Abstract

Compact and miniature optical amplifiers operating in the near-infrared wavelength range are in ever-increasing-demand for integrated optical communication devices and subsystems. Due to low dopant concentration and the relatively large size of conventional fiber amplifiers, however, much effort is shifting toward compact and miniature waveguide structures. We hereby demonstrate a simple and effective method for the fabrication of optical waveguide devices. The devices can be fabricated by using a miniature rare-earth-ion-doped-glass microneedle coupled with two fiber collimators at the input and output ends of the waveguide. The experimental results show that, with a pump power of 500 mW, a small-signal net gain of 13.20 dB at 1530 nm is achieved in the 1.0 cm-length active microneedle with a more than 1.0×1026 ion/m3 dopant concentration. This approach can be considered as a new gateway for the fabrication and wide application of compact and miniature waveguide devices in the future.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides

D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin
J. Opt. Soc. Am. B 26(2) 357-363 (2009)

Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier

Robert R. Thomson, Nicholas D. Psaila, Stephen J. Beecher, and Ajoy K. Kar
Opt. Express 18(12) 13212-13219 (2010)

Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau
J. Opt. Soc. Am. B 27(2) 187-196 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre lase,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  2. D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
    [Crossref]
  3. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed (Dekker, 2001).
  4. Y. Wang, “Optimization of pulse amplification in ytterbium-doped double-clad fiber amplifiers,” J. Lightwave Technol. 23(6), 2139–2147 (2005).
    [Crossref]
  5. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
    [Crossref]
  6. A. V. Kir’yanov, Y. O. Barmenkov, I. L. Martinez, A. S. Kurkov, and E. M. Dianov, “Cooperative luminescence and absorption in Ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient at λ = 980 nm with a regard to the Ytterbium ion-pairs’ effect,” Opt. Express 14(9), 3981–3992 (2006).
    [Crossref]
  7. Y. Hu, S. Jiang, G. Sorbello, T. Luo, Y. Ding, B. C. Hwang, and N. Peyghambarian, “Numerical analyses of the population dynamics and determination of the upconversion coefficients in a new high erbium-doped tellurite glass,” J. Opt. Soc. Am. B 18(12), 1928–1934 (2001).
    [Crossref]
  8. S. Grillanda and F. Morichetti, “Light-induced metal-like surface of silicon photonic waveguides,” Nat. Commun. 6(1), 8182 (2015).
    [Crossref]
  9. P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
    [Crossref]
  10. E. Nicoleau, S. Schuller, F. Angeli, T. Charpentier, P. Jollivet, A. Gac, M. Fournier, A. Mesbah, and F. Vasconcelos, “Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass,” J. Non-Cryst. Solids 427, 120–133 (2015).
    [Crossref]
  11. M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE Photonics Technol. Lett. 7(3), 303–305 (1995).
    [Crossref]
  12. B. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(3), 197–199 (2001).
    [Crossref]
  13. D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
    [Crossref]
  14. M. Belt, M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, “Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates,” Optica 4(5), 532–536 (2017).
    [Crossref]
  15. H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
    [Crossref]
  16. I. Suárez, E. J. Juárez-Pérez, J. Bisquert, I. Mora-Seró, and J. P. Martínez-Pastor, “Polymer/perovskite amplifying waveguides for active hybrid silicon photonics,” Adv. Mater. 27(40), 6157–6162 (2015).
    [Crossref]
  17. X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
    [Crossref]
  18. S. B. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
    [Crossref]
  19. Y. D. Hu, S. B. Jiang, T. Luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-Yb3+ -codoped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(7), 657–659 (2001).
    [Crossref]
  20. C. Jiang, W. S. Hu, and Q. J. Zeng, “Improved gain performance of high concentration Er3+-Yb3+ -codoped phosphate fiber amplifier,” IEEE J. Quantum Electron. 41(5), 704–708 (2005).
    [Crossref]
  21. R. Huang, C. Wang, Y. Wang, and H. Y. Zhang, “Elastic Self-Doping Organic Single Crystals Exhibiting Flexible Optical Waveguide and Amplified Spontaneous Emission,” Adv. Mater. 30(21), 1800814 (2018).
    [Crossref]
  22. Y. Wu, C. Li, X. Y. Hu, Y. T. Ao, Y. F. Zhao, and Q. H. Gong, “Applications of topological photonics in integrated photonic devices,” Adv. Opt. Mater. 5(18), 1700357 (2017).
    [Crossref]
  23. J. Y. Zheng, Y. L. Yan, X. P. Wang, W. Shi, H. M. Ma, Y. S. Zhao, and J. N. Yao, “Hydrogen peroxide vapor sensing with organic core/sheath nanowire optical waveguides,” Adv. Mater. 24(35), OP194–OP199 (2012).
    [Crossref]
  24. M. Pollnau, “Rare-earth-ion-doped channel waveguide lasers on silicon,” IEEE J. Sel. Top. Quantum Electron. 21(1), 414–425 (2015).
    [Crossref]
  25. J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
    [Crossref]
  26. X. Liu and J. Qiu, “Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications,” Chem. Soc. Rev. 44(23), 8714–8746 (2015).
    [Crossref]
  27. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
    [Crossref]
  28. X. Chen, S. Li, Z. Song, W. Du, O. Wen, and N. Sawanobori, “Study on strong cooperative upconversion luminescence of ytterbium-ytterbium clusters in oxyfluoride glass,” J. Opt. Soc. Am. B 23(12), 2581–2587 (2006).
    [Crossref]

2018 (2)

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

R. Huang, C. Wang, Y. Wang, and H. Y. Zhang, “Elastic Self-Doping Organic Single Crystals Exhibiting Flexible Optical Waveguide and Amplified Spontaneous Emission,” Adv. Mater. 30(21), 1800814 (2018).
[Crossref]

2017 (3)

Y. Wu, C. Li, X. Y. Hu, Y. T. Ao, Y. F. Zhao, and Q. H. Gong, “Applications of topological photonics in integrated photonic devices,” Adv. Opt. Mater. 5(18), 1700357 (2017).
[Crossref]

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref]

M. Belt, M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, “Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates,” Optica 4(5), 532–536 (2017).
[Crossref]

2015 (6)

I. Suárez, E. J. Juárez-Pérez, J. Bisquert, I. Mora-Seró, and J. P. Martínez-Pastor, “Polymer/perovskite amplifying waveguides for active hybrid silicon photonics,” Adv. Mater. 27(40), 6157–6162 (2015).
[Crossref]

X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref]

E. Nicoleau, S. Schuller, F. Angeli, T. Charpentier, P. Jollivet, A. Gac, M. Fournier, A. Mesbah, and F. Vasconcelos, “Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass,” J. Non-Cryst. Solids 427, 120–133 (2015).
[Crossref]

S. Grillanda and F. Morichetti, “Light-induced metal-like surface of silicon photonic waveguides,” Nat. Commun. 6(1), 8182 (2015).
[Crossref]

M. Pollnau, “Rare-earth-ion-doped channel waveguide lasers on silicon,” IEEE J. Sel. Top. Quantum Electron. 21(1), 414–425 (2015).
[Crossref]

X. Liu and J. Qiu, “Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications,” Chem. Soc. Rev. 44(23), 8714–8746 (2015).
[Crossref]

2012 (3)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre lase,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref]

J. Y. Zheng, Y. L. Yan, X. P. Wang, W. Shi, H. M. Ma, Y. S. Zhao, and J. N. Yao, “Hydrogen peroxide vapor sensing with organic core/sheath nanowire optical waveguides,” Adv. Mater. 24(35), OP194–OP199 (2012).
[Crossref]

2011 (1)

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

2008 (1)

H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[Crossref]

2007 (1)

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[Crossref]

2006 (2)

2005 (2)

Y. Wang, “Optimization of pulse amplification in ytterbium-doped double-clad fiber amplifiers,” J. Lightwave Technol. 23(6), 2139–2147 (2005).
[Crossref]

C. Jiang, W. S. Hu, and Q. J. Zeng, “Improved gain performance of high concentration Er3+-Yb3+ -codoped phosphate fiber amplifier,” IEEE J. Quantum Electron. 41(5), 704–708 (2005).
[Crossref]

2001 (3)

Y. D. Hu, S. B. Jiang, T. Luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-Yb3+ -codoped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(7), 657–659 (2001).
[Crossref]

Y. Hu, S. Jiang, G. Sorbello, T. Luo, Y. Ding, B. C. Hwang, and N. Peyghambarian, “Numerical analyses of the population dynamics and determination of the upconversion coefficients in a new high erbium-doped tellurite glass,” J. Opt. Soc. Am. B 18(12), 1928–1934 (2001).
[Crossref]

B. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(3), 197–199 (2001).
[Crossref]

2000 (1)

S. B. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

1995 (1)

M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE Photonics Technol. Lett. 7(3), 303–305 (1995).
[Crossref]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Angeli, F.

E. Nicoleau, S. Schuller, F. Angeli, T. Charpentier, P. Jollivet, A. Gac, M. Fournier, A. Mesbah, and F. Vasconcelos, “Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass,” J. Non-Cryst. Solids 427, 120–133 (2015).
[Crossref]

Ao, Y. T.

Y. Wu, C. Li, X. Y. Hu, Y. T. Ao, Y. F. Zhao, and Q. H. Gong, “Applications of topological photonics in integrated photonic devices,” Adv. Opt. Mater. 5(18), 1700357 (2017).
[Crossref]

Aravazhi, S.

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref]

Atwater, H. A.

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

Barmenkov, Y. O.

Barrelet, C. J.

H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[Crossref]

Belt, M.

Bisquert, J.

I. Suárez, E. J. Juárez-Pérez, J. Bisquert, I. Mora-Seró, and J. P. Martínez-Pastor, “Polymer/perovskite amplifying waveguides for active hybrid silicon photonics,” Adv. Mater. 27(40), 6157–6162 (2015).
[Crossref]

Blumenthal, D. J.

Bowers, J. E.

Bradley, J. D. B.

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Charpentier, T.

E. Nicoleau, S. Schuller, F. Angeli, T. Charpentier, P. Jollivet, A. Gac, M. Fournier, A. Mesbah, and F. Vasconcelos, “Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass,” J. Non-Cryst. Solids 427, 120–133 (2015).
[Crossref]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Cheben, P.

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

Chen, X.

Chen, Y.

X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref]

Davenport, M. L.

Di Pasquale, F.

M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE Photonics Technol. Lett. 7(3), 303–305 (1995).
[Crossref]

Dianov, E. M.

Diddams, S. A.

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref]

Digonnet, M. J. F.

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed (Dekker, 2001).

Ding, Y.

Du, W.

Duan, X. F.

X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref]

Eichenfield, M.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[Crossref]

Federighi, M.

M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE Photonics Technol. Lett. 7(3), 303–305 (1995).
[Crossref]

Fournier, M.

E. Nicoleau, S. Schuller, F. Angeli, T. Charpentier, P. Jollivet, A. Gac, M. Fournier, A. Mesbah, and F. Vasconcelos, “Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass,” J. Non-Cryst. Solids 427, 120–133 (2015).
[Crossref]

Fredrick, C.

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref]

Gac, A.

E. Nicoleau, S. Schuller, F. Angeli, T. Charpentier, P. Jollivet, A. Gac, M. Fournier, A. Mesbah, and F. Vasconcelos, “Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass,” J. Non-Cryst. Solids 427, 120–133 (2015).
[Crossref]

García-Blanco, S. M.

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref]

Geskus, D.

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref]

Gong, Q. H.

Y. Wu, C. Li, X. Y. Hu, Y. T. Ao, Y. F. Zhao, and Q. H. Gong, “Applications of topological photonics in integrated photonic devices,” Adv. Opt. Mater. 5(18), 1700357 (2017).
[Crossref]

Grillanda, S.

S. Grillanda and F. Morichetti, “Light-induced metal-like surface of silicon photonic waveguides,” Nat. Commun. 6(1), 8182 (2015).
[Crossref]

Guo, P. F.

X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref]

Halir, R.

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

Honkanen, S.

B. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(3), 197–199 (2001).
[Crossref]

Y. D. Hu, S. B. Jiang, T. Luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-Yb3+ -codoped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(7), 657–659 (2001).
[Crossref]

Hu, W. S.

C. Jiang, W. S. Hu, and Q. J. Zeng, “Improved gain performance of high concentration Er3+-Yb3+ -codoped phosphate fiber amplifier,” IEEE J. Quantum Electron. 41(5), 704–708 (2005).
[Crossref]

Hu, X. Y.

Y. Wu, C. Li, X. Y. Hu, Y. T. Ao, Y. F. Zhao, and Q. H. Gong, “Applications of topological photonics in integrated photonic devices,” Adv. Opt. Mater. 5(18), 1700357 (2017).
[Crossref]

Hu, Y.

Hu, Y. D.

Y. D. Hu, S. B. Jiang, T. Luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-Yb3+ -codoped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(7), 657–659 (2001).
[Crossref]

Huang, R.

R. Huang, C. Wang, Y. Wang, and H. Y. Zhang, “Elastic Self-Doping Organic Single Crystals Exhibiting Flexible Optical Waveguide and Amplified Spontaneous Emission,” Adv. Mater. 30(21), 1800814 (2018).
[Crossref]

Huang, Y.

X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref]

Hwang, B.

B. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(3), 197–199 (2001).
[Crossref]

S. B. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

Hwang, B. C.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre lase,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jiang, C.

C. Jiang, W. S. Hu, and Q. J. Zeng, “Improved gain performance of high concentration Er3+-Yb3+ -codoped phosphate fiber amplifier,” IEEE J. Quantum Electron. 41(5), 704–708 (2005).
[Crossref]

Jiang, S.

Jiang, S. B.

B. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(3), 197–199 (2001).
[Crossref]

Y. D. Hu, S. B. Jiang, T. Luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-Yb3+ -codoped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(7), 657–659 (2001).
[Crossref]

S. B. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

Jollivet, P.

E. Nicoleau, S. Schuller, F. Angeli, T. Charpentier, P. Jollivet, A. Gac, M. Fournier, A. Mesbah, and F. Vasconcelos, “Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass,” J. Non-Cryst. Solids 427, 120–133 (2015).
[Crossref]

Juárez-Pérez, E. J.

I. Suárez, E. J. Juárez-Pérez, J. Bisquert, I. Mora-Seró, and J. P. Martínez-Pastor, “Polymer/perovskite amplifying waveguides for active hybrid silicon photonics,” Adv. Mater. 27(40), 6157–6162 (2015).
[Crossref]

Kir’yanov, A. V.

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Kurkov, A. S.

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Li, C.

Y. Wu, C. Li, X. Y. Hu, Y. T. Ao, Y. F. Zhao, and Q. H. Gong, “Applications of topological photonics in integrated photonic devices,” Adv. Opt. Mater. 5(18), 1700357 (2017).
[Crossref]

Li, S.

Liang, J. W.

X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref]

Lieber, C. M.

H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[Crossref]

Liu, X.

X. Liu and J. Qiu, “Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications,” Chem. Soc. Rev. 44(23), 8714–8746 (2015).
[Crossref]

Lucas, J.

Y. D. Hu, S. B. Jiang, T. Luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-Yb3+ -codoped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(7), 657–659 (2001).
[Crossref]

B. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(3), 197–199 (2001).
[Crossref]

S. B. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

Luo, T.

Y. D. Hu, S. B. Jiang, T. Luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-Yb3+ -codoped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(7), 657–659 (2001).
[Crossref]

B. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(3), 197–199 (2001).
[Crossref]

Y. Hu, S. Jiang, G. Sorbello, T. Luo, Y. Ding, B. C. Hwang, and N. Peyghambarian, “Numerical analyses of the population dynamics and determination of the upconversion coefficients in a new high erbium-doped tellurite glass,” J. Opt. Soc. Am. B 18(12), 1928–1934 (2001).
[Crossref]

S. B. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

Ma, H. M.

J. Y. Zheng, Y. L. Yan, X. P. Wang, W. Shi, H. M. Ma, Y. S. Zhao, and J. N. Yao, “Hydrogen peroxide vapor sensing with organic core/sheath nanowire optical waveguides,” Adv. Mater. 24(35), OP194–OP199 (2012).
[Crossref]

Martinez, I. L.

Martínez-Pastor, J. P.

I. Suárez, E. J. Juárez-Pérez, J. Bisquert, I. Mora-Seró, and J. P. Martínez-Pastor, “Polymer/perovskite amplifying waveguides for active hybrid silicon photonics,” Adv. Mater. 27(40), 6157–6162 (2015).
[Crossref]

Mesbah, A.

E. Nicoleau, S. Schuller, F. Angeli, T. Charpentier, P. Jollivet, A. Gac, M. Fournier, A. Mesbah, and F. Vasconcelos, “Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass,” J. Non-Cryst. Solids 427, 120–133 (2015).
[Crossref]

Michael, C. P.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[Crossref]

Mora-Seró, I.

I. Suárez, E. J. Juárez-Pérez, J. Bisquert, I. Mora-Seró, and J. P. Martínez-Pastor, “Polymer/perovskite amplifying waveguides for active hybrid silicon photonics,” Adv. Mater. 27(40), 6157–6162 (2015).
[Crossref]

Morichetti, F.

S. Grillanda and F. Morichetti, “Light-induced metal-like surface of silicon photonic waveguides,” Nat. Commun. 6(1), 8182 (2015).
[Crossref]

Morrell, M.

B. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(3), 197–199 (2001).
[Crossref]

Y. D. Hu, S. B. Jiang, T. Luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-Yb3+ -codoped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(7), 657–659 (2001).
[Crossref]

Nicoleau, E.

E. Nicoleau, S. Schuller, F. Angeli, T. Charpentier, P. Jollivet, A. Gac, M. Fournier, A. Mesbah, and F. Vasconcelos, “Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass,” J. Non-Cryst. Solids 427, 120–133 (2015).
[Crossref]

Oh, D. Y.

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref]

Painter, O.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[Crossref]

Pan, A. L.

X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref]

Park, H. G.

H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[Crossref]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Perahia, R.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[Crossref]

Peyghambarian, N.

B. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(3), 197–199 (2001).
[Crossref]

Y. Hu, S. Jiang, G. Sorbello, T. Luo, Y. Ding, B. C. Hwang, and N. Peyghambarian, “Numerical analyses of the population dynamics and determination of the upconversion coefficients in a new high erbium-doped tellurite glass,” J. Opt. Soc. Am. B 18(12), 1928–1934 (2001).
[Crossref]

Y. D. Hu, S. B. Jiang, T. Luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-Yb3+ -codoped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(7), 657–659 (2001).
[Crossref]

S. B. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

Pollnau, M.

M. Pollnau, “Rare-earth-ion-doped channel waveguide lasers on silicon,” IEEE J. Sel. Top. Quantum Electron. 21(1), 414–425 (2015).
[Crossref]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref]

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Qian, F.

H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[Crossref]

Qiu, J.

X. Liu and J. Qiu, “Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications,” Chem. Soc. Rev. 44(23), 8714–8746 (2015).
[Crossref]

Sawanobori, N.

Schmid, J. H.

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

Schuller, S.

E. Nicoleau, S. Schuller, F. Angeli, T. Charpentier, P. Jollivet, A. Gac, M. Fournier, A. Mesbah, and F. Vasconcelos, “Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass,” J. Non-Cryst. Solids 427, 120–133 (2015).
[Crossref]

Seneschal, K.

B. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(3), 197–199 (2001).
[Crossref]

Y. D. Hu, S. B. Jiang, T. Luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-Yb3+ -codoped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(7), 657–659 (2001).
[Crossref]

S. B. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

Shi, W.

J. Y. Zheng, Y. L. Yan, X. P. Wang, W. Shi, H. M. Ma, Y. S. Zhao, and J. N. Yao, “Hydrogen peroxide vapor sensing with organic core/sheath nanowire optical waveguides,” Adv. Mater. 24(35), OP194–OP199 (2012).
[Crossref]

Smekatala, F.

S. B. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

Smektala, F.

Y. D. Hu, S. B. Jiang, T. Luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-Yb3+ -codoped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(7), 657–659 (2001).
[Crossref]

B. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(3), 197–199 (2001).
[Crossref]

Smith, D. R.

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Song, Z.

Sorbello, G.

Y. Hu, S. Jiang, G. Sorbello, T. Luo, Y. Ding, B. C. Hwang, and N. Peyghambarian, “Numerical analyses of the population dynamics and determination of the upconversion coefficients in a new high erbium-doped tellurite glass,” J. Opt. Soc. Am. B 18(12), 1928–1934 (2001).
[Crossref]

B. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(3), 197–199 (2001).
[Crossref]

Suárez, I.

I. Suárez, E. J. Juárez-Pérez, J. Bisquert, I. Mora-Seró, and J. P. Martínez-Pastor, “Polymer/perovskite amplifying waveguides for active hybrid silicon photonics,” Adv. Mater. 27(40), 6157–6162 (2015).
[Crossref]

Tian, B. Z.

H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[Crossref]

Vahala, K. J.

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref]

Vasconcelos, F.

E. Nicoleau, S. Schuller, F. Angeli, T. Charpentier, P. Jollivet, A. Gac, M. Fournier, A. Mesbah, and F. Vasconcelos, “Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass,” J. Non-Cryst. Solids 427, 120–133 (2015).
[Crossref]

Wang, C.

R. Huang, C. Wang, Y. Wang, and H. Y. Zhang, “Elastic Self-Doping Organic Single Crystals Exhibiting Flexible Optical Waveguide and Amplified Spontaneous Emission,” Adv. Mater. 30(21), 1800814 (2018).
[Crossref]

Wang, X. P.

J. Y. Zheng, Y. L. Yan, X. P. Wang, W. Shi, H. M. Ma, Y. S. Zhao, and J. N. Yao, “Hydrogen peroxide vapor sensing with organic core/sheath nanowire optical waveguides,” Adv. Mater. 24(35), OP194–OP199 (2012).
[Crossref]

Wang, X. X.

X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref]

Wang, Y.

R. Huang, C. Wang, Y. Wang, and H. Y. Zhang, “Elastic Self-Doping Organic Single Crystals Exhibiting Flexible Optical Waveguide and Amplified Spontaneous Emission,” Adv. Mater. 30(21), 1800814 (2018).
[Crossref]

Y. Wang, “Optimization of pulse amplification in ytterbium-doped double-clad fiber amplifiers,” J. Lightwave Technol. 23(6), 2139–2147 (2005).
[Crossref]

Wen, O.

Wu, Y.

Y. Wu, C. Li, X. Y. Hu, Y. T. Ao, Y. F. Zhao, and Q. H. Gong, “Applications of topological photonics in integrated photonic devices,” Adv. Opt. Mater. 5(18), 1700357 (2017).
[Crossref]

Wu, Y. N.

H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[Crossref]

Yan, Y. L.

J. Y. Zheng, Y. L. Yan, X. P. Wang, W. Shi, H. M. Ma, Y. S. Zhao, and J. N. Yao, “Hydrogen peroxide vapor sensing with organic core/sheath nanowire optical waveguides,” Adv. Mater. 24(35), OP194–OP199 (2012).
[Crossref]

Yang, K. Y.

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref]

Yang, S.

X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref]

Yao, J. N.

J. Y. Zheng, Y. L. Yan, X. P. Wang, W. Shi, H. M. Ma, Y. S. Zhao, and J. N. Yao, “Hydrogen peroxide vapor sensing with organic core/sheath nanowire optical waveguides,” Adv. Mater. 24(35), OP194–OP199 (2012).
[Crossref]

Ycas, G.

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref]

Zeng, Q. J.

C. Jiang, W. S. Hu, and Q. J. Zeng, “Improved gain performance of high concentration Er3+-Yb3+ -codoped phosphate fiber amplifier,” IEEE J. Quantum Electron. 41(5), 704–708 (2005).
[Crossref]

Zhang, H. Y.

R. Huang, C. Wang, Y. Wang, and H. Y. Zhang, “Elastic Self-Doping Organic Single Crystals Exhibiting Flexible Optical Waveguide and Amplified Spontaneous Emission,” Adv. Mater. 30(21), 1800814 (2018).
[Crossref]

Zhang, Q. L.

X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref]

Zhao, Y. F.

Y. Wu, C. Li, X. Y. Hu, Y. T. Ao, Y. F. Zhao, and Q. H. Gong, “Applications of topological photonics in integrated photonic devices,” Adv. Opt. Mater. 5(18), 1700357 (2017).
[Crossref]

Zhao, Y. S.

J. Y. Zheng, Y. L. Yan, X. P. Wang, W. Shi, H. M. Ma, Y. S. Zhao, and J. N. Yao, “Hydrogen peroxide vapor sensing with organic core/sheath nanowire optical waveguides,” Adv. Mater. 24(35), OP194–OP199 (2012).
[Crossref]

Zheng, J. Y.

J. Y. Zheng, Y. L. Yan, X. P. Wang, W. Shi, H. M. Ma, Y. S. Zhao, and J. N. Yao, “Hydrogen peroxide vapor sensing with organic core/sheath nanowire optical waveguides,” Adv. Mater. 24(35), OP194–OP199 (2012).
[Crossref]

Zhou, H.

X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref]

Zhu, X. L.

X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref]

Zhuang, X. J.

X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref]

Adv. Mater. (4)

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref]

I. Suárez, E. J. Juárez-Pérez, J. Bisquert, I. Mora-Seró, and J. P. Martínez-Pastor, “Polymer/perovskite amplifying waveguides for active hybrid silicon photonics,” Adv. Mater. 27(40), 6157–6162 (2015).
[Crossref]

R. Huang, C. Wang, Y. Wang, and H. Y. Zhang, “Elastic Self-Doping Organic Single Crystals Exhibiting Flexible Optical Waveguide and Amplified Spontaneous Emission,” Adv. Mater. 30(21), 1800814 (2018).
[Crossref]

J. Y. Zheng, Y. L. Yan, X. P. Wang, W. Shi, H. M. Ma, Y. S. Zhao, and J. N. Yao, “Hydrogen peroxide vapor sensing with organic core/sheath nanowire optical waveguides,” Adv. Mater. 24(35), OP194–OP199 (2012).
[Crossref]

Adv. Opt. Mater. (1)

Y. Wu, C. Li, X. Y. Hu, Y. T. Ao, Y. F. Zhao, and Q. H. Gong, “Applications of topological photonics in integrated photonic devices,” Adv. Opt. Mater. 5(18), 1700357 (2017).
[Crossref]

Chem. Soc. Rev. (1)

X. Liu and J. Qiu, “Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications,” Chem. Soc. Rev. 44(23), 8714–8746 (2015).
[Crossref]

IEEE J. Quantum Electron. (2)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

C. Jiang, W. S. Hu, and Q. J. Zeng, “Improved gain performance of high concentration Er3+-Yb3+ -codoped phosphate fiber amplifier,” IEEE J. Quantum Electron. 41(5), 704–708 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Pollnau, “Rare-earth-ion-doped channel waveguide lasers on silicon,” IEEE J. Sel. Top. Quantum Electron. 21(1), 414–425 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Y. D. Hu, S. B. Jiang, T. Luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-Yb3+ -codoped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(7), 657–659 (2001).
[Crossref]

M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE Photonics Technol. Lett. 7(3), 303–305 (1995).
[Crossref]

B. Hwang, S. B. Jiang, T. Luo, K. Seneschal, G. Sorbello, M. Morrell, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Performance of high-concentration Er3+-doped phosphate fiber amplifiers,” IEEE Photonics Technol. Lett. 13(3), 197–199 (2001).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (2)

S. B. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

E. Nicoleau, S. Schuller, F. Angeli, T. Charpentier, P. Jollivet, A. Gac, M. Fournier, A. Mesbah, and F. Vasconcelos, “Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass,” J. Non-Cryst. Solids 427, 120–133 (2015).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Nat. Commun. (2)

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
[Crossref]

S. Grillanda and F. Morichetti, “Light-induced metal-like surface of silicon photonic waveguides,” Nat. Commun. 6(1), 8182 (2015).
[Crossref]

Nat. Photonics (3)

H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre lase,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[Crossref]

Nature (1)

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

Opt. Express (1)

Optica (1)

Phys. Rev. Lett. (1)

X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref]

Other (1)

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed (Dekker, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram of electronic transition process and energy transfer of high-concentration Er3+-doped glass.
Fig. 2.
Fig. 2. (a) Schematic diagram of gain and noise figure measurement and (b) waveguide structure of high-concentration Er3+-doped phosphate glass waveguide amplifier.
Fig. 3.
Fig. 3. Dependence of the calculated gain and noise figure on (a) Er3+ ion concentration, (b) pump power, (c) signal wavelength and (d) the waveguide length, respectively.
Fig. 4.
Fig. 4. Measured optical gain of signal at different wavelength versus pump power.
Fig. 5.
Fig. 5. The measured noise figure as a function of pump power with signals of different wavelength.
Fig. 6.
Fig. 6. Photograph of (a) Er3+-doped phosphate glass waveguide and (b) photonic waveguide amplifier module, respectively.

Tables (2)

Tables Icon

Table 1. Key parameters in numerical analyses of Er3+-doped phosphate waveguide amplifier.

Tables Icon

Table 2. The comparison of unit length gain of erbium-doped phosphate waveguide amplifier and erbium/ytterbium co-doped phosphate fiber amplifier. Signal wavelength is 1530 nm, and signal input power is -30 dBm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

σabs=2.303log(I0/I)NErL
σemi(λ)=σabs(λ)exp(Ezlhcλ1kT)
1τ=8πn2c1λ4σabs(λ)exp[(Ezlhcλ1)kT]dλ
dN1dt=(W12+R13)N1+(W21+A21)N2+(R31+A31)N3+Cup1N22+A41N4+Cup1N32 Cup2N1N4
dN2dt=W12N1(A21+W21)N2+A32N3+2Cup2N1N42Cup1N22
dN3dt=R31N1(A31 + A32)N3+A43N42Cup1N32
dN4dt=Cup1N22(A43+A41)N4 Cup2N1N4+Cup1N32
N1+N2+N3+N4=NEr
dPp(z)dz=(ΓpσapN1+αp)Pp(z)
dPs(z)dz=(ΓsσesN2ΓsσasN1αs)Ps(z)
±dPase(z,fs)dz=±(ΓaseσeAN2ΓaseσaAN1αs)Pase(z,fs)±2σeAN2hfsΔfs