Abstract

A mirror vibration induces a space rotation, and accordingly, phenomena in the time domain are converted to spatial distributions. This time-space conversion realizes high-speed measurements that exceed the operation limit of instruments. In this study, a time-resolved spectrometry was conducted by using slow optical devices, i.e., a continuous-wave laser diode, a CCD-based spectrometer (exposure time: 1 s), and a galvano-mirror (30 Hz). In comparison with pulsed lasers, the continuous-wave laser is advantageous for continuous integration of weak fluorescence. Experiments were conducted with fluorescent lanthanide solutions to examine the validity of this method.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved Fourier spectroscopy*†

Randall E. Murphy, Floyd H. Cook, and Hajime Sakai
J. Opt. Soc. Am. 65(5) 600-604 (1975)

Time-resolved Raman spectroscopy for in situ planetary mineralogy

Jordana Blacksberg, George R. Rossman, and Anthony Gleckler
Appl. Opt. 49(26) 4951-4962 (2010)

Femtosecond-rate space-to-time conversion

Dan Marom, Dmitriy Panasenko, Pang-Chen Sun, and Yeshaiahu Fainman
J. Opt. Soc. Am. B 17(10) 1759-1773 (2000)

References

  • View by:
  • |
  • |
  • |

  1. R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5(3), 274–317 (2013).
    [Crossref]
  2. D. Shayovitz, H. Herrmann, W. Sohler, R. Ricken, C. Silberhorn, and D. M. Marom, “Full-field reconstruction of ultrashort waveforms by time to space conversion interferogram analysis,” Opt. Express 22(17), 20205–20213 (2014).
    [Crossref]
  3. K. Goda, K. K. Tisa, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
    [Crossref]
  4. M. Saito, S. Nakamura, and T. Kita, “Fast-response upconversion by the use of a ‘time-space conversion’ method,” Appl. Phys. Lett. 99(19), 191101 (2011).
    [Crossref]
  5. N. Kaun, M. J. Vellekoop, and B. Lendl, “Time-resolved Fourier transform infrared spectroscopy of chemical reactions in solution using a focal plane array detector,” Appl. Spectrosc. 60(11), 1273–1278 (2006).
    [Crossref]
  6. H. Xie, J. Bec, J. Lin, Y. Sun, M. Lam, D. R. Yankelevich, and L. Marcu, “Multispectral scanning time-resolved fluorescence spectroscopy (TRFS) technique for intravascular diagnosis,” Biomed. Opt. Express 3(7), 1521–1533 (2012).
    [Crossref]
  7. A. Kufcsák, A. Erdogan, R. Walker, K. Ehrlich, M. Tanner, A. Megia-Fernandez, E. Scholefield, P. Emanuel, K. Dhaliwal, M. Bradley, R. K. Henderson, and N. Krstajić, “Time-resolved spectroscopy at 19,000 lines per second using a CMOS SPAD line array enables advanced biophotonics applications,” Opt. Express 25(10), 11103–11123 (2017).
    [Crossref]
  8. K. Iwata and H. Hamaguchi, “Construction of a versatile microsecond time-resolved infrared spectrometer,” Appl. Spectrosc. 44(9), 1431–1437 (1990).
    [Crossref]
  9. C.-W. Luo, Y.-T. Wang, A. Yabushita, and T. Kobayashi, “Ultrabroadband time-resolved spectroscopy in novel types of condensed matter,” Optica 3(1), 82–92 (2016).
    [Crossref]
  10. H. Sakai and R. E. Murphy, “Improvements in time-resolved Fourier spectroscopy,” Appl. Opt. 17(9), 1342–1346 (1978).
    [Crossref]
  11. E. Klimov and H. W. Siesler, “Fourier transform infrared spectroscopic investigation of the electric-field-induced reorientation of the nematic 7CPB with different prealignment,” Appl. Spectrosc. 58(8), 952–957 (2004).
    [Crossref]
  12. X. Z. Sun, S. M. Nikiforov, J. Yang, C. S. Colley, and M. W. George, “Nanosecond time-resolved step-scan FT-IR spectroscopy in conventional and supercritical fluids using a four-window infrared cell,” Appl. Spectrosc. 56(1), 31–39 (2002).
    [Crossref]
  13. S. M. Arrivo, V. D. Kleiman, T. P. Dougherty, and E. J. Heilweil, “Broadband femtosecond transient infrared spectroscopy using a 256×256 element indium antimonide focal-plane detector,” Opt. Lett. 22(19), 1488–1490 (1997).
    [Crossref]
  14. Y.-R. Chen, B. Sin, T. Han, Y.-F. Kong, C.-H. Xu, P. Zhou, X.-F. Li, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “Densely folded spectral images of a CCD spectrometer working in the full 200‒1000 nm wavelength range with high resolution,” Opt. Express 13(25), 10049–10054 (2005).
    [Crossref]
  15. A. Heller, O. Rönitz, A. Barkleit, G. Bernhard, and J.-U. Ackermann, “Complexation of europium(III) with the zwitterionic form of amino acids studied with ultraviolet-visible and time-resolved laser-induced fluorescence spectroscopy,” Appl. Spectrosc. 64(8), 930–935 (2010).
    [Crossref]
  16. T. Lian, S. E. Bromberg, M. C. Asplund, H. Yang, and C. B. Harris, “Femtosecond infrared studies of the dissociation and dynamics of transition metal carbonyls in solution,” J. Phys. Chem. 100(29), 11994–12001 (1996).
    [Crossref]
  17. P. Hamm, M. Lim, and R. M. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107(24), 10523–10531 (1997).
    [Crossref]
  18. S. Takeuchi and T. Tahara, “Time-wavelength two-dimensional femtosecond fluorescence imaging,” Opt. Lett. 29(3), 313–315 (2004).
    [Crossref]
  19. G. M. Greetham, P. M. Donaldson, C. Nation, I. Sazanovich, I. P. Clark, D. J. Shaw, A. W. Parker, and M. Towrie, “A 100 kHz time-resolved multiple-probe femtosecond to second infrared absorption spectrometer,” Appl. Spectrosc. 70(4), 645–653 (2016).
    [Crossref]
  20. E. Poem, T. Hiemstra, A. Eckstein, X.-M. Jin, and I. M. Walmsley, “Free-space spectro-temporal and spatio-temporal conversion for pulsed light,” Opt. Lett. 41(18), 4328–4331 (2016).
    [Crossref]
  21. M. Saito, H. Kimura, and S. Nakamura, “Two-way wavelength conversion for visible and infrared signal pulses,” J. Lumin. 146, 337–341 (2014).
    [Crossref]
  22. C. W. Hand, P. Z. Kaufmann, and R. M. Hexter, “Kinetic spectroscopy in the infrared: a rapid-scan infrared spectrometer,” Appl. Opt. 5(7), 1097–1104 (1966).
    [Crossref]
  23. P. R. Griffiths, B. L. Hirsche, and C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectroscopy,” Vib. Spectrosc. 19(1), 165–176 (1999).
    [Crossref]
  24. M. Saito and Y. Okubo, “Time-resolved infrared spectrometry with a focal plane array and a galvano-mirror,” Opt. Lett. 32(12), 1656–1658 (2007).
    [Crossref]
  25. M. Tamamitsu, Y. Sakai, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
    [Crossref]
  26. D. Sola, R. Balda, M. Al-Saleh, J. I. Peña, and J. Fernández, “Time-resolved fluorescence line-narrowing of Eu3+ in biocompatible eutectic glass-ceramics,” Opt. Express 21(5), 6561–6571 (2013).
    [Crossref]
  27. M. Saito and T. Koketsu, “Fluorescence enhancement of a bleach-resistant solution for use in microfluidic devices,” Opt. Mater. Express 8(3), 676–683 (2018).
    [Crossref]

2018 (1)

2017 (2)

M. Tamamitsu, Y. Sakai, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
[Crossref]

A. Kufcsák, A. Erdogan, R. Walker, K. Ehrlich, M. Tanner, A. Megia-Fernandez, E. Scholefield, P. Emanuel, K. Dhaliwal, M. Bradley, R. K. Henderson, and N. Krstajić, “Time-resolved spectroscopy at 19,000 lines per second using a CMOS SPAD line array enables advanced biophotonics applications,” Opt. Express 25(10), 11103–11123 (2017).
[Crossref]

2016 (3)

2014 (2)

2013 (2)

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5(3), 274–317 (2013).
[Crossref]

D. Sola, R. Balda, M. Al-Saleh, J. I. Peña, and J. Fernández, “Time-resolved fluorescence line-narrowing of Eu3+ in biocompatible eutectic glass-ceramics,” Opt. Express 21(5), 6561–6571 (2013).
[Crossref]

2012 (1)

2011 (1)

M. Saito, S. Nakamura, and T. Kita, “Fast-response upconversion by the use of a ‘time-space conversion’ method,” Appl. Phys. Lett. 99(19), 191101 (2011).
[Crossref]

2010 (1)

2009 (1)

K. Goda, K. K. Tisa, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

2004 (2)

2002 (1)

1999 (1)

P. R. Griffiths, B. L. Hirsche, and C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectroscopy,” Vib. Spectrosc. 19(1), 165–176 (1999).
[Crossref]

1997 (2)

1996 (1)

T. Lian, S. E. Bromberg, M. C. Asplund, H. Yang, and C. B. Harris, “Femtosecond infrared studies of the dissociation and dynamics of transition metal carbonyls in solution,” J. Phys. Chem. 100(29), 11994–12001 (1996).
[Crossref]

1990 (1)

1978 (1)

1966 (1)

Ackermann, J.-U.

Al-Saleh, M.

Arrivo, S. M.

Asplund, M. C.

T. Lian, S. E. Bromberg, M. C. Asplund, H. Yang, and C. B. Harris, “Femtosecond infrared studies of the dissociation and dynamics of transition metal carbonyls in solution,” J. Phys. Chem. 100(29), 11994–12001 (1996).
[Crossref]

Balda, R.

Barkleit, A.

Bec, J.

Bernhard, G.

Bradley, M.

Bromberg, S. E.

T. Lian, S. E. Bromberg, M. C. Asplund, H. Yang, and C. B. Harris, “Femtosecond infrared studies of the dissociation and dynamics of transition metal carbonyls in solution,” J. Phys. Chem. 100(29), 11994–12001 (1996).
[Crossref]

Chen, L.-Y.

Chen, Y.-R.

Clark, I. P.

Colley, C. S.

Dhaliwal, K.

Donaldson, P. M.

Dougherty, T. P.

Eckstein, A.

Ehrlich, K.

Emanuel, P.

Erdogan, A.

Fernández, J.

Foster, M. A.

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5(3), 274–317 (2013).
[Crossref]

Gaeta, A. L.

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5(3), 274–317 (2013).
[Crossref]

George, M. W.

Goda, K.

M. Tamamitsu, Y. Sakai, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
[Crossref]

K. Goda, K. K. Tisa, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref]

Greetham, G. M.

Griffiths, P. R.

P. R. Griffiths, B. L. Hirsche, and C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectroscopy,” Vib. Spectrosc. 19(1), 165–176 (1999).
[Crossref]

Hamaguchi, H.

Hamm, P.

P. Hamm, M. Lim, and R. M. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107(24), 10523–10531 (1997).
[Crossref]

Han, T.

Hand, C. W.

Harris, C. B.

T. Lian, S. E. Bromberg, M. C. Asplund, H. Yang, and C. B. Harris, “Femtosecond infrared studies of the dissociation and dynamics of transition metal carbonyls in solution,” J. Phys. Chem. 100(29), 11994–12001 (1996).
[Crossref]

Heilweil, E. J.

Heller, A.

Henderson, R. K.

Herrmann, H.

Hexter, R. M.

Hiemstra, T.

Hirsche, B. L.

P. R. Griffiths, B. L. Hirsche, and C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectroscopy,” Vib. Spectrosc. 19(1), 165–176 (1999).
[Crossref]

Hochstrasser, R. M.

P. Hamm, M. Lim, and R. M. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107(24), 10523–10531 (1997).
[Crossref]

Ideguchi, T.

M. Tamamitsu, Y. Sakai, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
[Crossref]

Iwata, K.

Jalali, B.

K. Goda, K. K. Tisa, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref]

Jin, X.-M.

Kaufmann, P. Z.

Kaun, N.

Kimura, H.

M. Saito, H. Kimura, and S. Nakamura, “Two-way wavelength conversion for visible and infrared signal pulses,” J. Lumin. 146, 337–341 (2014).
[Crossref]

Kita, T.

M. Saito, S. Nakamura, and T. Kita, “Fast-response upconversion by the use of a ‘time-space conversion’ method,” Appl. Phys. Lett. 99(19), 191101 (2011).
[Crossref]

Kleiman, V. D.

Klimov, E.

Kobayashi, T.

Koketsu, T.

Kong, Y.-F.

Krstajic, N.

Kufcsák, A.

Lam, M.

Lendl, B.

Li, X.-F.

Lian, T.

T. Lian, S. E. Bromberg, M. C. Asplund, H. Yang, and C. B. Harris, “Femtosecond infrared studies of the dissociation and dynamics of transition metal carbonyls in solution,” J. Phys. Chem. 100(29), 11994–12001 (1996).
[Crossref]

Lim, M.

P. Hamm, M. Lim, and R. M. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107(24), 10523–10531 (1997).
[Crossref]

Lin, J.

Luo, C.-W.

Manning, C. J.

P. R. Griffiths, B. L. Hirsche, and C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectroscopy,” Vib. Spectrosc. 19(1), 165–176 (1999).
[Crossref]

Marcu, L.

Marom, D. M.

Megia-Fernandez, A.

Murphy, R. E.

Nakamura, S.

M. Saito, H. Kimura, and S. Nakamura, “Two-way wavelength conversion for visible and infrared signal pulses,” J. Lumin. 146, 337–341 (2014).
[Crossref]

M. Saito, S. Nakamura, and T. Kita, “Fast-response upconversion by the use of a ‘time-space conversion’ method,” Appl. Phys. Lett. 99(19), 191101 (2011).
[Crossref]

Nakamura, T.

M. Tamamitsu, Y. Sakai, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
[Crossref]

Nation, C.

Nikiforov, S. M.

Okubo, Y.

Parker, A. W.

Peña, J. I.

Podagatlapalli, G. K.

M. Tamamitsu, Y. Sakai, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
[Crossref]

Poem, E.

Ricken, R.

Rönitz, O.

Saito, M.

M. Saito and T. Koketsu, “Fluorescence enhancement of a bleach-resistant solution for use in microfluidic devices,” Opt. Mater. Express 8(3), 676–683 (2018).
[Crossref]

M. Saito, H. Kimura, and S. Nakamura, “Two-way wavelength conversion for visible and infrared signal pulses,” J. Lumin. 146, 337–341 (2014).
[Crossref]

M. Saito, S. Nakamura, and T. Kita, “Fast-response upconversion by the use of a ‘time-space conversion’ method,” Appl. Phys. Lett. 99(19), 191101 (2011).
[Crossref]

M. Saito and Y. Okubo, “Time-resolved infrared spectrometry with a focal plane array and a galvano-mirror,” Opt. Lett. 32(12), 1656–1658 (2007).
[Crossref]

Sakai, H.

Sakai, Y.

M. Tamamitsu, Y. Sakai, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
[Crossref]

Salem, R.

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5(3), 274–317 (2013).
[Crossref]

Sazanovich, I.

Scholefield, E.

Shaw, D. J.

Shayovitz, D.

Siesler, H. W.

Silberhorn, C.

Sin, B.

Sohler, W.

Sola, D.

Sun, X. Z.

Sun, Y.

Tahara, T.

Takeuchi, S.

Tamamitsu, M.

M. Tamamitsu, Y. Sakai, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
[Crossref]

Tanner, M.

Tisa, K. K.

K. Goda, K. K. Tisa, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref]

Towrie, M.

Vellekoop, M. J.

Walker, R.

Walmsley, I. M.

Wang, S.-Y.

Wang, Y.-T.

Xie, H.

Xu, C.-H.

Yabushita, A.

Yang, H.

T. Lian, S. E. Bromberg, M. C. Asplund, H. Yang, and C. B. Harris, “Femtosecond infrared studies of the dissociation and dynamics of transition metal carbonyls in solution,” J. Phys. Chem. 100(29), 11994–12001 (1996).
[Crossref]

Yang, J.

Yankelevich, D. R.

Zheng, Y.-X.

Zhou, P.

Adv. Opt. Photonics (1)

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5(3), 274–317 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. Saito, S. Nakamura, and T. Kita, “Fast-response upconversion by the use of a ‘time-space conversion’ method,” Appl. Phys. Lett. 99(19), 191101 (2011).
[Crossref]

Appl. Spectrosc. (6)

Biomed. Opt. Express (1)

J. Chem. Phys. (1)

P. Hamm, M. Lim, and R. M. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107(24), 10523–10531 (1997).
[Crossref]

J. Lumin. (1)

M. Saito, H. Kimura, and S. Nakamura, “Two-way wavelength conversion for visible and infrared signal pulses,” J. Lumin. 146, 337–341 (2014).
[Crossref]

J. Phys. Chem. (1)

T. Lian, S. E. Bromberg, M. C. Asplund, H. Yang, and C. B. Harris, “Femtosecond infrared studies of the dissociation and dynamics of transition metal carbonyls in solution,” J. Phys. Chem. 100(29), 11994–12001 (1996).
[Crossref]

Nature (1)

K. Goda, K. K. Tisa, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. Express (1)

Optica (1)

Vib. Spectrosc. (2)

M. Tamamitsu, Y. Sakai, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
[Crossref]

P. R. Griffiths, B. L. Hirsche, and C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectroscopy,” Vib. Spectrosc. 19(1), 165–176 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Optical system for the time-resolved spectral measurement. (a) When the mirror is at the original position (θ=0°), the pump laser beam excites the position A of the phosphorescent sample. Fluorescence at the positions A and B are imaged at the points P and Q, respectively. (b) As the mirror rotates, the laser beam moves to the position C, and the position corresponding to P moves to C. An afterglow at the position A is imaged at the point Q. The fiber position determines the time after the excitation.
Fig. 2.
Fig. 2. (a) Laser beam intensity that was measured through a striped mask (1 mm period) to evaluate the sweep velocity at the sample surface (z = 0.3 m). (b) Laser beam profile at the sample position. (c) Electronic transitions in the Eu3+ ion that are induced by the pump beam irradiation [27].
Fig. 3.
Fig. 3. Fluorescent spectra that were measured at different points. The corresponding delay is shown in the figure. The sample is an aqueous solution of EuCl3 (1 M).
Fig. 4.
Fig. 4. Time-resolved fluorescent spectra of an aqueous solution with a low Eu3+ concentration (0.01 M).
Fig. 5.
Fig. 5. Decay curves of the fluorescent peaks at (a) 592, (b) 615, or (c) 698 nm wavelength. The peak heights were taken from the spectra that were exemplified in Figs. 3 (○) and 4 (▴). The fitting curves were drawn by assuming suitable lifetimes shown in the figure.
Fig. 6.
Fig. 6. (a) Fluorescent spectra of the PEG solution that were measured at 0 (the thin line), 120 (the thick line), or 240 µs (the dotted line) after excitation. (b), (c) Decay curves of the fluorescent peaks at 592 or 613 nm. The triangles show the data that were taken in the slow-sweep process (1.7 m/s). The fitting curves were drawn by assuming the denoted lifetimes.
Fig. 7.
Fig. 7. (a) Fluorescent spectra that were measured at the moment of excitation. The solvents of the samples were mixtures of PEG (90 or 95 vol%) and water. (b), (c) Decay curves of the peaks at 592 or 613 nm. The fitting curves were drawn by assuming τe=3 and τf=65 µs for the 90% solution and τe=3 and τf=80 µs for the 95% solution.
Fig. 8.
Fig. 8. Theoretical decay curves that were calculated by using Eq. (2) with assumed parameters, i.e., (a) τe=0 µs and τf=65 µs or (b) τe=3 µs and τf=65 µs. The curve in (c) was calculated by using Eq. (3) with τe=3 µs, τf=65 µs, and tB=29µs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

W(t)=W0exp[(t/tB)2],
P(t)=P0[exp(t/τf)exp(t/τe)]
I(t)=+W(s)P(ts)ds.