Abstract

The design and fabrication of a ZnSe-based linear polarizer operating in the 8–12 μm infrared region with multilayer nanogratings is demonstrated. The multilayer structure is formed by a low- and a high-refractive index thin layer that are evaporated successively on a ZnSe substrate, followed by a dielectric nanograting that is etched into the high-refractive index thin layer, and then a double-layer metallic nanograting that sits on the dielectric nanograting. Polarization characteristics of the proposed polarizer on structural parameters are investigated and an optimized multilayer structure is obtained. Experimental fabrication of the multilayer nanograting structure using UV lithography and thin-film deposition is conducted in a way in which no ion etching process is needed for the formation of metallic nanogratings. An extinction ratio (ER) of 35 dB and TM-transmission (TMT) of averagely higher than 80% are obtained experimentally in the whole 8–12 μm waveband with 250-nm-period multilayer nanogratings. The ZnSe-based multilayer structure shows the possibility of achieving large-area and high-performance polarization in the 8–12 μm infrared region with relatively easy fabrication.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large-area flexible infrared nanowire grid polarizer fabricated using nanoimprint lithography

Weidong Kang, Jinkui Chu, Xiangwei Zeng, and Yuanyi Fan
Appl. Opt. 57(18) 5230-5234 (2018)

Polarized GaN-based LED with an integrated multi-layer subwavelength structure

Guiju Zhang, Chinhua Wang, Bing Cao, Zengli Huang, Jianfeng Wang, Baoshun Zhang, and Ke Xu
Opt. Express 18(7) 7019-7030 (2010)

Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions

Z.Y. Yang and Y.F. Lu
Opt. Express 15(15) 9510-9519 (2007)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Kartazayeva, X. H. Ni, and R. R. Alfano, “Backscattering target detection in a turbid medium by use of circularly and linearly polarized light,” Opt. Lett. 30(10), 1168–1170 (2005).
    [Crossref]
  2. Z. G. Zhang, F. L. Dong, K. M. Qian, Q. C. Zhang, W. G. Chu, Y. T. Zhang, X. Ma, and X. P. Wu, “Real-time phase measurement of optical vortices based on pixelated micropolarizer array,” Opt. Express 23(16), 20521–20528 (2015).
    [Crossref]
  3. X. J. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
    [Crossref]
  4. J. B. Young, E. W. Peterson, and H. A. Graham, “Wire grid infrared polarizer,” J. Opt. Soc. Am. 54, 571 (1964).
  5. M. Kulkarni and V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
    [Crossref]
  6. L. H. Chen, M. Wang, B. Cao, S. M. Zhou, Y. Lin, J. P. Hu, C. H. Wang, J. F. Wang, Q. Sun, and K. Xu, “Highly linearly polarized white light emission from InGaN light-emitting diode with nanograting-integrated fluorescent ceramics,” Appl. Phys. Express 10(1), 012101 (2017).
    [Crossref]
  7. X. W. Zeng, J. K. Chu, W. D. Kang, and R. Zhang, “Infrared micropolarizer array fabricated using a reversal nanoimprint,” Appl. Opt. 57(7), 1530–1533 (2018).
    [Crossref]
  8. Z. Wu, P. E. Powers, A. M. Sarangan, and Q. W. Zhan, “Optical characterization of wiregrid micropolarizers designed for infrared imaging polarimetry,” Opt. Lett. 33(15), 1653–1655 (2008).
    [Crossref]
  9. Z. G. Zhang, F. L. Dong, T. Cheng, K. Qiu, Q. C. Zhang, W. G. Chu, and X. P. Wu, “Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry,” Rev. Sci. Instrum. 85(10), 105002 (2014).
    [Crossref]
  10. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
    [Crossref]
  11. G. Collier, T. Palasz, A. Wojna, B. Glowacz, M. Suchanek, Z. Olejniczak, and T. Dohnalik, “A high-field He-3 metastability exchange optical pumping polarizer operating in a 1.5 T medical scanner for lung magnetic resonance imaging,” J. Appl. Phys. 113(20), 204905 (2013).
    [Crossref]
  12. S. Pan, L. Tan, and H. S. Kwok, “Broadband reflective polarizers based on form birefringence for ultra-thin liquid crystal displays,” Opt. Express 25(15), 17499–17510 (2017).
    [Crossref]
  13. S. Moon, C. K. Lee, D. Lee, C. Jang, and B. Lee, “Layered display with accommodation cue using scattering polarizers,” IEEE J. Sel. Top. Signal Process. 11(7), 1223–1231 (2017).
    [Crossref]
  14. L. Zhang, J. H. Teng, S. J. Chua, and E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
    [Crossref]
  15. M. Ma, D. S. Meyaard, Q. F. Shan, J. Cho, E. F. Schubert, G. B. Kim, M. H. Kim, and C. Sone, “Polarized light emission from GaInN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers,” Appl. Phys. Lett. 101(6), 061103 (2012).
    [Crossref]
  16. T. Weber, S. Kroker, T. Kasebier, E. B. Kley, and A. Tunnermann, “Silicon wire grid polarizer for ultraviolet applications,” Appl. Opt. 53(34), 8140–8144 (2014).
    [Crossref]
  17. I. Yamada, K. Fukumi, J. Nishii, and M. Saito, “Infrared wire-grid polarizer with Y2O3 ceramic substrate,” Opt. Lett. 35(18), 3111–3113 (2010).
    [Crossref]
  18. J. X. Wang, Y. Zhao, I. Agha, and A. M. Sarangan, “SU-8 nanoimprint fabrication of wire-grid polarizers using deep-UV interference lithography,” Opt. Lett. 40(19), 4396–4399 (2015).
    [Crossref]
  19. W. D. Kang, J. K. Chu, X. W. Zeng, and Y. Y. Fan, “Large-area flexible infrared nanowire grid polarizer fabricated using nanoimprint lithography,” Appl. Opt. 57(18), 5230–5234 (2018).
    [Crossref]
  20. S. Ogawa and M. Kimata, “Wavelength- or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials,” Materials 10(5), 493 (2017).
    [Crossref]
  21. T. T. Wang, Z. L. Li, B. H. Tang, W. Q. Sun, and Y. S. Zhao, “Study on thermal infrared polarization characteristics of fresh snow,” Spectrosc. Spectral Anal. 35, 1848–1853 (2015).
    [Crossref]
  22. J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
    [Crossref]
  23. K. Asano, S. Yokoyama, A. Kemmochi, and T. Yatagai, “Fabrication and characterization of a deep ultraviolet wire grid polarizer with a chromium-oxide subwavelength grating,” Appl. Opt. 53(13), 2942–2948 (2014).
    [Crossref]
  24. H. Ryu, S. J. Yoon, and D. Kim, “Influence of surface roughness on the polarimetric characteristics of a wire-grid grating polarizer,” Appl. Opt. 47(30), 5715–5721 (2008).
    [Crossref]
  25. L. B. Zhou and W. Liu, “Broadband polarizing beam splitter with an embedded metal-wire nanograting,” Opt. Lett. 30(12), 1434–1436 (2005).
    [Crossref]
  26. J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
    [Crossref]
  27. H. Tamada, T. Doumuki, T. Yamaguchi, and S. Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-mu m-wavelength band,” Opt. Lett. 22(6), 419–421 (1997).
    [Crossref]
  28. M. Wang, F. Y. Xu, Y. Lin, B. Cao, L. H. Chen, C. H. Wang, J. F. Wang, and K. Xu, “Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode,” Nanoscale 9(26), 9104–9111 (2017).
    [Crossref]
  29. M. Dai, W. W. Wan, X. Y. Zhu, B. S. Song, X. P. Liu, M. H. Lu, B. Cui, and Y. F. Chen, “Broadband and wide angle infrared wire-grid polarizer,” Opt. Express 23(12), 15390–15397 (2015).
    [Crossref]

2018 (2)

2017 (5)

S. Ogawa and M. Kimata, “Wavelength- or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials,” Materials 10(5), 493 (2017).
[Crossref]

M. Wang, F. Y. Xu, Y. Lin, B. Cao, L. H. Chen, C. H. Wang, J. F. Wang, and K. Xu, “Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode,” Nanoscale 9(26), 9104–9111 (2017).
[Crossref]

L. H. Chen, M. Wang, B. Cao, S. M. Zhou, Y. Lin, J. P. Hu, C. H. Wang, J. F. Wang, Q. Sun, and K. Xu, “Highly linearly polarized white light emission from InGaN light-emitting diode with nanograting-integrated fluorescent ceramics,” Appl. Phys. Express 10(1), 012101 (2017).
[Crossref]

S. Pan, L. Tan, and H. S. Kwok, “Broadband reflective polarizers based on form birefringence for ultra-thin liquid crystal displays,” Opt. Express 25(15), 17499–17510 (2017).
[Crossref]

S. Moon, C. K. Lee, D. Lee, C. Jang, and B. Lee, “Layered display with accommodation cue using scattering polarizers,” IEEE J. Sel. Top. Signal Process. 11(7), 1223–1231 (2017).
[Crossref]

2015 (4)

2014 (3)

2013 (1)

G. Collier, T. Palasz, A. Wojna, B. Glowacz, M. Suchanek, Z. Olejniczak, and T. Dohnalik, “A high-field He-3 metastability exchange optical pumping polarizer operating in a 1.5 T medical scanner for lung magnetic resonance imaging,” J. Appl. Phys. 113(20), 204905 (2013).
[Crossref]

2012 (2)

M. Ma, D. S. Meyaard, Q. F. Shan, J. Cho, E. F. Schubert, G. B. Kim, M. H. Kim, and C. Sone, “Polarized light emission from GaInN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers,” Appl. Phys. Lett. 101(6), 061103 (2012).
[Crossref]

M. Kulkarni and V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20(21), 22997–23012 (2012).
[Crossref]

2010 (2)

2009 (1)

L. Zhang, J. H. Teng, S. J. Chua, and E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[Crossref]

2008 (2)

2007 (1)

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

2006 (1)

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

2005 (2)

1999 (1)

1997 (1)

1964 (1)

J. B. Young, E. W. Peterson, and H. A. Graham, “Wire grid infrared polarizer,” J. Opt. Soc. Am. 54, 571 (1964).

Agha, I.

Alfano, R. R.

Asano, K.

Bermak, A.

Boussaid, F.

Cao, B.

L. H. Chen, M. Wang, B. Cao, S. M. Zhou, Y. Lin, J. P. Hu, C. H. Wang, J. F. Wang, Q. Sun, and K. Xu, “Highly linearly polarized white light emission from InGaN light-emitting diode with nanograting-integrated fluorescent ceramics,” Appl. Phys. Express 10(1), 012101 (2017).
[Crossref]

M. Wang, F. Y. Xu, Y. Lin, B. Cao, L. H. Chen, C. H. Wang, J. F. Wang, and K. Xu, “Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode,” Nanoscale 9(26), 9104–9111 (2017).
[Crossref]

Chen, L.

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Chen, L. H.

M. Wang, F. Y. Xu, Y. Lin, B. Cao, L. H. Chen, C. H. Wang, J. F. Wang, and K. Xu, “Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode,” Nanoscale 9(26), 9104–9111 (2017).
[Crossref]

L. H. Chen, M. Wang, B. Cao, S. M. Zhou, Y. Lin, J. P. Hu, C. H. Wang, J. F. Wang, Q. Sun, and K. Xu, “Highly linearly polarized white light emission from InGaN light-emitting diode with nanograting-integrated fluorescent ceramics,” Appl. Phys. Express 10(1), 012101 (2017).
[Crossref]

Chen, Y. F.

Cheng, T.

Z. G. Zhang, F. L. Dong, T. Cheng, K. Qiu, Q. C. Zhang, W. G. Chu, and X. P. Wu, “Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry,” Rev. Sci. Instrum. 85(10), 105002 (2014).
[Crossref]

Chigrinov, V. G.

Cho, J.

M. Ma, D. S. Meyaard, Q. F. Shan, J. Cho, E. F. Schubert, G. B. Kim, M. H. Kim, and C. Sone, “Polarized light emission from GaInN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers,” Appl. Phys. Lett. 101(6), 061103 (2012).
[Crossref]

Chu, J. K.

Chu, W. G.

Z. G. Zhang, F. L. Dong, K. M. Qian, Q. C. Zhang, W. G. Chu, Y. T. Zhang, X. Ma, and X. P. Wu, “Real-time phase measurement of optical vortices based on pixelated micropolarizer array,” Opt. Express 23(16), 20521–20528 (2015).
[Crossref]

Z. G. Zhang, F. L. Dong, T. Cheng, K. Qiu, Q. C. Zhang, W. G. Chu, and X. P. Wu, “Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry,” Rev. Sci. Instrum. 85(10), 105002 (2014).
[Crossref]

Chua, S. J.

L. Zhang, J. H. Teng, S. J. Chua, and E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[Crossref]

Collier, G.

G. Collier, T. Palasz, A. Wojna, B. Glowacz, M. Suchanek, Z. Olejniczak, and T. Dohnalik, “A high-field He-3 metastability exchange optical pumping polarizer operating in a 1.5 T medical scanner for lung magnetic resonance imaging,” J. Appl. Phys. 113(20), 204905 (2013).
[Crossref]

Cui, B.

Dai, M.

Deguzman, P. C.

Deng, X. G.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Dohnalik, T.

G. Collier, T. Palasz, A. Wojna, B. Glowacz, M. Suchanek, Z. Olejniczak, and T. Dohnalik, “A high-field He-3 metastability exchange optical pumping polarizer operating in a 1.5 T medical scanner for lung magnetic resonance imaging,” J. Appl. Phys. 113(20), 204905 (2013).
[Crossref]

Dong, F. L.

Z. G. Zhang, F. L. Dong, K. M. Qian, Q. C. Zhang, W. G. Chu, Y. T. Zhang, X. Ma, and X. P. Wu, “Real-time phase measurement of optical vortices based on pixelated micropolarizer array,” Opt. Express 23(16), 20521–20528 (2015).
[Crossref]

Z. G. Zhang, F. L. Dong, T. Cheng, K. Qiu, Q. C. Zhang, W. G. Chu, and X. P. Wu, “Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry,” Rev. Sci. Instrum. 85(10), 105002 (2014).
[Crossref]

Doumuki, T.

Fan, Y. Y.

Fitzgerald, E. A.

L. Zhang, J. H. Teng, S. J. Chua, and E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[Crossref]

Fukumi, K.

Glowacz, B.

G. Collier, T. Palasz, A. Wojna, B. Glowacz, M. Suchanek, Z. Olejniczak, and T. Dohnalik, “A high-field He-3 metastability exchange optical pumping polarizer operating in a 1.5 T medical scanner for lung magnetic resonance imaging,” J. Appl. Phys. 113(20), 204905 (2013).
[Crossref]

Graham, H. A.

J. B. Young, E. W. Peterson, and H. A. Graham, “Wire grid infrared polarizer,” J. Opt. Soc. Am. 54, 571 (1964).

Gruev, V.

Hu, J. P.

L. H. Chen, M. Wang, B. Cao, S. M. Zhou, Y. Lin, J. P. Hu, C. H. Wang, J. F. Wang, Q. Sun, and K. Xu, “Highly linearly polarized white light emission from InGaN light-emitting diode with nanograting-integrated fluorescent ceramics,” Appl. Phys. Express 10(1), 012101 (2017).
[Crossref]

Jang, C.

S. Moon, C. K. Lee, D. Lee, C. Jang, and B. Lee, “Layered display with accommodation cue using scattering polarizers,” IEEE J. Sel. Top. Signal Process. 11(7), 1223–1231 (2017).
[Crossref]

Jones, M. W.

Kang, W. D.

Kartazayeva, S. A.

Kasebier, T.

Kemmochi, A.

Kim, D.

Kim, G. B.

M. Ma, D. S. Meyaard, Q. F. Shan, J. Cho, E. F. Schubert, G. B. Kim, M. H. Kim, and C. Sone, “Polarized light emission from GaInN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers,” Appl. Phys. Lett. 101(6), 061103 (2012).
[Crossref]

Kim, M. H.

M. Ma, D. S. Meyaard, Q. F. Shan, J. Cho, E. F. Schubert, G. B. Kim, M. H. Kim, and C. Sone, “Polarized light emission from GaInN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers,” Appl. Phys. Lett. 101(6), 061103 (2012).
[Crossref]

Kimata, M.

S. Ogawa and M. Kimata, “Wavelength- or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials,” Materials 10(5), 493 (2017).
[Crossref]

Kley, E. B.

Kroker, S.

Kulkarni, M.

Kwok, H. S.

Lee, B.

S. Moon, C. K. Lee, D. Lee, C. Jang, and B. Lee, “Layered display with accommodation cue using scattering polarizers,” IEEE J. Sel. Top. Signal Process. 11(7), 1223–1231 (2017).
[Crossref]

Lee, C. K.

S. Moon, C. K. Lee, D. Lee, C. Jang, and B. Lee, “Layered display with accommodation cue using scattering polarizers,” IEEE J. Sel. Top. Signal Process. 11(7), 1223–1231 (2017).
[Crossref]

Lee, D.

S. Moon, C. K. Lee, D. Lee, C. Jang, and B. Lee, “Layered display with accommodation cue using scattering polarizers,” IEEE J. Sel. Top. Signal Process. 11(7), 1223–1231 (2017).
[Crossref]

Li, Z. L.

T. T. Wang, Z. L. Li, B. H. Tang, W. Q. Sun, and Y. S. Zhao, “Study on thermal infrared polarization characteristics of fresh snow,” Spectrosc. Spectral Anal. 35, 1848–1853 (2015).
[Crossref]

Lin, Y.

M. Wang, F. Y. Xu, Y. Lin, B. Cao, L. H. Chen, C. H. Wang, J. F. Wang, and K. Xu, “Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode,” Nanoscale 9(26), 9104–9111 (2017).
[Crossref]

L. H. Chen, M. Wang, B. Cao, S. M. Zhou, Y. Lin, J. P. Hu, C. H. Wang, J. F. Wang, Q. Sun, and K. Xu, “Highly linearly polarized white light emission from InGaN light-emitting diode with nanograting-integrated fluorescent ceramics,” Appl. Phys. Express 10(1), 012101 (2017).
[Crossref]

Liu, F.

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Liu, W.

Liu, X. M.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Liu, X. P.

Lu, M. H.

Ma, M.

M. Ma, D. S. Meyaard, Q. F. Shan, J. Cho, E. F. Schubert, G. B. Kim, M. H. Kim, and C. Sone, “Polarized light emission from GaInN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers,” Appl. Phys. Lett. 101(6), 061103 (2012).
[Crossref]

Ma, X.

Matsumoto, S.

Meier, J. T.

Meyaard, D. S.

M. Ma, D. S. Meyaard, Q. F. Shan, J. Cho, E. F. Schubert, G. B. Kim, M. H. Kim, and C. Sone, “Polarized light emission from GaInN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers,” Appl. Phys. Lett. 101(6), 061103 (2012).
[Crossref]

Moon, S.

S. Moon, C. K. Lee, D. Lee, C. Jang, and B. Lee, “Layered display with accommodation cue using scattering polarizers,” IEEE J. Sel. Top. Signal Process. 11(7), 1223–1231 (2017).
[Crossref]

Ni, X. H.

Nishii, J.

Nordin, G. P.

Ogawa, S.

S. Ogawa and M. Kimata, “Wavelength- or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials,” Materials 10(5), 493 (2017).
[Crossref]

Olejniczak, Z.

G. Collier, T. Palasz, A. Wojna, B. Glowacz, M. Suchanek, Z. Olejniczak, and T. Dohnalik, “A high-field He-3 metastability exchange optical pumping polarizer operating in a 1.5 T medical scanner for lung magnetic resonance imaging,” J. Appl. Phys. 113(20), 204905 (2013).
[Crossref]

Palasz, T.

G. Collier, T. Palasz, A. Wojna, B. Glowacz, M. Suchanek, Z. Olejniczak, and T. Dohnalik, “A high-field He-3 metastability exchange optical pumping polarizer operating in a 1.5 T medical scanner for lung magnetic resonance imaging,” J. Appl. Phys. 113(20), 204905 (2013).
[Crossref]

Pan, S.

Peterson, E. W.

J. B. Young, E. W. Peterson, and H. A. Graham, “Wire grid infrared polarizer,” J. Opt. Soc. Am. 54, 571 (1964).

Powers, P. E.

Qian, K. M.

Qiu, K.

Z. G. Zhang, F. L. Dong, T. Cheng, K. Qiu, Q. C. Zhang, W. G. Chu, and X. P. Wu, “Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry,” Rev. Sci. Instrum. 85(10), 105002 (2014).
[Crossref]

Ryu, H.

Saito, M.

Sarangan, A. M.

Schubert, E. F.

M. Ma, D. S. Meyaard, Q. F. Shan, J. Cho, E. F. Schubert, G. B. Kim, M. H. Kim, and C. Sone, “Polarized light emission from GaInN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers,” Appl. Phys. Lett. 101(6), 061103 (2012).
[Crossref]

Sciortino, P.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Shan, Q. F.

M. Ma, D. S. Meyaard, Q. F. Shan, J. Cho, E. F. Schubert, G. B. Kim, M. H. Kim, and C. Sone, “Polarized light emission from GaInN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers,” Appl. Phys. Lett. 101(6), 061103 (2012).
[Crossref]

Sone, C.

M. Ma, D. S. Meyaard, Q. F. Shan, J. Cho, E. F. Schubert, G. B. Kim, M. H. Kim, and C. Sone, “Polarized light emission from GaInN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers,” Appl. Phys. Lett. 101(6), 061103 (2012).
[Crossref]

Song, B. S.

Suchanek, M.

G. Collier, T. Palasz, A. Wojna, B. Glowacz, M. Suchanek, Z. Olejniczak, and T. Dohnalik, “A high-field He-3 metastability exchange optical pumping polarizer operating in a 1.5 T medical scanner for lung magnetic resonance imaging,” J. Appl. Phys. 113(20), 204905 (2013).
[Crossref]

Sun, Q.

L. H. Chen, M. Wang, B. Cao, S. M. Zhou, Y. Lin, J. P. Hu, C. H. Wang, J. F. Wang, Q. Sun, and K. Xu, “Highly linearly polarized white light emission from InGaN light-emitting diode with nanograting-integrated fluorescent ceramics,” Appl. Phys. Express 10(1), 012101 (2017).
[Crossref]

Sun, W. Q.

T. T. Wang, Z. L. Li, B. H. Tang, W. Q. Sun, and Y. S. Zhao, “Study on thermal infrared polarization characteristics of fresh snow,” Spectrosc. Spectral Anal. 35, 1848–1853 (2015).
[Crossref]

Tamada, H.

Tan, L.

Tang, B. H.

T. T. Wang, Z. L. Li, B. H. Tang, W. Q. Sun, and Y. S. Zhao, “Study on thermal infrared polarization characteristics of fresh snow,” Spectrosc. Spectral Anal. 35, 1848–1853 (2015).
[Crossref]

Teng, J. H.

L. Zhang, J. H. Teng, S. J. Chua, and E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[Crossref]

Tunnermann, A.

Walters, F.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Wan, W. W.

Wang, C. H.

M. Wang, F. Y. Xu, Y. Lin, B. Cao, L. H. Chen, C. H. Wang, J. F. Wang, and K. Xu, “Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode,” Nanoscale 9(26), 9104–9111 (2017).
[Crossref]

L. H. Chen, M. Wang, B. Cao, S. M. Zhou, Y. Lin, J. P. Hu, C. H. Wang, J. F. Wang, Q. Sun, and K. Xu, “Highly linearly polarized white light emission from InGaN light-emitting diode with nanograting-integrated fluorescent ceramics,” Appl. Phys. Express 10(1), 012101 (2017).
[Crossref]

Wang, J. F.

L. H. Chen, M. Wang, B. Cao, S. M. Zhou, Y. Lin, J. P. Hu, C. H. Wang, J. F. Wang, Q. Sun, and K. Xu, “Highly linearly polarized white light emission from InGaN light-emitting diode with nanograting-integrated fluorescent ceramics,” Appl. Phys. Express 10(1), 012101 (2017).
[Crossref]

M. Wang, F. Y. Xu, Y. Lin, B. Cao, L. H. Chen, C. H. Wang, J. F. Wang, and K. Xu, “Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode,” Nanoscale 9(26), 9104–9111 (2017).
[Crossref]

Wang, J. J.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Wang, J. X.

Wang, M.

M. Wang, F. Y. Xu, Y. Lin, B. Cao, L. H. Chen, C. H. Wang, J. F. Wang, and K. Xu, “Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode,” Nanoscale 9(26), 9104–9111 (2017).
[Crossref]

L. H. Chen, M. Wang, B. Cao, S. M. Zhou, Y. Lin, J. P. Hu, C. H. Wang, J. F. Wang, Q. Sun, and K. Xu, “Highly linearly polarized white light emission from InGaN light-emitting diode with nanograting-integrated fluorescent ceramics,” Appl. Phys. Express 10(1), 012101 (2017).
[Crossref]

Wang, T. T.

T. T. Wang, Z. L. Li, B. H. Tang, W. Q. Sun, and Y. S. Zhao, “Study on thermal infrared polarization characteristics of fresh snow,” Spectrosc. Spectral Anal. 35, 1848–1853 (2015).
[Crossref]

Weber, T.

Wojna, A.

G. Collier, T. Palasz, A. Wojna, B. Glowacz, M. Suchanek, Z. Olejniczak, and T. Dohnalik, “A high-field He-3 metastability exchange optical pumping polarizer operating in a 1.5 T medical scanner for lung magnetic resonance imaging,” J. Appl. Phys. 113(20), 204905 (2013).
[Crossref]

Wu, X. P.

Z. G. Zhang, F. L. Dong, K. M. Qian, Q. C. Zhang, W. G. Chu, Y. T. Zhang, X. Ma, and X. P. Wu, “Real-time phase measurement of optical vortices based on pixelated micropolarizer array,” Opt. Express 23(16), 20521–20528 (2015).
[Crossref]

Z. G. Zhang, F. L. Dong, T. Cheng, K. Qiu, Q. C. Zhang, W. G. Chu, and X. P. Wu, “Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry,” Rev. Sci. Instrum. 85(10), 105002 (2014).
[Crossref]

Wu, Z.

Xu, F. Y.

M. Wang, F. Y. Xu, Y. Lin, B. Cao, L. H. Chen, C. H. Wang, J. F. Wang, and K. Xu, “Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode,” Nanoscale 9(26), 9104–9111 (2017).
[Crossref]

Xu, K.

M. Wang, F. Y. Xu, Y. Lin, B. Cao, L. H. Chen, C. H. Wang, J. F. Wang, and K. Xu, “Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode,” Nanoscale 9(26), 9104–9111 (2017).
[Crossref]

L. H. Chen, M. Wang, B. Cao, S. M. Zhou, Y. Lin, J. P. Hu, C. H. Wang, J. F. Wang, Q. Sun, and K. Xu, “Highly linearly polarized white light emission from InGaN light-emitting diode with nanograting-integrated fluorescent ceramics,” Appl. Phys. Express 10(1), 012101 (2017).
[Crossref]

Yamada, I.

Yamaguchi, T.

Yatagai, T.

Yokoyama, S.

Yoon, S. J.

Young, J. B.

J. B. Young, E. W. Peterson, and H. A. Graham, “Wire grid infrared polarizer,” J. Opt. Soc. Am. 54, 571 (1964).

Zeng, X. W.

Zhan, Q. W.

Zhang, L.

L. Zhang, J. H. Teng, S. J. Chua, and E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[Crossref]

Zhang, Q. C.

Z. G. Zhang, F. L. Dong, K. M. Qian, Q. C. Zhang, W. G. Chu, Y. T. Zhang, X. Ma, and X. P. Wu, “Real-time phase measurement of optical vortices based on pixelated micropolarizer array,” Opt. Express 23(16), 20521–20528 (2015).
[Crossref]

Z. G. Zhang, F. L. Dong, T. Cheng, K. Qiu, Q. C. Zhang, W. G. Chu, and X. P. Wu, “Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry,” Rev. Sci. Instrum. 85(10), 105002 (2014).
[Crossref]

Zhang, R.

Zhang, Y. T.

Zhang, Z. G.

Z. G. Zhang, F. L. Dong, K. M. Qian, Q. C. Zhang, W. G. Chu, Y. T. Zhang, X. Ma, and X. P. Wu, “Real-time phase measurement of optical vortices based on pixelated micropolarizer array,” Opt. Express 23(16), 20521–20528 (2015).
[Crossref]

Z. G. Zhang, F. L. Dong, T. Cheng, K. Qiu, Q. C. Zhang, W. G. Chu, and X. P. Wu, “Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry,” Rev. Sci. Instrum. 85(10), 105002 (2014).
[Crossref]

Zhao, X. J.

Zhao, Y.

Zhao, Y. S.

T. T. Wang, Z. L. Li, B. H. Tang, W. Q. Sun, and Y. S. Zhao, “Study on thermal infrared polarization characteristics of fresh snow,” Spectrosc. Spectral Anal. 35, 1848–1853 (2015).
[Crossref]

Zhou, L. B.

Zhou, S. M.

L. H. Chen, M. Wang, B. Cao, S. M. Zhou, Y. Lin, J. P. Hu, C. H. Wang, J. F. Wang, Q. Sun, and K. Xu, “Highly linearly polarized white light emission from InGaN light-emitting diode with nanograting-integrated fluorescent ceramics,” Appl. Phys. Express 10(1), 012101 (2017).
[Crossref]

Zhu, X. Y.

Appl. Opt. (5)

Appl. Phys. Express (1)

L. H. Chen, M. Wang, B. Cao, S. M. Zhou, Y. Lin, J. P. Hu, C. H. Wang, J. F. Wang, Q. Sun, and K. Xu, “Highly linearly polarized white light emission from InGaN light-emitting diode with nanograting-integrated fluorescent ceramics,” Appl. Phys. Express 10(1), 012101 (2017).
[Crossref]

Appl. Phys. Lett. (4)

L. Zhang, J. H. Teng, S. J. Chua, and E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[Crossref]

M. Ma, D. S. Meyaard, Q. F. Shan, J. Cho, E. F. Schubert, G. B. Kim, M. H. Kim, and C. Sone, “Polarized light emission from GaInN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers,” Appl. Phys. Lett. 101(6), 061103 (2012).
[Crossref]

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

IEEE J. Sel. Top. Signal Process. (1)

S. Moon, C. K. Lee, D. Lee, C. Jang, and B. Lee, “Layered display with accommodation cue using scattering polarizers,” IEEE J. Sel. Top. Signal Process. 11(7), 1223–1231 (2017).
[Crossref]

J. Appl. Phys. (1)

G. Collier, T. Palasz, A. Wojna, B. Glowacz, M. Suchanek, Z. Olejniczak, and T. Dohnalik, “A high-field He-3 metastability exchange optical pumping polarizer operating in a 1.5 T medical scanner for lung magnetic resonance imaging,” J. Appl. Phys. 113(20), 204905 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

J. B. Young, E. W. Peterson, and H. A. Graham, “Wire grid infrared polarizer,” J. Opt. Soc. Am. 54, 571 (1964).

J. Opt. Soc. Am. A (1)

Materials (1)

S. Ogawa and M. Kimata, “Wavelength- or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials,” Materials 10(5), 493 (2017).
[Crossref]

Nanoscale (1)

M. Wang, F. Y. Xu, Y. Lin, B. Cao, L. H. Chen, C. H. Wang, J. F. Wang, and K. Xu, “Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode,” Nanoscale 9(26), 9104–9111 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Rev. Sci. Instrum. (1)

Z. G. Zhang, F. L. Dong, T. Cheng, K. Qiu, Q. C. Zhang, W. G. Chu, and X. P. Wu, “Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry,” Rev. Sci. Instrum. 85(10), 105002 (2014).
[Crossref]

Spectrosc. Spectral Anal. (1)

T. T. Wang, Z. L. Li, B. H. Tang, W. Q. Sun, and Y. S. Zhao, “Study on thermal infrared polarization characteristics of fresh snow,” Spectrosc. Spectral Anal. 35, 1848–1853 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Diagram of a ZnSe-based linear polarizer with multilayer nanogratings. P, period; W, width of grid; H1, thickness of BaF2 layer; H2, thickness of ZnS layer; H3, thickness of dielectric grating; and H4, thickness of metal layer.
Fig. 2.
Fig. 2. (a) TMT and (b) ER with different thicknesses (H1) of BaF2 layer.
Fig. 3.
Fig. 3. (a) TMT and (b) ER with different thicknesses (H2) of ZnS layer.
Fig. 4.
Fig. 4. (a) TMT and (b) ER with different heights (H3) of dielectric grating.
Fig. 5.
Fig. 5. (a) TMT and (b) ER with different thicknesses (H4) of Al layer.
Fig. 6.
Fig. 6. (a) TMT and (b) ER with different DCs.
Fig. 7.
Fig. 7. Incident angle dependence of performance of the optimized device. Simulation parameters: P = 250 nm, H1 = 400 nm, H2 = 250 nm, H3 = 100 nm, H4 = 60 nm, DC = 0.5
Fig. 8.
Fig. 8. Fabrication process of the proposed multilayer polarizing structure.
Fig. 9.
Fig. 9. SEMs of the fabricated multilayer nanogratings structure. (a) and (b): Surface and cross section of a patterned photoresist on top of ZnS; (c) and (d): surface and cross section of ZnS dielectric grating after ICP; (e) and (f): surface and cross section of the multilayer nanogratings after deposition of Al thin film.
Fig. 10.
Fig. 10. (a) Schematic of measurement setup of polarization performance of the fabricated device, (b) experimental results of the measured transmitting intensity spectra of TM-polarized and TE-polarized incident lights, (c) measured TMT spectrum, and (d) measured ER spectrum.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ER=10log(TM/TE)

Metrics