering for infrared countermeasures applications,” Opt. Eng. 43(10), 2312–2321 (2004).
    [Crossref]
  20. D. Engström, J. Bengtsson, E. Eriksson, and M. Goksör, “Improved beam steering accuracy of a single beam with a 1D phase-only spatial light modulator,” Opt. Express 16(22), 18275–18287 (2008).
    [Crossref]

2015 (1)

2014 (1)

J. Q. Qu, L. M. Zou, Y. J. Chen, and X. M. Ding, “Realization of non-mechanical lateral and axial confocal microscopic laser scanning with a phase-only liquid-crystal spatial light modulator,” Key Eng. Mater. 613, 167–172 (2014).
[Crossref]

2013 (2)

Y. Hao, Y. Huang, Q. Wu, and W. Xiao, “The research of methods to improve the control bandwidth for liquid crystal beam steering system,” Proc. SPIE 8906, 89061T (2013).
[Crossref]

Y. Z. Liu, X. N. Pang, S. Jiang, and J. W. Dong, “Viewing-angle enlargement in augmented holographic reality using time division and spatial tiling,” Opt. Express 21(10), 12068–12076 (2013).
[Crossref]

2012 (1)

D. Teng, L. Liu, Z. Wang, B. Sun, and B. Wang, “All-around holographic three-dimensional light field display,” Opt. Commun. 285(21-22), 4235–4240 (2012).
[Crossref]

2010 (3)

G. Finke, T. Kozacki, and M. Kujawińska, “Wide-viewing-angle holographic display with a multi-spatial light modulator array,” Proc. SPIE,  772377230A (2010).
[Crossref]

P. Q. Lin, C. F. Ying, Z. B. Xu, H. Pang, and F. Lou, “Implementation of the controllable zoom lens based on phase-only liquid crystal spatial light modulator,” J. Appl. Optics 31(3), 376–380 (2010).

L. Shi, J. Shi, P. F. McManamon, and P. J. Bos, “Design considerations for high efficiency liquid crystal decentered microlens arrays for steering light,” Appl. Opt. 49(3), 409–421 (2010).
[Crossref]

2009 (1)

P. F. Mcmanamon, P. J. Bos, M. J. Escuti, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

2008 (3)

2006 (1)

S. Serati and J. Harriman, “Spatial light modulator considerations for beam control in optical manipulation applications,” Proc. SPIE 6326, 63262W (2006).
[Crossref]

2005 (1)

P. Mcmanamon, “An overview of optical phased array technology and status,” Proc. SPIE 5947, 59470I (2005).
[Crossref]

2004 (1)

J. L. Gibson, B. D. Duncan, E. A. Watson, and J. S. Loomis, “Wide-angle decentered lens beam steering for infrared countermeasures applications,” Opt. Eng. 43(10), 2312–2321 (2004).
[Crossref]

1993 (1)

M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

1966 (1)

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966).
[Crossref]

Bengtsson, J.

Bos, P. J.

L. Shi, J. Shi, P. F. McManamon, and P. J. Bos, “Design considerations for high efficiency liquid crystal decentered microlens arrays for steering light,” Appl. Opt. 49(3), 409–421 (2010).
[Crossref]

P. F. Mcmanamon, P. J. Bos, M. J. Escuti, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Chen, H. Y.

H. Y. Chen and T. D. Wilkinson, “Field of view expansion for 3-D holographic display using a single spatial light modulator with scanning reconstruction light,” in 3DTV Conference: The True Vision-Capture, Transmission, and Display of 3D Video , (IEEE, 2009), pp. 1–4

Chen, Y. J.

J. Q. Qu, L. M. Zou, Y. J. Chen, and X. M. Ding, “Realization of non-mechanical lateral and axial confocal microscopic laser scanning with a phase-only liquid-crystal spatial light modulator,” Key Eng. Mater. 613, 167–172 (2014).
[Crossref]

Ding, X. M.

J. Q. Qu, L. M. Zou, Y. J. Chen, and X. M. Ding, “Realization of non-mechanical lateral and axial confocal microscopic laser scanning with a phase-only liquid-crystal spatial light modulator,” Key Eng. Mater. 613, 167–172 (2014).
[Crossref]

Dong, J. W.

Duncan, B. D.

J. L. Gibson, B. D. Duncan, E. A. Watson, and J. S. Loomis, “Wide-angle decentered lens beam steering for infrared countermeasures applications,” Opt. Eng. 43(10), 2312–2321 (2004).
[Crossref]

Engström, D.

Eriksson, E.

Escuti, M. J.

P. F. Mcmanamon, P. J. Bos, M. J. Escuti, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Finke, G.

G. Finke, T. Kozacki, and M. Kujawińska, “Wide-viewing-angle holographic display with a multi-spatial light modulator array,” Proc. SPIE,  772377230A (2010).
[Crossref]

Gibson, J. L.

J. L. Gibson, B. D. Duncan, E. A. Watson, and J. S. Loomis, “Wide-angle decentered lens beam steering for infrared countermeasures applications,” Opt. Eng. 43(10), 2312–2321 (2004).
[Crossref]

Goksör, M.

Hahn, J.

Hao, Y.

Y. Hao, Y. Huang, Q. Wu, and W. Xiao, “The research of methods to improve the control bandwidth for liquid crystal beam steering system,” Proc. SPIE 8906, 89061T (2013).
[Crossref]

Harriman, J.

S. Serati and J. Harriman, “Spatial light modulator considerations for beam control in optical manipulation applications,” Proc. SPIE 6326, 63262W (2006).
[Crossref]

Huang, Y.

Y. Hao, Y. Huang, Q. Wu, and W. Xiao, “The research of methods to improve the control bandwidth for liquid crystal beam steering system,” Proc. SPIE 8906, 89061T (2013).
[Crossref]

Inoue, T.

Javidi, B.

B. Javidi, F. Okano, and J. Y. Son, Three-dimensional Imaging, Visualization, and Display (Springer, 2009).

Jiang, S.

Kim, E. S.

Kim, H.

Kim, H. E.

H. E. Kim, M. Park, K. Moon, and J. W. Kim, “Table-top three-dimensional holographic display using ellipsoid mirror,” Proc. 3DSA 2014 Korea (3DSA, 2014), pp. 4–15

Kim, J. W.

H. E. Kim, M. Park, K. Moon, and J. W. Kim, “Table-top three-dimensional holographic display using ellipsoid mirror,” Proc. 3DSA 2014 Korea (3DSA, 2014), pp. 4–15

Kim, S. C.

Kozacki, T.

G. Finke, T. Kozacki, and M. Kujawińska, “Wide-viewing-angle holographic display with a multi-spatial light modulator array,” Proc. SPIE,  772377230A (2010).
[Crossref]

Kujawinska, M.

G. Finke, T. Kozacki, and M. Kujawińska, “Wide-viewing-angle holographic display with a multi-spatial light modulator array,” Proc. SPIE,  772377230A (2010).
[Crossref]

Lee, B.

Lim, Y.

Lin, P. Q.

P. Q. Lin, C. F. Ying, Z. B. Xu, H. Pang, and F. Lou, “Implementation of the controllable zoom lens based on phase-only liquid crystal spatial light modulator,” J. Appl. Optics 31(3), 376–380 (2010).

Liu, L.

D. Teng, L. Liu, Z. Wang, B. Sun, and B. Wang, “All-around holographic three-dimensional light field display,” Opt. Commun. 285(21-22), 4235–4240 (2012).
[Crossref]

Liu, Y. Z.

Loomis, J. S.

J. L. Gibson, B. D. Duncan, E. A. Watson, and J. S. Loomis, “Wide-angle decentered lens beam steering for infrared countermeasures applications,” Opt. Eng. 43(10), 2312–2321 (2004).
[Crossref]

Lou, F.

P. Q. Lin, C. F. Ying, Z. B. Xu, H. Pang, and F. Lou, “Implementation of the controllable zoom lens based on phase-only liquid crystal spatial light modulator,” J. Appl. Optics 31(3), 376–380 (2010).

Lucente, M. E.

M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Mcmanamon, P.

P. Mcmanamon, “An overview of optical phased array technology and status,” Proc. SPIE 5947, 59470I (2005).
[Crossref]

McManamon, P. F.

L. Shi, J. Shi, P. F. McManamon, and P. J. Bos, “Design considerations for high efficiency liquid crystal decentered microlens arrays for steering light,” Appl. Opt. 49(3), 409–421 (2010).
[Crossref]

P. F. Mcmanamon, P. J. Bos, M. J. Escuti, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Moon, K.

H. E. Kim, M. Park, K. Moon, and J. W. Kim, “Table-top three-dimensional holographic display using ellipsoid mirror,” Proc. 3DSA 2014 Korea (3DSA, 2014), pp. 4–15

Okano, F.

B. Javidi, F. Okano, and J. Y. Son, Three-dimensional Imaging, Visualization, and Display (Springer, 2009).

Pang, H.

P. Q. Lin, C. F. Ying, Z. B. Xu, H. Pang, and F. Lou, “Implementation of the controllable zoom lens based on phase-only liquid crystal spatial light modulator,” J. Appl. Optics 31(3), 376–380 (2010).

Pang, X. N.

Park, G.

Park, M.

H. E. Kim, M. Park, K. Moon, and J. W. Kim, “Table-top three-dimensional holographic display using ellipsoid mirror,” Proc. 3DSA 2014 Korea (3DSA, 2014), pp. 4–15

Qu, J. Q.

J. Q. Qu, L. M. Zou, Y. J. Chen, and X. M. Ding, “Realization of non-mechanical lateral and axial confocal microscopic laser scanning with a phase-only liquid-crystal spatial light modulator,” Key Eng. Mater. 613, 167–172 (2014).
[Crossref]

Serati, S.

S. Serati and J. Harriman, “Spatial light modulator considerations for beam control in optical manipulation applications,” Proc. SPIE 6326, 63262W (2006).
[Crossref]

Shi, J.

Shi, L.

Son, J. Y.

B. Javidi, F. Okano, and J. Y. Son, Three-dimensional Imaging, Visualization, and Display (Springer, 2009).

Sun, B.

D. Teng, L. Liu, Z. Wang, B. Sun, and B. Wang, “All-around holographic three-dimensional light field display,” Opt. Commun. 285(21-22), 4235–4240 (2012).
[Crossref]

Takaki, Y.

Teng, D.

D. Teng, L. Liu, Z. Wang, B. Sun, and B. Wang, “All-around holographic three-dimensional light field display,” Opt. Commun. 285(21-22), 4235–4240 (2012).
[Crossref]

Wang, B.

D. Teng, L. Liu, Z. Wang, B. Sun, and B. Wang, “All-around holographic three-dimensional light field display,” Opt. Commun. 285(21-22), 4235–4240 (2012).
[Crossref]

Wang, Z.

D. Teng, L. Liu, Z. Wang, B. Sun, and B. Wang, “All-around holographic three-dimensional light field display,” Opt. Commun. 285(21-22), 4235–4240 (2012).
[Crossref]

Waters, J. P.

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966).
[Crossref]

Watson, E. A.

P. F. Mcmanamon, P. J. Bos, M. J. Escuti, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

J. L. Gibson, B. D. Duncan, E. A. Watson, and J. S. Loomis, “Wide-angle decentered lens beam steering for infrared countermeasures applications,” Opt. Eng. 43(10), 2312–2321 (2004).
[Crossref]

Wilkinson, T. D.

H. Y. Chen and T. D. Wilkinson, “Field of view expansion for 3-D holographic display using a single spatial light modulator with scanning reconstruction light,” in 3DTV Conference: The True Vision-Capture, Transmission, and Display of 3D Video , (IEEE, 2009), pp. 1–4

Wu, Q.

Y. Hao, Y. Huang, Q. Wu, and W. Xiao, “The research of methods to improve the control bandwidth for liquid crystal beam steering system,” Proc. SPIE 8906, 89061T (2013).
[Crossref]

Xiao, W.

Y. Hao, Y. Huang, Q. Wu, and W. Xiao, “The research of methods to improve the control bandwidth for liquid crystal beam steering system,” Proc. SPIE 8906, 89061T (2013).
[Crossref]

Xu, Z. B.

P. Q. Lin, C. F. Ying, Z. B. Xu, H. Pang, and F. Lou, “Implementation of the controllable zoom lens based on phase-only liquid crystal spatial light modulator,” J. Appl. Optics 31(3), 376–380 (2010).

Ying, C. F.

P. Q. Lin, C. F. Ying, Z. B. Xu, H. Pang, and F. Lou, “Implementation of the controllable zoom lens based on phase-only liquid crystal spatial light modulator,” J. Appl. Optics 31(3), 376–380 (2010).

Zou, L. M.

J. Q. Qu, L. M. Zou, Y. J. Chen, and X. M. Ding, “Realization of non-mechanical lateral and axial confocal microscopic laser scanning with a phase-only liquid-crystal spatial light modulator,” Key Eng. Mater. 613, 167–172 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9(11), 405–407 (1966).
[Crossref]

J. Appl. Optics (1)

P. Q. Lin, C. F. Ying, Z. B. Xu, H. Pang, and F. Lou, “Implementation of the controllable zoom lens based on phase-only liquid crystal spatial light modulator,” J. Appl. Optics 31(3), 376–380 (2010).

J. Electron. Imaging (1)

M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Key Eng. Mater. (1)

J. Q. Qu, L. M. Zou, Y. J. Chen, and X. M. Ding, “Realization of non-mechanical lateral and axial confocal microscopic laser scanning with a phase-only liquid-crystal spatial light modulator,” Key Eng. Mater. 613, 167–172 (2014).
[Crossref]

Opt. Commun. (1)

D. Teng, L. Liu, Z. Wang, B. Sun, and B. Wang, “All-around holographic three-dimensional light field display,” Opt. Commun. 285(21-22), 4235–4240 (2012).
[Crossref]

Opt. Eng. (1)

J. L. Gibson, B. D. Duncan, E. A. Watson, and J. S. Loomis, “Wide-angle decentered lens beam steering for infrared countermeasures applications,” Opt. Eng. 43(10), 2312–2321 (2004).
[Crossref]

Opt. Express (4)

Proc. IEEE (1)

P. F. Mcmanamon, P. J. Bos, M. J. Escuti, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Proc. SPIE (4)

Y. Hao, Y. Huang, Q. Wu, and W. Xiao, “The research of methods to improve the control bandwidth for liquid crystal beam steering system,” Proc. SPIE 8906, 89061T (2013).
[Crossref]

S. Serati and J. Harriman, “Spatial light modulator considerations for beam control in optical manipulation applications,” Proc. SPIE 6326, 63262W (2006).
[Crossref]

P. Mcmanamon, “An overview of optical phased array technology and status,” Proc. SPIE 5947, 59470I (2005).
[Crossref]

G. Finke, T. Kozacki, and M. Kujawińska, “Wide-viewing-angle holographic display with a multi-spatial light modulator array,” Proc. SPIE,  772377230A (2010).
[Crossref]

Other (3)

B. Javidi, F. Okano, and J. Y. Son, Three-dimensional Imaging, Visualization, and Display (Springer, 2009).

H. Y. Chen and T. D. Wilkinson, “Field of view expansion for 3-D holographic display using a single spatial light modulator with scanning reconstruction light,” in 3DTV Conference: The True Vision-Capture, Transmission, and Display of 3D Video , (IEEE, 2009), pp. 1–4

H. E. Kim, M. Park, K. Moon, and J. W. Kim, “Table-top three-dimensional holographic display using ellipsoid mirror,” Proc. 3DSA 2014 Korea (3DSA, 2014), pp. 4–15

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Three-lens optical system for an electronic holographic 3D display.
Fig. 2.
Fig. 2. Beam deflection with all-positive decentered macroscopic lenses.
Fig. 3.
Fig. 3. Sub-holograms generated with multiple views.
Fig. 4.
Fig. 4. Non-mechanical scanning employed to enlarge the viewing zone.
Fig. 5.
Fig. 5. “PKU” hologram generated and reconstructed using a computer. (a) 3D object consisting of point light sources, (b) computer generated holograms, and (c) simulation of reconstructed image.
Fig. 6.
Fig. 6. Electronic holographic 3D display system.
Fig. 7.
Fig. 7. Electronic holographic 3D display with three viewing zones of CGH7, CGH2, CGH9(Fig.3). (a)-(c) the generated sub-holograms, (d)-(f) phase diagrams of the off-axis Fresnel lenses loaded by the LC-SLM,(g)-(i) reconstructed images.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

t ( x , y ) = P ( x , y ) exp [ j k 2 f ( x 2 + y 2 ) ]
exp [ j k 2 f ( x 2 + y 2 ) ]
t ( x , y ) = P ( x , y ) exp [ j k 2 f ( ( x x 0 ) 2 + ( y y 0 ) 2 ) ]
φ ( x , y ) = m o d 2 π ( π λ f s l m ( ( x x 0 ) 2 + ( y y 0 ) 2 ) )
{ f x = 1 2 π φ x = 1 λ f s l m | x x 0 | f y = 1 2 π φ y = 1 λ f s l m | y y 0 |
{ f x m a x = 1 2 λ f s l m ( N x d ) f y m a x = 1 2 λ f s l m ( N y d )
f s l m max ( N x d 2 2 λ , N y d 2 2 λ )
θ = arcsin λ 2 d