Abstract

An asymmetrical configuration of hexagonal lattice photonic crystal fiber (PCF) based surface plasmon resonance (SPR) refractive index sensor is proposed. Instead of the typical confinement loss method, the lower birefringence peak method is considered to explore the sensing performance. The asymmetry in the core region induces birefringence that enhances the coupling efficiency between the core and surface plasmon polariton (SPP) mode. To form the strong SPR effect, both the gold layer and analyte layer are deposited on the external surface of the PCF. The proposed birefringent sensor exhibits the maximum wavelength sensitivity of 22,000 nm/RIU within broad analyte refractive index (RI) from 1.33 to 1.42. The sensing characteristics are carried out with the variation of several PCF structural parameters. Owing to enhanced sensitivity, the proposed sensor can be a potential candidate for biological and biomolecular analyte detection.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly amplitude-sensitive photonic-crystal-fiber-based plasmonic sensor

Firoz Haider, Rifat Ahmmed Aoni, Rajib Ahmed, and Andrey E. Miroshnichenko
J. Opt. Soc. Am. B 35(11) 2816-2821 (2018)

D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating

Junjie Lu, Yan Li, Yanhua Han, Yi Liu, and Jianmin Gao
Appl. Opt. 57(19) 5268-5272 (2018)

D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance

Guowen An, Xiaopeng Hao, Shuguang Li, Xin Yan, and Xuenan Zhang
Appl. Opt. 56(24) 6988-6992 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Piliarik, J. Homola, Z. Manıkova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators, B 90(1-3), 236–242 (2003).
    [Crossref]
  2. M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
    [Crossref]
  3. K. Tong, F. Wang, M. Wang, P. Dang, Y. Wang, and J. Sun, “D-shaped photonic crystal fiber biosensor based on silver-graphene,” Optik 168, 467–474 (2018).
    [Crossref]
  4. E. Kretschmann and Z. H. Raether, “Radiative decay of non radiative surface plasmons excited by Light,” Z. Naturforsch. A. Phys. Sci. 23(12), 2135–2136 (1968).
    [Crossref]
  5. X. Yang, Y. Lu, B. Liu, and J. Yao, “Analysis of Graphene-Based Photonic Crystal Fiber Sensor Using Birefringence and Surface Plasmon Resonance,” Plasmonics 12(2), 489–496 (2017).
    [Crossref]
  6. H. Yuan, W. Ji, S. Chu, S. Qian, F. Wang, J. F. Masson, X. Han, and W. Peng, “Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles,” Biosens. Bioelectron. 117, 637–643 (2018).
    [Crossref]
  7. Á. González-Vila, A. Ioannou, M. Loyez, M. Debliquy, D. Lahem, and C. Caucheteur, “Surface plasmon resonance sensing in gaseous media with optical fiber gratings,” Opt. Lett. 43(10), 2308–2311 (2018).
    [Crossref]
  8. A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors 18(2), 648 (2018).
    [Crossref]
  9. M. R. Hasan, M. A. Islam, A. A. Rifat, and M. I. Hasan, “A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding,” J. Mod. Opt. 64(3), 218–225 (2017).
    [Crossref]
  10. A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. Mahamd Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Express 24(3), 2485–2495 (2016).
    [Crossref]
  11. M. S. Islam, J. Sultana, A. A. Rifat, R. Ahmed, A. Dinovitser, B. W. H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum,” Opt. Express 26(23), 30347–30361 (2018).
    [Crossref]
  12. S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis,” Sensing and Bio-Sensing Research 18, 7–12 (2018).
    [Crossref]
  13. A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. R. M. Adikan, “Highly sensitive d-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sens. J. 17(9), 2776–2783 (2017).
    [Crossref]
  14. X. Liu, M. Chang, N. Chen, X. Zhang, S. Zhuang, and J. Xu, “Design of a Metal-Filled Photonic-Crystal Fiber Polarization Filter Based on Surface Plasmon Resonance at 1.31 and 1.55 µm,” IEEE Photon. J. 10(5), 7203913 (2018).
    [Crossref]
  15. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
    [Crossref]
  16. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985).
    [Crossref]
  17. A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. S. A. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50(3), 158 (2018).
    [Crossref]
  18. T. Huang, “Highly sensitive spr sensor based on d-shaped photonic crystal fiber coated with indium tin oxide at near infrared wavelength,” Plasmonics 12(3), 583–588 (2017).
    [Crossref]
  19. M. R. Hasan, S. Akter, M. S. Rahman, and K. Ahmed, “Design of a surface plasmon resonance refractive index sensor with high sensitivity,” Opt. Eng. 56(08), 1 (2017).
    [Crossref]
  20. W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58(14), 1–8 (2014).
    [Crossref]
  21. Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
    [Crossref]
  22. C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
    [Crossref]
  23. G. An, G. A. Shuguang, L. X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
    [Crossref]
  24. M. R. Hasan, S. Akter, K. Ahmed, and D. Abbott, “Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber,” IEEE Photon. Tech. Letters 30(4), 315–318 (2018).
    [Crossref]
  25. E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for bio sensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
    [Crossref]
  26. A. Hassani and M. Skorobogatiy, “Photonic crystal fiber-based plasmonic sensors for the detection of bio layer thickness,” J. Opt. Soc. Am. B 26(8), 1550 (2009).
    [Crossref]
  27. N. Luan, L. Zhao, Y. Lian, and S. Lou, “A High Refractive Index Plasmonic Sensor Based on D-Shaped Photonic Crystal Fiber with Laterally Accessible Hollow-Core,” IEEE Photonics J. 10(5), 1–7 (2018).
    [Crossref]
  28. W. Zhang, Z. Lian, T. Benson, X. Wang, and S. Lou, “A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt,” Opt. Quantum Electron. 50(1), 29 (2018).
    [Crossref]
  29. L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A Surface Plasmon Biosensor Based on a D-Shaped Microstructured Optical Fiber with Rectangular Lattice,” IEEE Photonics J. 7(5), 1–9 (2015).
    [Crossref]
  30. A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
    [Crossref]
  31. E. Haque, M. A. Hossain, F. Ahmed, and Y. Namihira, “Surface plasmon resonance sensor based on modified d-shaped photonic crystal fiber for wider range of refractive index detection,” IEEE Sensors J. 18(20), 8287–8293 (2018).
    [Crossref]
  32. H. Liu, W. Xiao, W. Cai, and E. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55(3), 036101 (2016).
    [Crossref]
  33. F. Haider, R. A. Aoni, R. Ahmed, and A. E. Miroshnichenko, “Highly amplitude-sensitive photonic crystal-fiber-based plasmonic sensor,” J. Opt. Soc. Am. B 35(11), 2816–2821 (2018).
    [Crossref]
  34. C. Liu, W. Su, F. Wang, X. Li, Q. Liu, H. Mu, T. Sun, P. K. Chu, and B. Liu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
    [Crossref]
  35. P. Kumar, A. Soni, and J. S. Roy, “Ethanol doped photonic crystal fibers with nearly flattened zero dispersion and high birefringence,” Int. J. Microw. Opt. Technol. 13(6), 544–551 (2018).
  36. X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel d-shaped photonic crystal fiber for low refractive index detection,” IEEE Photonics J. 10(1), 1–9 (2018).
    [Crossref]
  37. D. C. Prieve and J. Y. Walz, “Scattering of an evanescent surface wave by a microscopic dielectric sphere,” Appl. Opt. 32(9), 1629–1641 (1993).
    [Crossref]
  38. A. A. Rifat, M. R. Hasan, R. Ahmed, H. Butt, and A. E. Miroshnichenkoa, “Photonic crystal fiber based plasmonic biosensor with external sensing approach,” J. Nanophotonics 12(1), 012503 (2017).
    [Crossref]
  39. Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
    [Crossref]
  40. P.-B. Bing, Z.-Y. Li, J.-Q. Yao, Y. Lu, Z.-G. Di, and X. Yan, “Theoretical and experimental researches on a PCF based SPR sensor,” Optoelectron. Lett. 8(4), 245–248 (2012).
    [Crossref]
  41. C.-L. Tien, H.-Y. Lin, and S.-H. Su, “High sensitivity refractive index sensor by D-shaped fibers and titanium dioxide nanofilm,” Adv. Condens. Matter Phys. 2018, 1–6 (2018).
    [Crossref]

2018 (19)

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

K. Tong, F. Wang, M. Wang, P. Dang, Y. Wang, and J. Sun, “D-shaped photonic crystal fiber biosensor based on silver-graphene,” Optik 168, 467–474 (2018).
[Crossref]

H. Yuan, W. Ji, S. Chu, S. Qian, F. Wang, J. F. Masson, X. Han, and W. Peng, “Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles,” Biosens. Bioelectron. 117, 637–643 (2018).
[Crossref]

Á. González-Vila, A. Ioannou, M. Loyez, M. Debliquy, D. Lahem, and C. Caucheteur, “Surface plasmon resonance sensing in gaseous media with optical fiber gratings,” Opt. Lett. 43(10), 2308–2311 (2018).
[Crossref]

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors 18(2), 648 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. A. Rifat, R. Ahmed, A. Dinovitser, B. W. H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum,” Opt. Express 26(23), 30347–30361 (2018).
[Crossref]

S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis,” Sensing and Bio-Sensing Research 18, 7–12 (2018).
[Crossref]

X. Liu, M. Chang, N. Chen, X. Zhang, S. Zhuang, and J. Xu, “Design of a Metal-Filled Photonic-Crystal Fiber Polarization Filter Based on Surface Plasmon Resonance at 1.31 and 1.55 µm,” IEEE Photon. J. 10(5), 7203913 (2018).
[Crossref]

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. S. A. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50(3), 158 (2018).
[Crossref]

M. R. Hasan, S. Akter, K. Ahmed, and D. Abbott, “Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber,” IEEE Photon. Tech. Letters 30(4), 315–318 (2018).
[Crossref]

N. Luan, L. Zhao, Y. Lian, and S. Lou, “A High Refractive Index Plasmonic Sensor Based on D-Shaped Photonic Crystal Fiber with Laterally Accessible Hollow-Core,” IEEE Photonics J. 10(5), 1–7 (2018).
[Crossref]

W. Zhang, Z. Lian, T. Benson, X. Wang, and S. Lou, “A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt,” Opt. Quantum Electron. 50(1), 29 (2018).
[Crossref]

A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
[Crossref]

E. Haque, M. A. Hossain, F. Ahmed, and Y. Namihira, “Surface plasmon resonance sensor based on modified d-shaped photonic crystal fiber for wider range of refractive index detection,” IEEE Sensors J. 18(20), 8287–8293 (2018).
[Crossref]

F. Haider, R. A. Aoni, R. Ahmed, and A. E. Miroshnichenko, “Highly amplitude-sensitive photonic crystal-fiber-based plasmonic sensor,” J. Opt. Soc. Am. B 35(11), 2816–2821 (2018).
[Crossref]

C. Liu, W. Su, F. Wang, X. Li, Q. Liu, H. Mu, T. Sun, P. K. Chu, and B. Liu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

P. Kumar, A. Soni, and J. S. Roy, “Ethanol doped photonic crystal fibers with nearly flattened zero dispersion and high birefringence,” Int. J. Microw. Opt. Technol. 13(6), 544–551 (2018).

X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel d-shaped photonic crystal fiber for low refractive index detection,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

C.-L. Tien, H.-Y. Lin, and S.-H. Su, “High sensitivity refractive index sensor by D-shaped fibers and titanium dioxide nanofilm,” Adv. Condens. Matter Phys. 2018, 1–6 (2018).
[Crossref]

2017 (9)

A. A. Rifat, M. R. Hasan, R. Ahmed, H. Butt, and A. E. Miroshnichenkoa, “Photonic crystal fiber based plasmonic biosensor with external sensing approach,” J. Nanophotonics 12(1), 012503 (2017).
[Crossref]

Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]

G. An, G. A. Shuguang, L. X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

T. Huang, “Highly sensitive spr sensor based on d-shaped photonic crystal fiber coated with indium tin oxide at near infrared wavelength,” Plasmonics 12(3), 583–588 (2017).
[Crossref]

M. R. Hasan, S. Akter, M. S. Rahman, and K. Ahmed, “Design of a surface plasmon resonance refractive index sensor with high sensitivity,” Opt. Eng. 56(08), 1 (2017).
[Crossref]

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. R. M. Adikan, “Highly sensitive d-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sens. J. 17(9), 2776–2783 (2017).
[Crossref]

M. R. Hasan, M. A. Islam, A. A. Rifat, and M. I. Hasan, “A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding,” J. Mod. Opt. 64(3), 218–225 (2017).
[Crossref]

X. Yang, Y. Lu, B. Liu, and J. Yao, “Analysis of Graphene-Based Photonic Crystal Fiber Sensor Using Birefringence and Surface Plasmon Resonance,” Plasmonics 12(2), 489–496 (2017).
[Crossref]

2016 (2)

2015 (3)

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A Surface Plasmon Biosensor Based on a D-Shaped Microstructured Optical Fiber with Rectangular Lattice,” IEEE Photonics J. 7(5), 1–9 (2015).
[Crossref]

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

2014 (1)

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58(14), 1–8 (2014).
[Crossref]

2012 (2)

P.-B. Bing, Z.-Y. Li, J.-Q. Yao, Y. Lu, Z.-G. Di, and X. Yan, “Theoretical and experimental researches on a PCF based SPR sensor,” Optoelectron. Lett. 8(4), 245–248 (2012).
[Crossref]

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for bio sensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

2009 (1)

2003 (1)

M. Piliarik, J. Homola, Z. Manıkova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators, B 90(1-3), 236–242 (2003).
[Crossref]

1993 (1)

1985 (1)

1968 (1)

E. Kretschmann and Z. H. Raether, “Radiative decay of non radiative surface plasmons excited by Light,” Z. Naturforsch. A. Phys. Sci. 23(12), 2135–2136 (1968).
[Crossref]

Abbott, D.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

M. R. Hasan, S. Akter, K. Ahmed, and D. Abbott, “Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber,” IEEE Photon. Tech. Letters 30(4), 315–318 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. A. Rifat, R. Ahmed, A. Dinovitser, B. W. H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum,” Opt. Express 26(23), 30347–30361 (2018).
[Crossref]

Abdelmonem, M. R.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. S. A. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50(3), 158 (2018).
[Crossref]

Ademgil, H.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for bio sensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

Adikan, F. R. M.

A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
[Crossref]

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. R. M. Adikan, “Highly sensitive d-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sens. J. 17(9), 2776–2783 (2017).
[Crossref]

Ahmed, F.

E. Haque, M. A. Hossain, F. Ahmed, and Y. Namihira, “Surface plasmon resonance sensor based on modified d-shaped photonic crystal fiber for wider range of refractive index detection,” IEEE Sensors J. 18(20), 8287–8293 (2018).
[Crossref]

Ahmed, K.

S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis,” Sensing and Bio-Sensing Research 18, 7–12 (2018).
[Crossref]

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

M. R. Hasan, S. Akter, K. Ahmed, and D. Abbott, “Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber,” IEEE Photon. Tech. Letters 30(4), 315–318 (2018).
[Crossref]

M. R. Hasan, S. Akter, M. S. Rahman, and K. Ahmed, “Design of a surface plasmon resonance refractive index sensor with high sensitivity,” Opt. Eng. 56(08), 1 (2017).
[Crossref]

Ahmed, R.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
[Crossref]

F. Haider, R. A. Aoni, R. Ahmed, and A. E. Miroshnichenko, “Highly amplitude-sensitive photonic crystal-fiber-based plasmonic sensor,” J. Opt. Soc. Am. B 35(11), 2816–2821 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. A. Rifat, R. Ahmed, A. Dinovitser, B. W. H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum,” Opt. Express 26(23), 30347–30361 (2018).
[Crossref]

A. A. Rifat, M. R. Hasan, R. Ahmed, H. Butt, and A. E. Miroshnichenkoa, “Photonic crystal fiber based plasmonic biosensor with external sensing approach,” J. Nanophotonics 12(1), 012503 (2017).
[Crossref]

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. R. M. Adikan, “Highly sensitive d-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sens. J. 17(9), 2776–2783 (2017).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. Mahamd Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Express 24(3), 2485–2495 (2016).
[Crossref]

Akowuah, E. K.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for bio sensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

Akter, S.

M. R. Hasan, S. Akter, K. Ahmed, and D. Abbott, “Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber,” IEEE Photon. Tech. Letters 30(4), 315–318 (2018).
[Crossref]

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

M. R. Hasan, S. Akter, M. S. Rahman, and K. Ahmed, “Design of a surface plasmon resonance refractive index sensor with high sensitivity,” Opt. Eng. 56(08), 1 (2017).
[Crossref]

Alexander, R. W.

Allil, R. C. S. B.

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors 18(2), 648 (2018).
[Crossref]

An, G.

G. An, G. A. Shuguang, L. X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Aoni, R. A.

Arcas, A. D. S.

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors 18(2), 648 (2018).
[Crossref]

Azab, M. Y.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. S. A. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50(3), 158 (2018).
[Crossref]

Bahar, A. N.

S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis,” Sensing and Bio-Sensing Research 18, 7–12 (2018).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Benson, T.

W. Zhang, Z. Lian, T. Benson, X. Wang, and S. Lou, “A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt,” Opt. Quantum Electron. 50(1), 29 (2018).
[Crossref]

Bing, P.-B.

P.-B. Bing, Z.-Y. Li, J.-Q. Yao, Y. Lu, Z.-G. Di, and X. Yan, “Theoretical and experimental researches on a PCF based SPR sensor,” Optoelectron. Lett. 8(4), 245–248 (2012).
[Crossref]

Butt, H.

A. A. Rifat, M. R. Hasan, R. Ahmed, H. Butt, and A. E. Miroshnichenkoa, “Photonic crystal fiber based plasmonic biosensor with external sensing approach,” J. Nanophotonics 12(1), 012503 (2017).
[Crossref]

Cai, W.

H. Liu, W. Xiao, W. Cai, and E. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55(3), 036101 (2016).
[Crossref]

Caucheteur, C.

Chakma, S.

S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis,” Sensing and Bio-Sensing Research 18, 7–12 (2018).
[Crossref]

Chang, M.

X. Liu, M. Chang, N. Chen, X. Zhang, S. Zhuang, and J. Xu, “Design of a Metal-Filled Photonic-Crystal Fiber Polarization Filter Based on Surface Plasmon Resonance at 1.31 and 1.55 µm,” IEEE Photon. J. 10(5), 7203913 (2018).
[Crossref]

Chao, D.

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Chen, H.

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Chen, N.

X. Liu, M. Chang, N. Chen, X. Zhang, S. Zhuang, and J. Xu, “Design of a Metal-Filled Photonic-Crystal Fiber Polarization Filter Based on Surface Plasmon Resonance at 1.31 and 1.55 µm,” IEEE Photon. J. 10(5), 7203913 (2018).
[Crossref]

Chen, X.

X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel d-shaped photonic crystal fiber for low refractive index detection,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Chen, Y.

Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
[Crossref]

Chu, P. K.

C. Liu, W. Su, F. Wang, X. Li, Q. Liu, H. Mu, T. Sun, P. K. Chu, and B. Liu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]

Chu, S.

H. Yuan, W. Ji, S. Chu, S. Qian, F. Wang, J. F. Masson, X. Han, and W. Peng, “Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles,” Biosens. Bioelectron. 117, 637–643 (2018).
[Crossref]

Ctyroky, J.

M. Piliarik, J. Homola, Z. Manıkova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators, B 90(1-3), 236–242 (2003).
[Crossref]

Dang, P.

K. Tong, F. Wang, M. Wang, P. Dang, Y. Wang, and J. Sun, “D-shaped photonic crystal fiber biosensor based on silver-graphene,” Optik 168, 467–474 (2018).
[Crossref]

Debliquy, M.

Di, Z.-G.

P.-B. Bing, Z.-Y. Li, J.-Q. Yao, Y. Lu, Z.-G. Di, and X. Yan, “Theoretical and experimental researches on a PCF based SPR sensor,” Optoelectron. Lett. 8(4), 245–248 (2012).
[Crossref]

Dinovitser, A.

Dutra, F. D. S.

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors 18(2), 648 (2018).
[Crossref]

Ebendorff-Heidepriem, H.

El-Saeed, A. H.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. S. A. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50(3), 158 (2018).
[Crossref]

Fan, Z.

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Ge, S.

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A Surface Plasmon Biosensor Based on a D-Shaped Microstructured Optical Fiber with Rectangular Lattice,” IEEE Photonics J. 7(5), 1–9 (2015).
[Crossref]

Geng, Y.

Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
[Crossref]

González-Vila, Á.

Gorman, T.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for bio sensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

Haider, F.

Hameed, M. F. O.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. S. A. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50(3), 158 (2018).
[Crossref]

Han, X.

H. Yuan, W. Ji, S. Chu, S. Qian, F. Wang, J. F. Masson, X. Han, and W. Peng, “Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles,” Biosens. Bioelectron. 117, 637–643 (2018).
[Crossref]

Han, Z.

G. An, G. A. Shuguang, L. X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Hao, X.

G. An, G. A. Shuguang, L. X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Haque, E.

E. Haque, M. A. Hossain, F. Ahmed, and Y. Namihira, “Surface plasmon resonance sensor based on modified d-shaped photonic crystal fiber for wider range of refractive index detection,” IEEE Sensors J. 18(20), 8287–8293 (2018).
[Crossref]

Hasan, M. I.

M. R. Hasan, M. A. Islam, A. A. Rifat, and M. I. Hasan, “A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding,” J. Mod. Opt. 64(3), 218–225 (2017).
[Crossref]

Hasan, M. R.

S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis,” Sensing and Bio-Sensing Research 18, 7–12 (2018).
[Crossref]

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

M. R. Hasan, S. Akter, K. Ahmed, and D. Abbott, “Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber,” IEEE Photon. Tech. Letters 30(4), 315–318 (2018).
[Crossref]

M. R. Hasan, S. Akter, M. S. Rahman, and K. Ahmed, “Design of a surface plasmon resonance refractive index sensor with high sensitivity,” Opt. Eng. 56(08), 1 (2017).
[Crossref]

A. A. Rifat, M. R. Hasan, R. Ahmed, H. Butt, and A. E. Miroshnichenkoa, “Photonic crystal fiber based plasmonic biosensor with external sensing approach,” J. Nanophotonics 12(1), 012503 (2017).
[Crossref]

M. R. Hasan, M. A. Islam, A. A. Rifat, and M. I. Hasan, “A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding,” J. Mod. Opt. 64(3), 218–225 (2017).
[Crossref]

Hashish, M. E.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. S. A. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50(3), 158 (2018).
[Crossref]

Hassani, A.

Haxha, S.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for bio sensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

Homola, J.

M. Piliarik, J. Homola, Z. Manıkova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators, B 90(1-3), 236–242 (2003).
[Crossref]

Hong, X.

Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
[Crossref]

Hossain, M. A.

E. Haque, M. A. Hossain, F. Ahmed, and Y. Namihira, “Surface plasmon resonance sensor based on modified d-shaped photonic crystal fiber for wider range of refractive index detection,” IEEE Sensors J. 18(20), 8287–8293 (2018).
[Crossref]

Hou, Z.

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A Surface Plasmon Biosensor Based on a D-Shaped Microstructured Optical Fiber with Rectangular Lattice,” IEEE Photonics J. 7(5), 1–9 (2015).
[Crossref]

Huang, T.

T. Huang, “Highly sensitive spr sensor based on d-shaped photonic crystal fiber coated with indium tin oxide at near infrared wavelength,” Plasmonics 12(3), 583–588 (2017).
[Crossref]

Ibrahim, M. A.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. S. A. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50(3), 158 (2018).
[Crossref]

Ioannou, A.

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Islam, M. A.

M. R. Hasan, M. A. Islam, A. A. Rifat, and M. I. Hasan, “A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding,” J. Mod. Opt. 64(3), 218–225 (2017).
[Crossref]

Islam, M. S.

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Ji, W.

H. Yuan, W. Ji, S. Chu, S. Qian, F. Wang, J. F. Masson, X. Han, and W. Peng, “Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles,” Biosens. Bioelectron. 117, 637–643 (2018).
[Crossref]

Khalek, M. A.

S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis,” Sensing and Bio-Sensing Research 18, 7–12 (2018).
[Crossref]

Khalil, A. E.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. S. A. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50(3), 158 (2018).
[Crossref]

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Kretschmann, E.

E. Kretschmann and Z. H. Raether, “Radiative decay of non radiative surface plasmons excited by Light,” Z. Naturforsch. A. Phys. Sci. 23(12), 2135–2136 (1968).
[Crossref]

Kumar, P.

P. Kumar, A. Soni, and J. S. Roy, “Ethanol doped photonic crystal fibers with nearly flattened zero dispersion and high birefringence,” Int. J. Microw. Opt. Technol. 13(6), 544–551 (2018).

Lahem, D.

Li, C.

X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel d-shaped photonic crystal fiber for low refractive index detection,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Li, H.

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Li, J.

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Li, S.

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58(14), 1–8 (2014).
[Crossref]

Li, X.

C. Liu, W. Su, F. Wang, X. Li, Q. Liu, H. Mu, T. Sun, P. K. Chu, and B. Liu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
[Crossref]

Li, Z.-Y.

P.-B. Bing, Z.-Y. Li, J.-Q. Yao, Y. Lu, Z.-G. Di, and X. Yan, “Theoretical and experimental researches on a PCF based SPR sensor,” Optoelectron. Lett. 8(4), 245–248 (2012).
[Crossref]

Lian, Y.

N. Luan, L. Zhao, Y. Lian, and S. Lou, “A High Refractive Index Plasmonic Sensor Based on D-Shaped Photonic Crystal Fiber with Laterally Accessible Hollow-Core,” IEEE Photonics J. 10(5), 1–7 (2018).
[Crossref]

Lian, Z.

W. Zhang, Z. Lian, T. Benson, X. Wang, and S. Lou, “A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt,” Opt. Quantum Electron. 50(1), 29 (2018).
[Crossref]

Lin, H.-Y.

C.-L. Tien, H.-Y. Lin, and S.-H. Su, “High sensitivity refractive index sensor by D-shaped fibers and titanium dioxide nanofilm,” Adv. Condens. Matter Phys. 2018, 1–6 (2018).
[Crossref]

Liu, B.

C. Liu, W. Su, F. Wang, X. Li, Q. Liu, H. Mu, T. Sun, P. K. Chu, and B. Liu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

X. Yang, Y. Lu, B. Liu, and J. Yao, “Analysis of Graphene-Based Photonic Crystal Fiber Sensor Using Birefringence and Surface Plasmon Resonance,” Plasmonics 12(2), 489–496 (2017).
[Crossref]

Liu, C.

C. Liu, W. Su, F. Wang, X. Li, Q. Liu, H. Mu, T. Sun, P. K. Chu, and B. Liu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]

Liu, E.

H. Liu, W. Xiao, W. Cai, and E. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55(3), 036101 (2016).
[Crossref]

Liu, H.

H. Liu, W. Xiao, W. Cai, and E. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55(3), 036101 (2016).
[Crossref]

Liu, Q.

C. Liu, W. Su, F. Wang, X. Li, Q. Liu, H. Mu, T. Sun, P. K. Chu, and B. Liu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Liu, X.

X. Liu, M. Chang, N. Chen, X. Zhang, S. Zhuang, and J. Xu, “Design of a Metal-Filled Photonic-Crystal Fiber Polarization Filter Based on Surface Plasmon Resonance at 1.31 and 1.55 µm,” IEEE Photon. J. 10(5), 7203913 (2018).
[Crossref]

Long, L. L.

Lou, S.

N. Luan, L. Zhao, Y. Lian, and S. Lou, “A High Refractive Index Plasmonic Sensor Based on D-Shaped Photonic Crystal Fiber with Laterally Accessible Hollow-Core,” IEEE Photonics J. 10(5), 1–7 (2018).
[Crossref]

W. Zhang, Z. Lian, T. Benson, X. Wang, and S. Lou, “A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt,” Opt. Quantum Electron. 50(1), 29 (2018).
[Crossref]

Loyez, M.

Lu, X.

Lu, Y.

X. Yang, Y. Lu, B. Liu, and J. Yao, “Analysis of Graphene-Based Photonic Crystal Fiber Sensor Using Birefringence and Surface Plasmon Resonance,” Plasmonics 12(2), 489–496 (2017).
[Crossref]

P.-B. Bing, Z.-Y. Li, J.-Q. Yao, Y. Lu, Z.-G. Di, and X. Yan, “Theoretical and experimental researches on a PCF based SPR sensor,” Optoelectron. Lett. 8(4), 245–248 (2012).
[Crossref]

Luan, N.

N. Luan, L. Zhao, Y. Lian, and S. Lou, “A High Refractive Index Plasmonic Sensor Based on D-Shaped Photonic Crystal Fiber with Laterally Accessible Hollow-Core,” IEEE Photonics J. 10(5), 1–7 (2018).
[Crossref]

Lv, J.

Mahamd Adikan, F. R.

Mahdiraji, G. A.

Manikova, Z.

M. Piliarik, J. Homola, Z. Manıkova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators, B 90(1-3), 236–242 (2003).
[Crossref]

Masson, J. F.

H. Yuan, W. Ji, S. Chu, S. Qian, F. Wang, J. F. Masson, X. Han, and W. Peng, “Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles,” Biosens. Bioelectron. 117, 637–643 (2018).
[Crossref]

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Miroshnichenko, A. E.

Miroshnichenkoa, A. E.

A. A. Rifat, M. R. Hasan, R. Ahmed, H. Butt, and A. E. Miroshnichenkoa, “Photonic crystal fiber based plasmonic biosensor with external sensing approach,” J. Nanophotonics 12(1), 012503 (2017).
[Crossref]

Mu, H.

C. Liu, W. Su, F. Wang, X. Li, Q. Liu, H. Mu, T. Sun, P. K. Chu, and B. Liu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]

Namihira, Y.

E. Haque, M. A. Hossain, F. Ahmed, and Y. Namihira, “Surface plasmon resonance sensor based on modified d-shaped photonic crystal fiber for wider range of refractive index detection,” IEEE Sensors J. 18(20), 8287–8293 (2018).
[Crossref]

Ng, B. W. H.

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Obayya, S. S. A.

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. S. A. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50(3), 158 (2018).
[Crossref]

Oliver, J. V.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for bio sensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

Ordal, M. A.

Paul, B. K.

S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis,” Sensing and Bio-Sensing Research 18, 7–12 (2018).
[Crossref]

Peng, L.

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A Surface Plasmon Biosensor Based on a D-Shaped Microstructured Optical Fiber with Rectangular Lattice,” IEEE Photonics J. 7(5), 1–9 (2015).
[Crossref]

Peng, W.

H. Yuan, W. Ji, S. Chu, S. Qian, F. Wang, J. F. Masson, X. Han, and W. Peng, “Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles,” Biosens. Bioelectron. 117, 637–643 (2018).
[Crossref]

Piliarik, M.

M. Piliarik, J. Homola, Z. Manıkova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators, B 90(1-3), 236–242 (2003).
[Crossref]

Prieve, D. C.

Qian, S.

H. Yuan, W. Ji, S. Chu, S. Qian, F. Wang, J. F. Masson, X. Han, and W. Peng, “Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles,” Biosens. Bioelectron. 117, 637–643 (2018).
[Crossref]

Qin, W.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58(14), 1–8 (2014).
[Crossref]

Raether, Z. H.

E. Kretschmann and Z. H. Raether, “Radiative decay of non radiative surface plasmons excited by Light,” Z. Naturforsch. A. Phys. Sci. 23(12), 2135–2136 (1968).
[Crossref]

Rahman, M. S.

M. R. Hasan, S. Akter, M. S. Rahman, and K. Ahmed, “Design of a surface plasmon resonance refractive index sensor with high sensitivity,” Opt. Eng. 56(08), 1 (2017).
[Crossref]

Rana, S.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

Rifat, A. A.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. A. Rifat, R. Ahmed, A. Dinovitser, B. W. H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum,” Opt. Express 26(23), 30347–30361 (2018).
[Crossref]

M. R. Hasan, M. A. Islam, A. A. Rifat, and M. I. Hasan, “A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding,” J. Mod. Opt. 64(3), 218–225 (2017).
[Crossref]

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. R. M. Adikan, “Highly sensitive d-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sens. J. 17(9), 2776–2783 (2017).
[Crossref]

A. A. Rifat, M. R. Hasan, R. Ahmed, H. Butt, and A. E. Miroshnichenkoa, “Photonic crystal fiber based plasmonic biosensor with external sensing approach,” J. Nanophotonics 12(1), 012503 (2017).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. Mahamd Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Express 24(3), 2485–2495 (2016).
[Crossref]

Robinson, G. K.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for bio sensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Roy, J. S.

P. Kumar, A. Soni, and J. S. Roy, “Ethanol doped photonic crystal fibers with nearly flattened zero dispersion and high birefringence,” Int. J. Microw. Opt. Technol. 13(6), 544–551 (2018).

Shao, Y.

G. An, G. A. Shuguang, L. X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Shee, Y. G.

Shi, F.

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A Surface Plasmon Biosensor Based on a D-Shaped Microstructured Optical Fiber with Rectangular Lattice,” IEEE Photonics J. 7(5), 1–9 (2015).
[Crossref]

Shuguang, G. A.

G. An, G. A. Shuguang, L. X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Skorobogatiy, M.

Soni, A.

P. Kumar, A. Soni, and J. S. Roy, “Ethanol doped photonic crystal fibers with nearly flattened zero dispersion and high birefringence,” Int. J. Microw. Opt. Technol. 13(6), 544–551 (2018).

Su, S.-H.

C.-L. Tien, H.-Y. Lin, and S.-H. Su, “High sensitivity refractive index sensor by D-shaped fibers and titanium dioxide nanofilm,” Adv. Condens. Matter Phys. 2018, 1–6 (2018).
[Crossref]

Su, W.

C. Liu, W. Su, F. Wang, X. Li, Q. Liu, H. Mu, T. Sun, P. K. Chu, and B. Liu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

Sua, Y. M.

Subbaraman, H.

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

Sultana, J.

Sun, J.

K. Tong, F. Wang, M. Wang, P. Dang, Y. Wang, and J. Sun, “D-shaped photonic crystal fiber biosensor based on silver-graphene,” Optik 168, 467–474 (2018).
[Crossref]

Sun, T.

C. Liu, W. Su, F. Wang, X. Li, Q. Liu, H. Mu, T. Sun, P. K. Chu, and B. Liu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]

Tian, W.

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Tien, C.-L.

C.-L. Tien, H.-Y. Lin, and S.-H. Su, “High sensitivity refractive index sensor by D-shaped fibers and titanium dioxide nanofilm,” Adv. Condens. Matter Phys. 2018, 1–6 (2018).
[Crossref]

Tong, K.

K. Tong, F. Wang, M. Wang, P. Dang, Y. Wang, and J. Sun, “D-shaped photonic crystal fiber biosensor based on silver-graphene,” Optik 168, 467–474 (2018).
[Crossref]

Walz, J. Y.

Wang, F.

K. Tong, F. Wang, M. Wang, P. Dang, Y. Wang, and J. Sun, “D-shaped photonic crystal fiber biosensor based on silver-graphene,” Optik 168, 467–474 (2018).
[Crossref]

H. Yuan, W. Ji, S. Chu, S. Qian, F. Wang, J. F. Masson, X. Han, and W. Peng, “Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles,” Biosens. Bioelectron. 117, 637–643 (2018).
[Crossref]

C. Liu, W. Su, F. Wang, X. Li, Q. Liu, H. Mu, T. Sun, P. K. Chu, and B. Liu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref]

Wang, H.

G. An, G. A. Shuguang, L. X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Wang, M.

K. Tong, F. Wang, M. Wang, P. Dang, Y. Wang, and J. Sun, “D-shaped photonic crystal fiber biosensor based on silver-graphene,” Optik 168, 467–474 (2018).
[Crossref]

Wang, X.

W. Zhang, Z. Lian, T. Benson, X. Wang, and S. Lou, “A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt,” Opt. Quantum Electron. 50(1), 29 (2018).
[Crossref]

Wang, Y.

K. Tong, F. Wang, M. Wang, P. Dang, Y. Wang, and J. Sun, “D-shaped photonic crystal fiber biosensor based on silver-graphene,” Optik 168, 467–474 (2018).
[Crossref]

Ward, C. A.

Werneck, M. M.

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors 18(2), 648 (2018).
[Crossref]

Xia, C.

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A Surface Plasmon Biosensor Based on a D-Shaped Microstructured Optical Fiber with Rectangular Lattice,” IEEE Photonics J. 7(5), 1–9 (2015).
[Crossref]

Xia, L.

X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel d-shaped photonic crystal fiber for low refractive index detection,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Xiao, W.

H. Liu, W. Xiao, W. Cai, and E. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55(3), 036101 (2016).
[Crossref]

Xie, Q.

Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
[Crossref]

Xin, X.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58(14), 1–8 (2014).
[Crossref]

Xu, J.

X. Liu, M. Chang, N. Chen, X. Zhang, S. Zhuang, and J. Xu, “Design of a Metal-Filled Photonic-Crystal Fiber Polarization Filter Based on Surface Plasmon Resonance at 1.31 and 1.55 µm,” IEEE Photon. J. 10(5), 7203913 (2018).
[Crossref]

Xue, J.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58(14), 1–8 (2014).
[Crossref]

Yan, L. X.

G. An, G. A. Shuguang, L. X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Yan, X.

P.-B. Bing, Z.-Y. Li, J.-Q. Yao, Y. Lu, Z.-G. Di, and X. Yan, “Theoretical and experimental researches on a PCF based SPR sensor,” Optoelectron. Lett. 8(4), 245–248 (2012).
[Crossref]

Yang, L.

Yang, X.

X. Yang, Y. Lu, B. Liu, and J. Yao, “Analysis of Graphene-Based Photonic Crystal Fiber Sensor Using Birefringence and Surface Plasmon Resonance,” Plasmonics 12(2), 489–496 (2017).
[Crossref]

Yao, J.

X. Yang, Y. Lu, B. Liu, and J. Yao, “Analysis of Graphene-Based Photonic Crystal Fiber Sensor Using Birefringence and Surface Plasmon Resonance,” Plasmonics 12(2), 489–496 (2017).
[Crossref]

Yao, J.-Q.

P.-B. Bing, Z.-Y. Li, J.-Q. Yao, Y. Lu, Z.-G. Di, and X. Yan, “Theoretical and experimental researches on a PCF based SPR sensor,” Optoelectron. Lett. 8(4), 245–248 (2012).
[Crossref]

Yao, Y.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58(14), 1–8 (2014).
[Crossref]

Yuan, H.

H. Yuan, W. Ji, S. Chu, S. Qian, F. Wang, J. F. Masson, X. Han, and W. Peng, “Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles,” Biosens. Bioelectron. 117, 637–643 (2018).
[Crossref]

Yuan, Z.

G. An, G. A. Shuguang, L. X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Zhang, W.

W. Zhang, Z. Lian, T. Benson, X. Wang, and S. Lou, “A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt,” Opt. Quantum Electron. 50(1), 29 (2018).
[Crossref]

Zhang, X.

X. Liu, M. Chang, N. Chen, X. Zhang, S. Zhuang, and J. Xu, “Design of a Metal-Filled Photonic-Crystal Fiber Polarization Filter Based on Surface Plasmon Resonance at 1.31 and 1.55 µm,” IEEE Photon. J. 10(5), 7203913 (2018).
[Crossref]

G. An, G. A. Shuguang, L. X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Zhang, Y.

G. An, G. A. Shuguang, L. X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Zhao, L.

N. Luan, L. Zhao, Y. Lian, and S. Lou, “A High Refractive Index Plasmonic Sensor Based on D-Shaped Photonic Crystal Fiber with Laterally Accessible Hollow-Core,” IEEE Photonics J. 10(5), 1–7 (2018).
[Crossref]

Zhou, G.

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A Surface Plasmon Biosensor Based on a D-Shaped Microstructured Optical Fiber with Rectangular Lattice,” IEEE Photonics J. 7(5), 1–9 (2015).
[Crossref]

Zhou, H.

Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
[Crossref]

Zhuang, S.

X. Liu, M. Chang, N. Chen, X. Zhang, S. Zhuang, and J. Xu, “Design of a Metal-Filled Photonic-Crystal Fiber Polarization Filter Based on Surface Plasmon Resonance at 1.31 and 1.55 µm,” IEEE Photon. J. 10(5), 7203913 (2018).
[Crossref]

Zi, J.

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

ACS Photonics (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Adv. Condens. Matter Phys. (1)

C.-L. Tien, H.-Y. Lin, and S.-H. Su, “High sensitivity refractive index sensor by D-shaped fibers and titanium dioxide nanofilm,” Adv. Condens. Matter Phys. 2018, 1–6 (2018).
[Crossref]

Appl. Opt. (2)

Biosens. Bioelectron. (1)

H. Yuan, W. Ji, S. Chu, S. Qian, F. Wang, J. F. Masson, X. Han, and W. Peng, “Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles,” Biosens. Bioelectron. 117, 637–643 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for bio sensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

IEEE Photon. J. (1)

X. Liu, M. Chang, N. Chen, X. Zhang, S. Zhuang, and J. Xu, “Design of a Metal-Filled Photonic-Crystal Fiber Polarization Filter Based on Surface Plasmon Resonance at 1.31 and 1.55 µm,” IEEE Photon. J. 10(5), 7203913 (2018).
[Crossref]

IEEE Photon. Tech. Letters (1)

M. R. Hasan, S. Akter, K. Ahmed, and D. Abbott, “Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber,” IEEE Photon. Tech. Letters 30(4), 315–318 (2018).
[Crossref]

IEEE Photonics J. (4)

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

N. Luan, L. Zhao, Y. Lian, and S. Lou, “A High Refractive Index Plasmonic Sensor Based on D-Shaped Photonic Crystal Fiber with Laterally Accessible Hollow-Core,” IEEE Photonics J. 10(5), 1–7 (2018).
[Crossref]

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A Surface Plasmon Biosensor Based on a D-Shaped Microstructured Optical Fiber with Rectangular Lattice,” IEEE Photonics J. 7(5), 1–9 (2015).
[Crossref]

X. Chen, L. Xia, and C. Li, “Surface plasmon resonance sensor based on a novel d-shaped photonic crystal fiber for low refractive index detection,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. Liu, W. Su, F. Wang, X. Li, Q. Liu, H. Mu, T. Sun, P. K. Chu, and B. Liu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

IEEE Sens. J. (2)

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. R. M. Adikan, “Highly sensitive d-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sens. J. 17(9), 2776–2783 (2017).
[Crossref]

M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, and D. Abbott, “Spiral photonic crystal fiber based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J. 18(1), 133–140 (2018).
[Crossref]

IEEE Sensors J. (1)

E. Haque, M. A. Hossain, F. Ahmed, and Y. Namihira, “Surface plasmon resonance sensor based on modified d-shaped photonic crystal fiber for wider range of refractive index detection,” IEEE Sensors J. 18(20), 8287–8293 (2018).
[Crossref]

Int. J. Microw. Opt. Technol. (1)

P. Kumar, A. Soni, and J. S. Roy, “Ethanol doped photonic crystal fibers with nearly flattened zero dispersion and high birefringence,” Int. J. Microw. Opt. Technol. 13(6), 544–551 (2018).

J. Mod. Opt. (1)

M. R. Hasan, M. A. Islam, A. A. Rifat, and M. I. Hasan, “A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding,” J. Mod. Opt. 64(3), 218–225 (2017).
[Crossref]

J. Nanophotonics (1)

A. A. Rifat, M. R. Hasan, R. Ahmed, H. Butt, and A. E. Miroshnichenkoa, “Photonic crystal fiber based plasmonic biosensor with external sensing approach,” J. Nanophotonics 12(1), 012503 (2017).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D: Appl. Phys. (1)

Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
[Crossref]

Opt. Eng. (2)

H. Liu, W. Xiao, W. Cai, and E. Liu, “Photonic quasi-crystal fiber with high birefringence,” Opt. Eng. 55(3), 036101 (2016).
[Crossref]

M. R. Hasan, S. Akter, M. S. Rahman, and K. Ahmed, “Design of a surface plasmon resonance refractive index sensor with high sensitivity,” Opt. Eng. 56(08), 1 (2017).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58(14), 1–8 (2014).
[Crossref]

Opt. Lett. (2)

Opt. Quantum Electron. (2)

W. Zhang, Z. Lian, T. Benson, X. Wang, and S. Lou, “A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt,” Opt. Quantum Electron. 50(1), 29 (2018).
[Crossref]

A. E. Khalil, A. H. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. R. Abdelmonem, M. F. O. Hameed, M. Y. Azab, and S. S. A. Obayya, “Highly sensitive photonic crystal fiber biosensor based on titanium nitride,” Opt. Quantum Electron. 50(3), 158 (2018).
[Crossref]

Optik (1)

K. Tong, F. Wang, M. Wang, P. Dang, Y. Wang, and J. Sun, “D-shaped photonic crystal fiber biosensor based on silver-graphene,” Optik 168, 467–474 (2018).
[Crossref]

Optoelectron. Lett. (1)

P.-B. Bing, Z.-Y. Li, J.-Q. Yao, Y. Lu, Z.-G. Di, and X. Yan, “Theoretical and experimental researches on a PCF based SPR sensor,” Optoelectron. Lett. 8(4), 245–248 (2012).
[Crossref]

Plasmonics (3)

X. Yang, Y. Lu, B. Liu, and J. Yao, “Analysis of Graphene-Based Photonic Crystal Fiber Sensor Using Birefringence and Surface Plasmon Resonance,” Plasmonics 12(2), 489–496 (2017).
[Crossref]

T. Huang, “Highly sensitive spr sensor based on d-shaped photonic crystal fiber coated with indium tin oxide at near infrared wavelength,” Plasmonics 12(3), 583–588 (2017).
[Crossref]

G. An, G. A. Shuguang, L. X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Sens. Actuators, B (1)

M. Piliarik, J. Homola, Z. Manıkova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators, B 90(1-3), 236–242 (2003).
[Crossref]

Sensing and Bio-Sensing Research (1)

S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis,” Sensing and Bio-Sensing Research 18, 7–12 (2018).
[Crossref]

Sensors (1)

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors 18(2), 648 (2018).
[Crossref]

Z. Naturforsch. A. Phys. Sci. (1)

E. Kretschmann and Z. H. Raether, “Radiative decay of non radiative surface plasmons excited by Light,” Z. Naturforsch. A. Phys. Sci. 23(12), 2135–2136 (1968).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. (a) Schematic of the typical experimental set up of a sensing system using the proposed sensor and (b) cross-sectional view of the proposed birefringent PCF-SPR sensor with tg = 45 nm, Λ = 2 µm, dc = 1.8 µm, d = 1 µm, and d1 = 0.5 µm.
Fig. 2.
Fig. 2. Optical field distributions of the (a) y-polarized core mode, (b) x-polarized core mode, and (c) SPP mode for λ = 0.73 µm, na = 1.36, tg = 45 nm, Λ = 2 µm, dc = 1.8 µm, d = 1 µm and d1 = 0.5 µm. The color bars show the normalized electric field intensity.
Fig. 3.
Fig. 3. (a) Wavelength dependent birefringence and effective RI for both polarized modes and (b) birefringence with omitting gold layer with na=1.36, tg=45 nm, Λ=2 µm, dc=1.8 µm, d = 1 µm, and d1=0.5 µm. Inset figure shows fundamental field distribution without gold coating.
Fig. 4.
Fig. 4. Birefringence curves of the core-guided mode: (a) analyte RI variation from 1.33 to 1.38, (b) analyte RI variation from 1.39 to 1.42 and (c) normalized resonance intensity for varying analyte RI from 1.33 to 1.37, and (d) normalized resonance intensity for varying analyte RI from 1.38 to 1.42 with tg = 45 nm, Λ = 2 µm, dc = 1.8 µm, d = 1 µm, and d1 = 0.5 µm.
Fig. 5.
Fig. 5. Demonstration of the coupling strength for analyte RI of (a) 1.33, (b) 1.34, and (c) 1.35.
Fig. 6.
Fig. 6. (a) Birefringence curve with varying gold layer thickness tg from 45 to 49 nm for analyte RI of 1.36, and (b) normalized resonance intensity for varying gold layer thickness with na= 1.36, Λ = 2 µm, dc = 1.8 µm, d = 1 µm, and d1 = 0.5 µm
Fig. 7.
Fig. 7. (a) Birefringence curve with varying the distances between central air hole and edge air-holes (Λ) for analyte RI of 1.36 and (b) resonance intensity for varying Λ value with na = 1.36, tg = 45 nm, dc = 1.8 µm, d = 1 µm, and d1 = 0.5 µm.
Fig. 8.
Fig. 8. (a) Birefringence curve with varying the center air-hole diameter (dc) for analyte RI of 1.36, and (b) resonance intensity for varying dc with na = 1.36, tg = 45 nm, Λ = 2 µm, d = 1 µm, and d1 = 0.5 µm.
Fig. 9.
Fig. 9. (a) Birefringence curve with varying the larger edge air-holes diameter d, (b) effect on the resonance intensity for the variation of d, (c) birefringence curve with varying the smaller edge air-holes diameter d1, and (d) effect on the resonance intensity for the variation of d1.
Fig. 10.
Fig. 10. Effect of changing asymmetry on the performance of the sensor for tg = 45 nm and na = 1.36.
Fig. 11.
Fig. 11. Polynomial fitting curve considering resonance wavelength of the fundamental mode for analyte RI from 1.33 to 1.42.
Fig. 12.
Fig. 12. The stacked preform view of the proposed PCF. Missing air-holes are filled by solid rods, smaller air-holes contain thicker wall capillaries, and larger air-holes contain thin wall capillaries.

Tables (2)

Tables Icon

Table 1. Performance analysis with varying the analyte RI from 1.33 to 1.42.

Tables Icon

Table 2. Performance comparison among the existing PCF-SPR sensor with the proposed sensor

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n2(λ)=1+B1λ2λ2C1+B2λ2λ2C2+B3λ2λ2C3
εAu=εωD2ω(ω+jγD)ΔεΩL2(ω2ΩL2)+jΓLω
B=|Re(neffx)Re(neffy)|
Sλ(nm/RIU)=Δλpeak/Δna
R(RIU)=Δna× Δλmin/ Δλpeak
dp=1kβ=λ2πβ

Metrics