Abstract

In this work, we present a simple method for the direct retrieval of the effective permittivity and permeability of a bulk semi-infinite metamaterial from variable-angle spectroscopic ellipsometry measurements. Starting from the well-known Fresnel equations, we derive an analytical expression in which unknown coefficients are fitted to the experimental data using a linear regression model. The effective permittivity and permeability are then determined by solving a simple system and the correct solution is selected based on physical criteria. As an example, the method is applied to the case of a self-assembled metamaterial exhibiting strong isotropic optical magnetism.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials

Hadiseh Alaeian and Jennifer A. Dionne
Opt. Express 20(14) 15781-15796 (2012)

Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy

Yosuke Minowa, Takashi Fujii, Masaya Nagai, Tetsuyuki Ochiai, Kazuaki Sakoda, Kazuyuki Hirao, and Koichiro Tanaka
Opt. Express 16(7) 4785-4796 (2008)

Determination of the effective constitutive parameters of bianisotropic planar metamaterials in the terahertz region

Xufeng Jing, Rui Xia, Weimin Wang, Ying Tian, and Zhi Hong
J. Opt. Soc. Am. A 33(5) 954-961 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).
  2. D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref]
  3. D. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [Crossref]
  4. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
    [Crossref]
  5. A. Baron, A. Aradian, V. Ponsinet, and P. Barois, “Self-assembled optical metamaterials,” Opt. Laser Technol. 82, 94–100 (2016).
    [Crossref]
  6. S. A. Tretyakov, “A personal view on the origins and developments of the metamaterial concept,” J. Opt. 19(1), 013002 (2017).
    [Crossref]
  7. A. Baron, A. Iazzolino, K. Ehrhardt, J.-B. Salmon, A. Aradian, V. Kravets, A. N. Grigorenko, J. Leng, A. Le Beulze, M. Tréguer-Delapierre, M. A. Correa-Duarte, and P. Barois, “Bulk optical metamaterials assembled by microfluidic evaporation,” Opt. Mater. Express 3(11), 1792 (2013).
    [Crossref]
  8. S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
    [Crossref]
  9. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
    [Crossref]
  10. V. G. Kravets, F. Schedin, S. Taylor, D. Viita, and A. N. Grigorenko, “Plasmonic resonances in optomagnetic metamaterials based on double dot arrays,” Opt. Express 18(10), 9780–9790 (2010).
    [Crossref]
  11. C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
    [Crossref]
  12. E. Hecht, Optics, 5th ed. (Pearson Education Limited, 2017),
  13. A. N. Grigorenko, “Negative refractive index in artificial metamaterials,” Opt. Lett. 31(16), 2483 (2006).
    [Crossref]

2017 (1)

S. A. Tretyakov, “A personal view on the origins and developments of the metamaterial concept,” J. Opt. 19(1), 013002 (2017).
[Crossref]

2016 (2)

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

A. Baron, A. Aradian, V. Ponsinet, and P. Barois, “Self-assembled optical metamaterials,” Opt. Laser Technol. 82, 94–100 (2016).
[Crossref]

2013 (1)

2011 (1)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

2010 (1)

2008 (1)

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[Crossref]

2006 (1)

2005 (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

2002 (1)

D. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Aradian, A.

Barois, P.

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

A. Baron, A. Aradian, V. Ponsinet, and P. Barois, “Self-assembled optical metamaterials,” Opt. Laser Technol. 82, 94–100 (2016).
[Crossref]

A. Baron, A. Iazzolino, K. Ehrhardt, J.-B. Salmon, A. Aradian, V. Kravets, A. N. Grigorenko, J. Leng, A. Le Beulze, M. Tréguer-Delapierre, M. A. Correa-Duarte, and P. Barois, “Bulk optical metamaterials assembled by microfluidic evaporation,” Opt. Mater. Express 3(11), 1792 (2013).
[Crossref]

Baron, A.

A. Baron, A. Aradian, V. Ponsinet, and P. Barois, “Self-assembled optical metamaterials,” Opt. Laser Technol. 82, 94–100 (2016).
[Crossref]

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

A. Baron, A. Iazzolino, K. Ehrhardt, J.-B. Salmon, A. Aradian, V. Kravets, A. N. Grigorenko, J. Leng, A. Le Beulze, M. Tréguer-Delapierre, M. A. Correa-Duarte, and P. Barois, “Bulk optical metamaterials assembled by microfluidic evaporation,” Opt. Mater. Express 3(11), 1792 (2013).
[Crossref]

Cloutet, E.

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Correa-Duarte, M. A.

Duguet, E.

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Ehrhardt, K.

Fujiwara, H.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).

Gomez-Graña, S.

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Grana, E.

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Grigorenko, A. N.

Hadziioannou, G.

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Hecht, E.

E. Hecht, Optics, 5th ed. (Pearson Education Limited, 2017),

Iazzolino, A.

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Kravets, V.

Kravets, V. G.

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

V. G. Kravets, F. Schedin, S. Taylor, D. Viita, and A. N. Grigorenko, “Plasmonic resonances in optomagnetic metamaterials based on double dot arrays,” Opt. Express 18(10), 9780–9790 (2010).
[Crossref]

Le Beulze, A.

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

A. Baron, A. Iazzolino, K. Ehrhardt, J.-B. Salmon, A. Aradian, V. Kravets, A. N. Grigorenko, J. Leng, A. Le Beulze, M. Tréguer-Delapierre, M. A. Correa-Duarte, and P. Barois, “Bulk optical metamaterials assembled by microfluidic evaporation,” Opt. Mater. Express 3(11), 1792 (2013).
[Crossref]

Lederer, F.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[Crossref]

Leng, J.

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

A. Baron, A. Iazzolino, K. Ehrhardt, J.-B. Salmon, A. Aradian, V. Kravets, A. N. Grigorenko, J. Leng, A. Le Beulze, M. Tréguer-Delapierre, M. A. Correa-Duarte, and P. Barois, “Bulk optical metamaterials assembled by microfluidic evaporation,” Opt. Mater. Express 3(11), 1792 (2013).
[Crossref]

Markoš, P.

D. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Menzel, C.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[Crossref]

Mornet, S.

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Paul, T.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[Crossref]

Pertsch, T.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[Crossref]

Peyyety, N. A.

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Ponsinet, V.

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

A. Baron, A. Aradian, V. Ponsinet, and P. Barois, “Self-assembled optical metamaterials,” Opt. Laser Technol. 82, 94–100 (2016).
[Crossref]

Richetti, P.

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[Crossref]

Salmon, J.-B.

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

A. Baron, A. Iazzolino, K. Ehrhardt, J.-B. Salmon, A. Aradian, V. Kravets, A. N. Grigorenko, J. Leng, A. Le Beulze, M. Tréguer-Delapierre, M. A. Correa-Duarte, and P. Barois, “Bulk optical metamaterials assembled by microfluidic evaporation,” Opt. Mater. Express 3(11), 1792 (2013).
[Crossref]

Schedin, F.

Schultz, S.

D. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Smith, D.

D. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Soukoulis, C.

D. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Taylor, S.

Torrent, D.

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Treguer-Delapierre, M.

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Tréguer-Delapierre, M.

Tretyakov, S. A.

S. A. Tretyakov, “A personal view on the origins and developments of the metamaterial concept,” J. Opt. 19(1), 013002 (2017).
[Crossref]

Vier, D.

D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Viita, D.

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

J. Opt. (1)

S. A. Tretyakov, “A personal view on the origins and developments of the metamaterial concept,” J. Opt. 19(1), 013002 (2017).
[Crossref]

Mater. Horiz. (1)

S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V. G. Kravets, A. N. Grigorenko, N. A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, and P. Barois, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Nat. Photonics (1)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

A. Baron, A. Aradian, V. Ponsinet, and P. Barois, “Self-assembled optical metamaterials,” Opt. Laser Technol. 82, 94–100 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (2)

D. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[Crossref]

Phys. Rev. E (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Phys. Rev. Lett. (1)

D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Other (2)

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).

E. Hecht, Optics, 5th ed. (Pearson Education Limited, 2017),

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Electric field $E$, magnetic induction $B$ and wavevector $k$ corresponding to the incident, reflected and transmitted wave for a) $p-$polarization and b) $s-$polarization. $B$ in a) and $E$ in b) are perpendicular to the plane of the paper and are pointing to the reader. NB: the case represented here is that for which $\theta _2$ is positive, which corresponds to a positive refractive index, $n_2$. However the retrieval method presented in this paper is equally valid for a negative refractive index.
Fig. 2.
Fig. 2. Examples showing the line of best fit (red line) for experimental data from [8] (blue crosses) based on the linear regression model described in Eqs. (10)–(16) for three different wavelengths: a), d) $\lambda = 350 \, \mathrm {nm}$; b), e) $\lambda = 401\, \mathrm {nm}$ ; c), f) $\lambda = 427 \, \mathrm {nm}$. The experimental data was collected at five angles of incidence $\theta _1$ (50, 55, 60, 65 and 70$^{\circ }$). Graphs a), b), c) represent the real part of the experimental variable Y, while graphs d), e) and f) represent the imaginary part. The linear model fits well Re(Y) at $\lambda = 350 \, \mathrm {nm}$ but poorly at $\lambda = 401 \, \mathrm {nm}$ and $\lambda = 427 \, \mathrm {nm}$. The linear model fits reasonably well Im(Y) in the three cases.
Fig. 3.
Fig. 3. Four possible solutions for the values of the real and imaginary parts of the permittivity $\varepsilon$ and the permeability $\mu$ obtained using the retrieval method presented in this manuscript on ellipsometric data from [8]. The graphs correspond respectively to the solution: a) $\varepsilon _a^+$ (Eq. (19)), b) $\varepsilon _b^+$ (Eq. (20)), c) $\varepsilon _a^-$ (Eq. (21)) and d) $\varepsilon _b^-$ (Eq. (22)). The thick blue sections of the curves correspond to wavelengths for which both coefficients of determination $R^2$ of the linear regressions (Eq. (15) and Eq. (16)) are higher than 0.9, indicating that the model provides a satisfactory description of the data.
Fig. 4.
Fig. 4. Four possible solutions for the values of the real and imaginary parts of the refractive index $n$ and the impedance $Z$ obtained using the retrieval method presented in this manuscript on ellipsometric data from [8]. The graphs correspond respectively to the solution: a) $\varepsilon _a^+$ (Eq. (19)), b) $\varepsilon _b^+$ (Eq. (20)), c) $\varepsilon _a^-$ (Eq. (21)) and d) $\varepsilon _b^-$ (Eq. (22)). The thick blue sections of the curves correspond to wavelengths for which both coefficients of determination $R^2$ of the linear regressions (Eq. (15) and Eq. (16)) are higher than 0.9, indicating that the model provides a satisfactory description of the data.
Fig. 5.
Fig. 5. a) Coefficient of determination for the linear regression on the real part (Eq. (15)) and the imaginary part (Eq. (16)) of Y as a function of wavelength, indicating the goodness of the fit for the experimental data from [8]. b) Experimental range for the real and the imaginary part of the variable Y as a function of wavelength. c) 1/e penetration depth calculated as $\delta _p = \lambda / 4 \pi n"$ as a function of wavelength. The thick blue sections of the curve corresponds to wavelengths for which both coefficients of determination $R^2$ of the linear regressions (Eq. (15) and Eq. (16)) are higher than 0.9, indicating that the model provides a satisfactory description of the data.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

ρ = r p r s = tan ψ e i Δ
n = n b a c k g r o u n d sin θ 1 [ 1 + ( 1 ρ 1 + ρ ) 2 tan 2 θ 1 ] 1 / 2
r p = Z 1 cos θ 1 Z 2 cos θ 2 Z 1 cos θ 1 + Z 2 cos θ 2
r s = Z 2 cos θ 1 Z 1 cos θ 2 Z 2 cos θ 1 + Z 1 cos θ 2
ρ = ( Z 1 cos θ 1 Z 2 cos θ 2 ) ( Z 2 cos θ 1 + Z 1 cos θ 2 ) ( Z 1 cos θ 1 + Z 2 cos θ 2 ) ( Z 2 cos θ 1 Z 1 cos θ 2 )
1 ρ 1 + ρ = cos θ 1 cos θ 2 cos 2 θ 1 cos 2 θ 2 Z 2 2 Z 1 2 Z 1 Z 2
( 1 ρ 1 + ρ ) 2 sin 4 θ 1 cos 2 θ 1 = ( 1 n 1 2 n 2 2 sin 2 θ 1 ) ( n 2 2 n 1 2 n 2 2 ) 2 ( Z 2 2 Z 1 2 Z 1 Z 2 ) 2
( 1 ρ 1 + ρ ) 2 sin 4 θ 1 cos 2 θ 1 = ( ε 2 μ 1 ε 1 μ 2 ε 1 μ 1 ε 2 μ 2 ) 2 ( ε 2 μ 2 ε 1 μ 1 sin 2 θ 1 )
( 1 ρ 1 + ρ ) 2 sin 4 θ 1 cos 2 θ 1 = ( ε μ 1 ε μ ) 2 ( ε μ sin 2 θ 1 )
Y = A X + B
X = sin 2 θ 1
Y = ( 1 ρ 1 + ρ ) 2 sin 4 θ 1 cos 2 θ 1
A = ( ε μ 1 ε μ ) 2
B = ( ε μ 1 ε μ ) 2 ε μ
R e ( Y ) = R e ( A ) X + R e ( B )
I m ( Y ) = I m ( A ) X + I m ( B )
ε μ = n 2 = A B
ε 2 ± ε A ( 1 B / A ) B / A = 0
ε a + = A ( 1 B A ) + Δ 2
ε b + = A ( 1 B A ) Δ 2
ε a = A ( 1 B A ) + Δ 2
ε b = A ( 1 B A ) Δ 2
Δ = ( A B ) 2 + 4 B A
n = | ε | | μ | exp [ i ( δ ϵ + δ μ 2 ) ] s g n [ cos ( δ ϵ δ μ 2 ) ]