Abstract

Absorbance-modulation-optical lithography (AMOL) uses the opposing reactions between two isomeric states (absorbing and transparent) of a photochrome to confine light to sub-diffraction limited dimensions. The extent of light confinement is controlled by the ratio of the intensities of the confining and the exposing beams. Traditionally, high intensity in the confining beam is required due to the low quantum yield of the corresponding photo-reaction. Here, we report AMOL using low-light intensities, enabled by a novel photochrome with well-matched quantum yields. We provide rigorous simulations and experiments to demonstrate ∼ λ/4.5 feature-sizes at approximately 1/4th the light intensities required in conventional AMOL.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Barrier-free absorbance modulation for super-resolution optical lithography

Apratim Majumder, Farhana Masid, Benjamin Pollock, Trisha L. Andrew, and Rajesh Menon
Opt. Express 23(9) 12244-12250 (2015)

Modeling absorbance-modulation optical lithography in photochromic films

Giorgio Pariani, Rossella Castagna, Rajesh Menon, Chiara Bertarelli, and Andrea Bianco
Opt. Lett. 38(16) 3024-3027 (2013)

Performance enhancements to absorbance-modulation optical lithography. I. Plasmonic reflector layers

John E. Foulkes and Richard J. Blaikie
J. Opt. Soc. Am. A 28(11) 2209-2217 (2011)

References

  • View by:
  • |
  • |
  • |

  1. K. Jain, C. G. Wilson, and B. J. Lin, “Ultrafast high-resolution contact lithography using excimer lasers,” Proc. SPIE 334, 259–262 (1982).
    [Crossref]
  2. M. Rothschild, “A Roadmap for Optical Lithography,” Opt. Photonics News 21(6), 26–31 (2010).
    [Crossref]
  3. E. Abbé, “Beitragezurtheorie des mikroskops und der mikroskopischenwahrnehmung,” Arch. Mikrosk. Anat. Entwichlungsmech 9(1), 413–418 (1873).
    [Crossref]
  4. J. Wu, Y. Liu, Y. Guo, S. Feng, B. Zou, H. Mao, C.-H. Yu, D. Tian, W. Huang, and F. Huo, “Centimeter-Scale Subwavelength Photolithography Using Metal-Coated Elastomeric Photomasks with Modulated Light Intensity at the Oblique Sidewalls,” Langmuir 31(17), 5005–5013 (2015).
    [Crossref]
  5. S. V. Sreenivasan, “Nanoimprint Lithography Steppers for Volume Fabrication of leading-edge Semiconductor Integrated Circuits,” Microsyst. Nanoeng. 3, 17075 (2017).
    [Crossref]
  6. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonics Lithography,” Nano Lett. 4(6), 1085–1088 (2004).
    [Crossref]
  7. R. J. Blaikie, D. O. S. Melville, and M. M. Alkaisi, “Super-resolution near-field lithography using planar silver lenses: A review of recent developments,” Microelectron. Eng. 83(4-9), 723–729 (2006).
    [Crossref]
  8. S. Geary, J. Thompson, and E. S. Capsuto, “Contrast enhancement materials for yield improvement in submicron i-line lithography,” Proc. SPIE 4689, Metrology, Inspection, and Process Control for Microlithography XVI, 1017–1026 (2002).
  9. C. A. Mack, “Photoresist Process Optimization,” KTI Microelectronics Seminar, Interface 87, 153–167 (1987).
  10. D. B. Miller, A. M. Jones, and R. R. McLeod, “Super-resolution critical dimension limits of positive tone i-line photoresists,” Proc. SPIE 10544, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XI, 105440N, 105440N-1-10 (2018).
  11. G. Vicidomini, P. Bianchini, and A. Diaspro, “STED super-resolved microscopy,” Nat. Methods 15(3), 173–182 (2018).
    [Crossref]
  12. T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical Nanopatterning,” Science 324(5929), 917–921 (2009).
    [Crossref]
  13. A. Majumder, F. Masid, B. J. Pollock, T. L. Andrew, and R. Menon, “Barrier Free Absorbance Modulation for Superresolution Optical Lithography,” Opt. Express 23(9), 12244–12250 (2015).
    [Crossref]
  14. A. Majumder, P. J. Helms, T. L. Andrew, and R. Menon, “A Comprehensive Simulation Model of the performance of Photochromic films in Absorbance-Modulation-Optical-Lithography,” AIP Adv. 6(3), 035210 (2016).
    [Crossref]
  15. A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, and R. Menon, “Reverse Absorbance-Modulation-Optical-Lithography for Optical patterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
    [Crossref]
  16. A. Majumder, X. Wan, B. J. Pollock, T. L. Andrew, and R. Menon, “Modelling the Performance of Photochromic Thin Films to Achieve Super-resolution Nanopatterning by Absorbance Modulation at Low Light Intensity,” in Imaging and Applied Optics 2016, (Optical Society of America, 2016), paper IM4F.4.
  17. J. J. D. de Jong, L. N. Lucas, R. Hania, A. Pugzlys, R. M. Kellogg, B. N. Feringa, K. Duppen, and J. H. van Esch, “Photochromic properties of Perhydro- and Perfluorodithienylcyclopentene Molecular Switches,” Eur. J. Org. Chem. 2003(10), 1887–1893 (2003).
    [Crossref]
  18. F. Masid, T. L. Andrew, and R. Menon, “Optical Patterning of Features with spacing below the Far-field Diffraction limit using Absorbance Modulation,” Opt. Express 21(4), 5209–5214 (2013).
    [Crossref]
  19. J. E. Foulkes and R. J. Blaikie, “Influence of polarization on absorbance modulated subwavelength grating structures,” J. Vac. Sci. Technol. B 27(6), 2941–2946 (2009).
    [Crossref]
  20. A. Majumder, “Super-Resolution Optical Nanopatterning Beyond the Far-Field Diffraction Limit Using Photochromic Molecules and Absorbance Modulation Optical Lithography,” Doctoral Dissertation, University of Utah (2018).
  21. L. N. D. Kallepalli, D. Grojo, L. Charmasson, P. Delaporte, O. Utéza, A. Merlen, A. Sangar, and P. Torchio, “Long range nanostructuring of silicon surfaces by photonic nanojets from microsphere Langmuir films,” J. Phys. D: Appl. Phys. 46(14), 145102 (2013).
    [Crossref]
  22. R. M. Ahmed, “Optical Study on Poly(methyl methacrylate)/Poly(vinyl acetate) Blends,” Int. J. Photoenergy 2009, 1–7 (2009).
    [Crossref]
  23. H.-Y. Tsai, H. I. Smith, and R. Menon, “Reduction of focal-spot size using dichromats in absorbance modulation,” Opt. Lett. 33(24), 2916 (2008).
    [Crossref]
  24. H.-Y. Tsai, S. W. Thomas, and R. Menon, “Parallel scanning optical nanoscopy with optically confined probes,” Opt. Express 18(15), 16014 (2010).
    [Crossref]
  25. J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 1(4), 614–624 (2011).
    [Crossref]
  26. J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A.-N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21(22), 26244–26260 (2013).
    [Crossref]
  27. R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
    [Crossref]
  28. Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
    [Crossref]

2018 (1)

G. Vicidomini, P. Bianchini, and A. Diaspro, “STED super-resolved microscopy,” Nat. Methods 15(3), 173–182 (2018).
[Crossref]

2017 (1)

S. V. Sreenivasan, “Nanoimprint Lithography Steppers for Volume Fabrication of leading-edge Semiconductor Integrated Circuits,” Microsyst. Nanoeng. 3, 17075 (2017).
[Crossref]

2016 (2)

A. Majumder, P. J. Helms, T. L. Andrew, and R. Menon, “A Comprehensive Simulation Model of the performance of Photochromic films in Absorbance-Modulation-Optical-Lithography,” AIP Adv. 6(3), 035210 (2016).
[Crossref]

A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, and R. Menon, “Reverse Absorbance-Modulation-Optical-Lithography for Optical patterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
[Crossref]

2015 (2)

J. Wu, Y. Liu, Y. Guo, S. Feng, B. Zou, H. Mao, C.-H. Yu, D. Tian, W. Huang, and F. Huo, “Centimeter-Scale Subwavelength Photolithography Using Metal-Coated Elastomeric Photomasks with Modulated Light Intensity at the Oblique Sidewalls,” Langmuir 31(17), 5005–5013 (2015).
[Crossref]

A. Majumder, F. Masid, B. J. Pollock, T. L. Andrew, and R. Menon, “Barrier Free Absorbance Modulation for Superresolution Optical Lithography,” Opt. Express 23(9), 12244–12250 (2015).
[Crossref]

2013 (5)

J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A.-N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21(22), 26244–26260 (2013).
[Crossref]

R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013).
[Crossref]

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]

F. Masid, T. L. Andrew, and R. Menon, “Optical Patterning of Features with spacing below the Far-field Diffraction limit using Absorbance Modulation,” Opt. Express 21(4), 5209–5214 (2013).
[Crossref]

L. N. D. Kallepalli, D. Grojo, L. Charmasson, P. Delaporte, O. Utéza, A. Merlen, A. Sangar, and P. Torchio, “Long range nanostructuring of silicon surfaces by photonic nanojets from microsphere Langmuir films,” J. Phys. D: Appl. Phys. 46(14), 145102 (2013).
[Crossref]

2011 (1)

2010 (2)

2009 (3)

R. M. Ahmed, “Optical Study on Poly(methyl methacrylate)/Poly(vinyl acetate) Blends,” Int. J. Photoenergy 2009, 1–7 (2009).
[Crossref]

J. E. Foulkes and R. J. Blaikie, “Influence of polarization on absorbance modulated subwavelength grating structures,” J. Vac. Sci. Technol. B 27(6), 2941–2946 (2009).
[Crossref]

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical Nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref]

2008 (1)

2006 (1)

R. J. Blaikie, D. O. S. Melville, and M. M. Alkaisi, “Super-resolution near-field lithography using planar silver lenses: A review of recent developments,” Microelectron. Eng. 83(4-9), 723–729 (2006).
[Crossref]

2004 (1)

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonics Lithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

2003 (1)

J. J. D. de Jong, L. N. Lucas, R. Hania, A. Pugzlys, R. M. Kellogg, B. N. Feringa, K. Duppen, and J. H. van Esch, “Photochromic properties of Perhydro- and Perfluorodithienylcyclopentene Molecular Switches,” Eur. J. Org. Chem. 2003(10), 1887–1893 (2003).
[Crossref]

1987 (1)

C. A. Mack, “Photoresist Process Optimization,” KTI Microelectronics Seminar, Interface 87, 153–167 (1987).

1982 (1)

K. Jain, C. G. Wilson, and B. J. Lin, “Ultrafast high-resolution contact lithography using excimer lasers,” Proc. SPIE 334, 259–262 (1982).
[Crossref]

1873 (1)

E. Abbé, “Beitragezurtheorie des mikroskops und der mikroskopischenwahrnehmung,” Arch. Mikrosk. Anat. Entwichlungsmech 9(1), 413–418 (1873).
[Crossref]

Abbé, E.

E. Abbé, “Beitragezurtheorie des mikroskops und der mikroskopischenwahrnehmung,” Arch. Mikrosk. Anat. Entwichlungsmech 9(1), 413–418 (1873).
[Crossref]

Ahmed, R. M.

R. M. Ahmed, “Optical Study on Poly(methyl methacrylate)/Poly(vinyl acetate) Blends,” Int. J. Photoenergy 2009, 1–7 (2009).
[Crossref]

Alkaisi, M. M.

R. J. Blaikie, D. O. S. Melville, and M. M. Alkaisi, “Super-resolution near-field lithography using planar silver lenses: A review of recent developments,” Microelectron. Eng. 83(4-9), 723–729 (2006).
[Crossref]

Andrew, T. L.

A. Majumder, P. J. Helms, T. L. Andrew, and R. Menon, “A Comprehensive Simulation Model of the performance of Photochromic films in Absorbance-Modulation-Optical-Lithography,” AIP Adv. 6(3), 035210 (2016).
[Crossref]

A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, and R. Menon, “Reverse Absorbance-Modulation-Optical-Lithography for Optical patterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
[Crossref]

A. Majumder, F. Masid, B. J. Pollock, T. L. Andrew, and R. Menon, “Barrier Free Absorbance Modulation for Superresolution Optical Lithography,” Opt. Express 23(9), 12244–12250 (2015).
[Crossref]

F. Masid, T. L. Andrew, and R. Menon, “Optical Patterning of Features with spacing below the Far-field Diffraction limit using Absorbance Modulation,” Opt. Express 21(4), 5209–5214 (2013).
[Crossref]

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical Nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref]

A. Majumder, X. Wan, B. J. Pollock, T. L. Andrew, and R. Menon, “Modelling the Performance of Photochromic Thin Films to Achieve Super-resolution Nanopatterning by Absorbance Modulation at Low Light Intensity,” in Imaging and Applied Optics 2016, (Optical Society of America, 2016), paper IM4F.4.

Bianchini, P.

G. Vicidomini, P. Bianchini, and A. Diaspro, “STED super-resolved microscopy,” Nat. Methods 15(3), 173–182 (2018).
[Crossref]

Blaikie, R. J.

J. E. Foulkes and R. J. Blaikie, “Influence of polarization on absorbance modulated subwavelength grating structures,” J. Vac. Sci. Technol. B 27(6), 2941–2946 (2009).
[Crossref]

R. J. Blaikie, D. O. S. Melville, and M. M. Alkaisi, “Super-resolution near-field lithography using planar silver lenses: A review of recent developments,” Microelectron. Eng. 83(4-9), 723–729 (2006).
[Crossref]

Cao, Y.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]

Capsuto, E. S.

S. Geary, J. Thompson, and E. S. Capsuto, “Contrast enhancement materials for yield improvement in submicron i-line lithography,” Proc. SPIE 4689, Metrology, Inspection, and Process Control for Microlithography XVI, 1017–1026 (2002).

Charmasson, L.

L. N. D. Kallepalli, D. Grojo, L. Charmasson, P. Delaporte, O. Utéza, A. Merlen, A. Sangar, and P. Torchio, “Long range nanostructuring of silicon surfaces by photonic nanojets from microsphere Langmuir films,” J. Phys. D: Appl. Phys. 46(14), 145102 (2013).
[Crossref]

de Jong, J. J. D.

J. J. D. de Jong, L. N. Lucas, R. Hania, A. Pugzlys, R. M. Kellogg, B. N. Feringa, K. Duppen, and J. H. van Esch, “Photochromic properties of Perhydro- and Perfluorodithienylcyclopentene Molecular Switches,” Eur. J. Org. Chem. 2003(10), 1887–1893 (2003).
[Crossref]

Delaporte, P.

L. N. D. Kallepalli, D. Grojo, L. Charmasson, P. Delaporte, O. Utéza, A. Merlen, A. Sangar, and P. Torchio, “Long range nanostructuring of silicon surfaces by photonic nanojets from microsphere Langmuir films,” J. Phys. D: Appl. Phys. 46(14), 145102 (2013).
[Crossref]

Diaspro, A.

G. Vicidomini, P. Bianchini, and A. Diaspro, “STED super-resolved microscopy,” Nat. Methods 15(3), 173–182 (2018).
[Crossref]

Duppen, K.

J. J. D. de Jong, L. N. Lucas, R. Hania, A. Pugzlys, R. M. Kellogg, B. N. Feringa, K. Duppen, and J. H. van Esch, “Photochromic properties of Perhydro- and Perfluorodithienylcyclopentene Molecular Switches,” Eur. J. Org. Chem. 2003(10), 1887–1893 (2003).
[Crossref]

Evans, R. A.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]

Fang, N.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonics Lithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Feng, S.

J. Wu, Y. Liu, Y. Guo, S. Feng, B. Zou, H. Mao, C.-H. Yu, D. Tian, W. Huang, and F. Huo, “Centimeter-Scale Subwavelength Photolithography Using Metal-Coated Elastomeric Photomasks with Modulated Light Intensity at the Oblique Sidewalls,” Langmuir 31(17), 5005–5013 (2015).
[Crossref]

Feringa, B. N.

J. J. D. de Jong, L. N. Lucas, R. Hania, A. Pugzlys, R. M. Kellogg, B. N. Feringa, K. Duppen, and J. H. van Esch, “Photochromic properties of Perhydro- and Perfluorodithienylcyclopentene Molecular Switches,” Eur. J. Org. Chem. 2003(10), 1887–1893 (2003).
[Crossref]

Fischer, J.

Foulkes, J. E.

J. E. Foulkes and R. J. Blaikie, “Influence of polarization on absorbance modulated subwavelength grating structures,” J. Vac. Sci. Technol. B 27(6), 2941–2946 (2009).
[Crossref]

Gan, Z.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]

Geary, S.

S. Geary, J. Thompson, and E. S. Capsuto, “Contrast enhancement materials for yield improvement in submicron i-line lithography,” Proc. SPIE 4689, Metrology, Inspection, and Process Control for Microlithography XVI, 1017–1026 (2002).

Grojo, D.

L. N. D. Kallepalli, D. Grojo, L. Charmasson, P. Delaporte, O. Utéza, A. Merlen, A. Sangar, and P. Torchio, “Long range nanostructuring of silicon surfaces by photonic nanojets from microsphere Langmuir films,” J. Phys. D: Appl. Phys. 46(14), 145102 (2013).
[Crossref]

Gu, M.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]

Guo, Y.

J. Wu, Y. Liu, Y. Guo, S. Feng, B. Zou, H. Mao, C.-H. Yu, D. Tian, W. Huang, and F. Huo, “Centimeter-Scale Subwavelength Photolithography Using Metal-Coated Elastomeric Photomasks with Modulated Light Intensity at the Oblique Sidewalls,” Langmuir 31(17), 5005–5013 (2015).
[Crossref]

Hania, R.

J. J. D. de Jong, L. N. Lucas, R. Hania, A. Pugzlys, R. M. Kellogg, B. N. Feringa, K. Duppen, and J. H. van Esch, “Photochromic properties of Perhydro- and Perfluorodithienylcyclopentene Molecular Switches,” Eur. J. Org. Chem. 2003(10), 1887–1893 (2003).
[Crossref]

Helms, P. J.

A. Majumder, P. J. Helms, T. L. Andrew, and R. Menon, “A Comprehensive Simulation Model of the performance of Photochromic films in Absorbance-Modulation-Optical-Lithography,” AIP Adv. 6(3), 035210 (2016).
[Crossref]

Hrelescu, C.

Huang, W.

J. Wu, Y. Liu, Y. Guo, S. Feng, B. Zou, H. Mao, C.-H. Yu, D. Tian, W. Huang, and F. Huo, “Centimeter-Scale Subwavelength Photolithography Using Metal-Coated Elastomeric Photomasks with Modulated Light Intensity at the Oblique Sidewalls,” Langmuir 31(17), 5005–5013 (2015).
[Crossref]

Huo, F.

J. Wu, Y. Liu, Y. Guo, S. Feng, B. Zou, H. Mao, C.-H. Yu, D. Tian, W. Huang, and F. Huo, “Centimeter-Scale Subwavelength Photolithography Using Metal-Coated Elastomeric Photomasks with Modulated Light Intensity at the Oblique Sidewalls,” Langmuir 31(17), 5005–5013 (2015).
[Crossref]

Jacak, J.

Jain, K.

K. Jain, C. G. Wilson, and B. J. Lin, “Ultrafast high-resolution contact lithography using excimer lasers,” Proc. SPIE 334, 259–262 (1982).
[Crossref]

Jones, A. M.

D. B. Miller, A. M. Jones, and R. R. McLeod, “Super-resolution critical dimension limits of positive tone i-line photoresists,” Proc. SPIE 10544, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XI, 105440N, 105440N-1-10 (2018).

Kallepalli, L. N. D.

L. N. D. Kallepalli, D. Grojo, L. Charmasson, P. Delaporte, O. Utéza, A. Merlen, A. Sangar, and P. Torchio, “Long range nanostructuring of silicon surfaces by photonic nanojets from microsphere Langmuir films,” J. Phys. D: Appl. Phys. 46(14), 145102 (2013).
[Crossref]

Kaschke, J.

Katzmann, J.

Kellogg, R. M.

J. J. D. de Jong, L. N. Lucas, R. Hania, A. Pugzlys, R. M. Kellogg, B. N. Feringa, K. Duppen, and J. H. van Esch, “Photochromic properties of Perhydro- and Perfluorodithienylcyclopentene Molecular Switches,” Eur. J. Org. Chem. 2003(10), 1887–1893 (2003).
[Crossref]

Klar, T. A.

Lin, B. J.

K. Jain, C. G. Wilson, and B. J. Lin, “Ultrafast high-resolution contact lithography using excimer lasers,” Proc. SPIE 334, 259–262 (1982).
[Crossref]

Liu, Y.

J. Wu, Y. Liu, Y. Guo, S. Feng, B. Zou, H. Mao, C.-H. Yu, D. Tian, W. Huang, and F. Huo, “Centimeter-Scale Subwavelength Photolithography Using Metal-Coated Elastomeric Photomasks with Modulated Light Intensity at the Oblique Sidewalls,” Langmuir 31(17), 5005–5013 (2015).
[Crossref]

Lucas, L. N.

J. J. D. de Jong, L. N. Lucas, R. Hania, A. Pugzlys, R. M. Kellogg, B. N. Feringa, K. Duppen, and J. H. van Esch, “Photochromic properties of Perhydro- and Perfluorodithienylcyclopentene Molecular Switches,” Eur. J. Org. Chem. 2003(10), 1887–1893 (2003).
[Crossref]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonics Lithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Mack, C. A.

C. A. Mack, “Photoresist Process Optimization,” KTI Microelectronics Seminar, Interface 87, 153–167 (1987).

Majumder, A.

A. Majumder, P. J. Helms, T. L. Andrew, and R. Menon, “A Comprehensive Simulation Model of the performance of Photochromic films in Absorbance-Modulation-Optical-Lithography,” AIP Adv. 6(3), 035210 (2016).
[Crossref]

A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, and R. Menon, “Reverse Absorbance-Modulation-Optical-Lithography for Optical patterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
[Crossref]

A. Majumder, F. Masid, B. J. Pollock, T. L. Andrew, and R. Menon, “Barrier Free Absorbance Modulation for Superresolution Optical Lithography,” Opt. Express 23(9), 12244–12250 (2015).
[Crossref]

A. Majumder, X. Wan, B. J. Pollock, T. L. Andrew, and R. Menon, “Modelling the Performance of Photochromic Thin Films to Achieve Super-resolution Nanopatterning by Absorbance Modulation at Low Light Intensity,” in Imaging and Applied Optics 2016, (Optical Society of America, 2016), paper IM4F.4.

A. Majumder, “Super-Resolution Optical Nanopatterning Beyond the Far-Field Diffraction Limit Using Photochromic Molecules and Absorbance Modulation Optical Lithography,” Doctoral Dissertation, University of Utah (2018).

Mao, H.

J. Wu, Y. Liu, Y. Guo, S. Feng, B. Zou, H. Mao, C.-H. Yu, D. Tian, W. Huang, and F. Huo, “Centimeter-Scale Subwavelength Photolithography Using Metal-Coated Elastomeric Photomasks with Modulated Light Intensity at the Oblique Sidewalls,” Langmuir 31(17), 5005–5013 (2015).
[Crossref]

Masid, F.

McLeod, R. R.

D. B. Miller, A. M. Jones, and R. R. McLeod, “Super-resolution critical dimension limits of positive tone i-line photoresists,” Proc. SPIE 10544, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XI, 105440N, 105440N-1-10 (2018).

Melville, D. O. S.

R. J. Blaikie, D. O. S. Melville, and M. M. Alkaisi, “Super-resolution near-field lithography using planar silver lenses: A review of recent developments,” Microelectron. Eng. 83(4-9), 723–729 (2006).
[Crossref]

Menon, R.

A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, and R. Menon, “Reverse Absorbance-Modulation-Optical-Lithography for Optical patterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
[Crossref]

A. Majumder, P. J. Helms, T. L. Andrew, and R. Menon, “A Comprehensive Simulation Model of the performance of Photochromic films in Absorbance-Modulation-Optical-Lithography,” AIP Adv. 6(3), 035210 (2016).
[Crossref]

A. Majumder, F. Masid, B. J. Pollock, T. L. Andrew, and R. Menon, “Barrier Free Absorbance Modulation for Superresolution Optical Lithography,” Opt. Express 23(9), 12244–12250 (2015).
[Crossref]

F. Masid, T. L. Andrew, and R. Menon, “Optical Patterning of Features with spacing below the Far-field Diffraction limit using Absorbance Modulation,” Opt. Express 21(4), 5209–5214 (2013).
[Crossref]

H.-Y. Tsai, S. W. Thomas, and R. Menon, “Parallel scanning optical nanoscopy with optically confined probes,” Opt. Express 18(15), 16014 (2010).
[Crossref]

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical Nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref]

H.-Y. Tsai, H. I. Smith, and R. Menon, “Reduction of focal-spot size using dichromats in absorbance modulation,” Opt. Lett. 33(24), 2916 (2008).
[Crossref]

A. Majumder, X. Wan, B. J. Pollock, T. L. Andrew, and R. Menon, “Modelling the Performance of Photochromic Thin Films to Achieve Super-resolution Nanopatterning by Absorbance Modulation at Low Light Intensity,” in Imaging and Applied Optics 2016, (Optical Society of America, 2016), paper IM4F.4.

Merlen, A.

L. N. D. Kallepalli, D. Grojo, L. Charmasson, P. Delaporte, O. Utéza, A. Merlen, A. Sangar, and P. Torchio, “Long range nanostructuring of silicon surfaces by photonic nanojets from microsphere Langmuir films,” J. Phys. D: Appl. Phys. 46(14), 145102 (2013).
[Crossref]

Miller, D. B.

D. B. Miller, A. M. Jones, and R. R. McLeod, “Super-resolution critical dimension limits of positive tone i-line photoresists,” Proc. SPIE 10544, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XI, 105440N, 105440N-1-10 (2018).

Mueller, J. B.

Pollock, B. J.

A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, and R. Menon, “Reverse Absorbance-Modulation-Optical-Lithography for Optical patterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
[Crossref]

A. Majumder, F. Masid, B. J. Pollock, T. L. Andrew, and R. Menon, “Barrier Free Absorbance Modulation for Superresolution Optical Lithography,” Opt. Express 23(9), 12244–12250 (2015).
[Crossref]

A. Majumder, X. Wan, B. J. Pollock, T. L. Andrew, and R. Menon, “Modelling the Performance of Photochromic Thin Films to Achieve Super-resolution Nanopatterning by Absorbance Modulation at Low Light Intensity,” in Imaging and Applied Optics 2016, (Optical Society of America, 2016), paper IM4F.4.

Pugzlys, A.

J. J. D. de Jong, L. N. Lucas, R. Hania, A. Pugzlys, R. M. Kellogg, B. N. Feringa, K. Duppen, and J. H. van Esch, “Photochromic properties of Perhydro- and Perfluorodithienylcyclopentene Molecular Switches,” Eur. J. Org. Chem. 2003(10), 1887–1893 (2003).
[Crossref]

Rothschild, M.

M. Rothschild, “A Roadmap for Optical Lithography,” Opt. Photonics News 21(6), 26–31 (2010).
[Crossref]

Sangar, A.

L. N. D. Kallepalli, D. Grojo, L. Charmasson, P. Delaporte, O. Utéza, A. Merlen, A. Sangar, and P. Torchio, “Long range nanostructuring of silicon surfaces by photonic nanojets from microsphere Langmuir films,” J. Phys. D: Appl. Phys. 46(14), 145102 (2013).
[Crossref]

Smith, H. I.

Sreenivasan, S. V.

S. V. Sreenivasan, “Nanoimprint Lithography Steppers for Volume Fabrication of leading-edge Semiconductor Integrated Circuits,” Microsyst. Nanoeng. 3, 17075 (2017).
[Crossref]

Srituravanich, W.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonics Lithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Sun, C.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonics Lithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Thomas, S. W.

Thompson, J.

S. Geary, J. Thompson, and E. S. Capsuto, “Contrast enhancement materials for yield improvement in submicron i-line lithography,” Proc. SPIE 4689, Metrology, Inspection, and Process Control for Microlithography XVI, 1017–1026 (2002).

Tian, D.

J. Wu, Y. Liu, Y. Guo, S. Feng, B. Zou, H. Mao, C.-H. Yu, D. Tian, W. Huang, and F. Huo, “Centimeter-Scale Subwavelength Photolithography Using Metal-Coated Elastomeric Photomasks with Modulated Light Intensity at the Oblique Sidewalls,” Langmuir 31(17), 5005–5013 (2015).
[Crossref]

Torchio, P.

L. N. D. Kallepalli, D. Grojo, L. Charmasson, P. Delaporte, O. Utéza, A. Merlen, A. Sangar, and P. Torchio, “Long range nanostructuring of silicon surfaces by photonic nanojets from microsphere Langmuir films,” J. Phys. D: Appl. Phys. 46(14), 145102 (2013).
[Crossref]

Tsai, H.-Y.

Unterreiner, A.-N.

Utéza, O.

L. N. D. Kallepalli, D. Grojo, L. Charmasson, P. Delaporte, O. Utéza, A. Merlen, A. Sangar, and P. Torchio, “Long range nanostructuring of silicon surfaces by photonic nanojets from microsphere Langmuir films,” J. Phys. D: Appl. Phys. 46(14), 145102 (2013).
[Crossref]

van Esch, J. H.

J. J. D. de Jong, L. N. Lucas, R. Hania, A. Pugzlys, R. M. Kellogg, B. N. Feringa, K. Duppen, and J. H. van Esch, “Photochromic properties of Perhydro- and Perfluorodithienylcyclopentene Molecular Switches,” Eur. J. Org. Chem. 2003(10), 1887–1893 (2003).
[Crossref]

Vicidomini, G.

G. Vicidomini, P. Bianchini, and A. Diaspro, “STED super-resolved microscopy,” Nat. Methods 15(3), 173–182 (2018).
[Crossref]

Wan, X.

A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, and R. Menon, “Reverse Absorbance-Modulation-Optical-Lithography for Optical patterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
[Crossref]

A. Majumder, X. Wan, B. J. Pollock, T. L. Andrew, and R. Menon, “Modelling the Performance of Photochromic Thin Films to Achieve Super-resolution Nanopatterning by Absorbance Modulation at Low Light Intensity,” in Imaging and Applied Optics 2016, (Optical Society of America, 2016), paper IM4F.4.

Wegener, M.

Wilson, C. G.

K. Jain, C. G. Wilson, and B. J. Lin, “Ultrafast high-resolution contact lithography using excimer lasers,” Proc. SPIE 334, 259–262 (1982).
[Crossref]

Wolf, T. J. A.

Wollhofen, R.

Wu, J.

J. Wu, Y. Liu, Y. Guo, S. Feng, B. Zou, H. Mao, C.-H. Yu, D. Tian, W. Huang, and F. Huo, “Centimeter-Scale Subwavelength Photolithography Using Metal-Coated Elastomeric Photomasks with Modulated Light Intensity at the Oblique Sidewalls,” Langmuir 31(17), 5005–5013 (2015).
[Crossref]

Yu, C.-H.

J. Wu, Y. Liu, Y. Guo, S. Feng, B. Zou, H. Mao, C.-H. Yu, D. Tian, W. Huang, and F. Huo, “Centimeter-Scale Subwavelength Photolithography Using Metal-Coated Elastomeric Photomasks with Modulated Light Intensity at the Oblique Sidewalls,” Langmuir 31(17), 5005–5013 (2015).
[Crossref]

Zhang, X.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonics Lithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Zou, B.

J. Wu, Y. Liu, Y. Guo, S. Feng, B. Zou, H. Mao, C.-H. Yu, D. Tian, W. Huang, and F. Huo, “Centimeter-Scale Subwavelength Photolithography Using Metal-Coated Elastomeric Photomasks with Modulated Light Intensity at the Oblique Sidewalls,” Langmuir 31(17), 5005–5013 (2015).
[Crossref]

AIP Adv. (2)

A. Majumder, P. J. Helms, T. L. Andrew, and R. Menon, “A Comprehensive Simulation Model of the performance of Photochromic films in Absorbance-Modulation-Optical-Lithography,” AIP Adv. 6(3), 035210 (2016).
[Crossref]

A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, and R. Menon, “Reverse Absorbance-Modulation-Optical-Lithography for Optical patterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
[Crossref]

Arch. Mikrosk. Anat. Entwichlungsmech (1)

E. Abbé, “Beitragezurtheorie des mikroskops und der mikroskopischenwahrnehmung,” Arch. Mikrosk. Anat. Entwichlungsmech 9(1), 413–418 (1873).
[Crossref]

Eur. J. Org. Chem. (1)

J. J. D. de Jong, L. N. Lucas, R. Hania, A. Pugzlys, R. M. Kellogg, B. N. Feringa, K. Duppen, and J. H. van Esch, “Photochromic properties of Perhydro- and Perfluorodithienylcyclopentene Molecular Switches,” Eur. J. Org. Chem. 2003(10), 1887–1893 (2003).
[Crossref]

Int. J. Photoenergy (1)

R. M. Ahmed, “Optical Study on Poly(methyl methacrylate)/Poly(vinyl acetate) Blends,” Int. J. Photoenergy 2009, 1–7 (2009).
[Crossref]

J. Phys. D: Appl. Phys. (1)

L. N. D. Kallepalli, D. Grojo, L. Charmasson, P. Delaporte, O. Utéza, A. Merlen, A. Sangar, and P. Torchio, “Long range nanostructuring of silicon surfaces by photonic nanojets from microsphere Langmuir films,” J. Phys. D: Appl. Phys. 46(14), 145102 (2013).
[Crossref]

J. Vac. Sci. Technol. B (1)

J. E. Foulkes and R. J. Blaikie, “Influence of polarization on absorbance modulated subwavelength grating structures,” J. Vac. Sci. Technol. B 27(6), 2941–2946 (2009).
[Crossref]

KTI Microelectronics Seminar, Interface (1)

C. A. Mack, “Photoresist Process Optimization,” KTI Microelectronics Seminar, Interface 87, 153–167 (1987).

Langmuir (1)

J. Wu, Y. Liu, Y. Guo, S. Feng, B. Zou, H. Mao, C.-H. Yu, D. Tian, W. Huang, and F. Huo, “Centimeter-Scale Subwavelength Photolithography Using Metal-Coated Elastomeric Photomasks with Modulated Light Intensity at the Oblique Sidewalls,” Langmuir 31(17), 5005–5013 (2015).
[Crossref]

Microelectron. Eng. (1)

R. J. Blaikie, D. O. S. Melville, and M. M. Alkaisi, “Super-resolution near-field lithography using planar silver lenses: A review of recent developments,” Microelectron. Eng. 83(4-9), 723–729 (2006).
[Crossref]

Microsyst. Nanoeng. (1)

S. V. Sreenivasan, “Nanoimprint Lithography Steppers for Volume Fabrication of leading-edge Semiconductor Integrated Circuits,” Microsyst. Nanoeng. 3, 17075 (2017).
[Crossref]

Nano Lett. (1)

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonics Lithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Nat. Commun. (1)

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]

Nat. Methods (1)

G. Vicidomini, P. Bianchini, and A. Diaspro, “STED super-resolved microscopy,” Nat. Methods 15(3), 173–182 (2018).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Photonics News (1)

M. Rothschild, “A Roadmap for Optical Lithography,” Opt. Photonics News 21(6), 26–31 (2010).
[Crossref]

Proc. SPIE (1)

K. Jain, C. G. Wilson, and B. J. Lin, “Ultrafast high-resolution contact lithography using excimer lasers,” Proc. SPIE 334, 259–262 (1982).
[Crossref]

Science (1)

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical Nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref]

Other (4)

D. B. Miller, A. M. Jones, and R. R. McLeod, “Super-resolution critical dimension limits of positive tone i-line photoresists,” Proc. SPIE 10544, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XI, 105440N, 105440N-1-10 (2018).

A. Majumder, X. Wan, B. J. Pollock, T. L. Andrew, and R. Menon, “Modelling the Performance of Photochromic Thin Films to Achieve Super-resolution Nanopatterning by Absorbance Modulation at Low Light Intensity,” in Imaging and Applied Optics 2016, (Optical Society of America, 2016), paper IM4F.4.

S. Geary, J. Thompson, and E. S. Capsuto, “Contrast enhancement materials for yield improvement in submicron i-line lithography,” Proc. SPIE 4689, Metrology, Inspection, and Process Control for Microlithography XVI, 1017–1026 (2002).

A. Majumder, “Super-Resolution Optical Nanopatterning Beyond the Far-Field Diffraction Limit Using Photochromic Molecules and Absorbance Modulation Optical Lithography,” Doctoral Dissertation, University of Utah (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of AMOL showing (a) the photoreactions and (b) simultaneous illumination of the AML by uniform λ1 and standing waves λ2 leading to the creation of a dynamic absorption pattern in a layer above the conventional photoresist film. λ1 photons penetrate through the sub-diffraction limited aperture at the interface of the AML and PR to expose the PR.
Fig. 2.
Fig. 2. (a) Molecular structure of photochrome cPTE and (b) Absorption spectra of cPTE. In our experiments, λ1 = 325 nm and λ2 = 647 nm.
Fig. 3.
Fig. 3. Simulation results: Light intensity distribution for the exposing UV beam (λ1) for an AML composed of (a) cPTE and of (b) BTE. λ1 confinement is much superior in cPTE for even a lower intensity ratio (I1/I2 = 400) when compared to BTE (I1/I2 = 500). (c) FWHM scaling trend for cPTE compared to BTE. (d) AMOL PSF for cPTE with increasing intensity ratio.
Fig. 4.
Fig. 4. cPTE AMOL Experimental results. Scanning electron micrographs showing (a) PR patterning at different intensity ratios (b) Large area patterning and (c) Titled cross-sections of PR (d) Feature-scaling trend showing variation of FWHM of linewidth vs intensity ratio. (e) Schematic of the experimental setup showing a modified Mach-Zehnder interferometer setup used to perform AMOL experiments. λ2 source is a Kr-ion laser at wavelength 647 nm, SF = spatial filter, L1 = collimating lens, P1 = linear polarizer, HWP1 and HWP2 = half wave plates used for making the power in the two arms of the λ2 beam equal, BS = beam splitter, M1 and M2 = guiding mirrors, λ1 source is UV LED at wavelength 325 nm.