Abstract

A 785 nm diode-pumped nanosecond passively Q-switched (PQS) 2.3 µm Tm:YLF laser using a ReSe2-based saturable output coupler (SOC) was reported for the first time. The SOC combined the function of a passive Q-switch and output coupler, greatly reducing the additional insertion loss compared with a conventional separate structure. The modulation depth, saturation intensity, and nonsaturable loss for this ReSe2-based SOC were determined to be 1.3%, 1.7 GW/cm2, and 0.2%, respectively. A maximum average output power of 486 mw, a shortest pulse width of 716 ns, and a repetition rate of 5.0 kHz were obtained under the absorbed pump power of 7.21 W. The nanosecond pulses make the diode-pumped compact 2.3 µm thulium solid-state lasers more attractive for practical applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Passively Q-switched 2  μm Tm:YAP laser based on graphene saturable absorber mirror

Jia Hou, Baitao Zhang, Jingliang He, Zhaowei Wang, Fei Lou, Jian Ning, Ruwei Zhao, and Xiancui Su
Appl. Opt. 53(22) 4968-4971 (2014)

VBG-locked continuous-wave and passively Q-switched Tm:Y2O3 ceramic laser at 2.1 μm

Haitao Huang, Hui Wang, and Deyuan Shen
Opt. Mater. Express 7(9) 3147-3154 (2017)

Passive Q-switching of the diode pumped Tm3+:KLu(WO4)2 laser near 2-µm with Cr2+:ZnS saturable absorbers

Martha Segura, Martin Kadankov, Xavier Mateos, Maria Cinta Pujol, Joan Josep Carvajal, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, and Valentin Petrov
Opt. Express 20(4) 3394-3400 (2012)

References

  • View by:
  • |
  • |
  • |

  1. X. Chao, J. B. Jeffries, and R. K. Hanson, “Real-time, in situ, continuous monitoring of CO in a pulverized-coal-fired power plant with a 2.3 µm laser absorption sensor,” Appl. Phys. B: Lasers Opt. 110(3), 359–365 (2013).
    [Crossref]
  2. F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Maze, “Narrow linewidth, tunable Tm/sup 3+/-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1103–1111 (1997).
    [Crossref]
  3. J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, and J. Wagner, “Tunable Laser Diode System for Noninvasive Blood Glucose Measurements,” Appl. Spectrosc. 59(12), 1480–1484 (2005).
    [Crossref]
  4. S. T. Fard, W. Hofmann, P. T. Fard, G. Böhm, M. Ortsiefer, E. Kwok, M.-C. Amann, and L. Chrostowski, “Optical Absorption Glucose Measurements Using 2.3-µm Vertical-Cavity Semiconductor Lasers,” IEEE Photonics Technol. Lett. 20(11), 930–932 (2008).
    [Crossref]
  5. J. Wagner, Ch. Mann, M. Rattunde, and G. Weimann, “Infrared semiconductor lasers for sensing and diagnostics,” Appl. Phys. A: Mater. Sci. Process. 78(4), 505–512 (2004).
    [Crossref]
  6. L. Wang, T. Xing, S. Hu, X. Wu, H. Wu, J. Wang, and H. Jiang, “Mid-infrared ZGP-OPO with a high optical-to-optical conversion efficiency of 75.7%,” Opt. Express 25(4), 3373 (2017).
    [Crossref]
  7. W. S. Pelouch, G. J. Wagner, T. J. Carrig, and W. J. Scharpf, “Mid-Wave ZGP OPOs Pumped by a Cr:ZnSe Laser,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), paper PD1.
  8. U. Demirbas and A. Sennaroglu, “Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm,” Opt. Lett. 31(15), 2293–2295 (2006).
    [Crossref]
  9. I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “Tunable, Single-Frequency, and Multi-Watt Continuous-Wave Cr2+:ZnSe Lasers,” Opt. Express 16(6), 4145–4153 (2008).
    [Crossref]
  10. S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6 µm,” Opt. Express 24(2), 1616–1623 (2016).
    [Crossref]
  11. R. J. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24(18), 21081 (2016).
    [Crossref]
  12. E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
    [Crossref]
  13. S. Civiš, V. Horká, T. Šimeček, E. Hulicius, J. Pangrác, J. Oswald, O. Petříček, Y. Rouillard, C. Alibert, and R. Werner, “GaSb based lasers operating near 2.3 µm for high resolution absorption spectroscopy,” Spectrochim. Acta, Part A 61(13-14), 3066–3069 (2005).
    [Crossref]
  14. L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, and F. Genty, “Vertical cavity surface emitting laser sources for gas detection,” Phys. Status Solidi A 202(4), 631–635 (2005).
    [Crossref]
  15. J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Tm3+:YLF laser continuously tunable between 2.20 and 2.46 microm,” Opt. Lett. 19(12), 883 (1994).
    [Crossref]
  16. I. Yorulmaz and A. Sennaroglu, “Low-Threshold Diode-Pumped 2.3-µm Tm3+:YLF Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–7 (2018).
    [Crossref]
  17. F. Canbaz, I. Yorulmaz, and A. Sennaroglu, “2.3-µm Tm3+:YLF laser passively Q-switched with a Cr2+:ZnSe saturable absorber,” Opt. Lett. 42(9), 1656–1659 (2017).
    [Crossref]
  18. H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
    [Crossref]
  19. L. Du, G. B. Jiang, L. L. Miao, B. Huang, J. Yi, C. J. Zhao, and S. C. Wen, “Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator,” Opt. Mater. Express 8(4), 926 (2018).
    [Crossref]
  20. C. Li, Y. X. Leng, and J. J. Huo, “ReSe2 as a saturable absorber in a Tm-doped yttrium lithium fluoride (Tm:YLF) pulse laser,” Chin. Opt. Lett. 17(1), 011402 (2019).
    [Crossref]
  21. S. Q. Wang, H. T. Huang, X. Liu, H. W. Chen, W. Zhou, S. D. Liu, and D. Y. Shen, “Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers,” Opt. Mater. 88, 630–634 (2019).
    [Crossref]
  22. V. Sudesh and J. A. Piper, “Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 µm,” IEEE J. Quantum Electron. 36(7), 879–884 (2000).
    [Crossref]

2019 (2)

C. Li, Y. X. Leng, and J. J. Huo, “ReSe2 as a saturable absorber in a Tm-doped yttrium lithium fluoride (Tm:YLF) pulse laser,” Chin. Opt. Lett. 17(1), 011402 (2019).
[Crossref]

S. Q. Wang, H. T. Huang, X. Liu, H. W. Chen, W. Zhou, S. D. Liu, and D. Y. Shen, “Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers,” Opt. Mater. 88, 630–634 (2019).
[Crossref]

2018 (2)

I. Yorulmaz and A. Sennaroglu, “Low-Threshold Diode-Pumped 2.3-µm Tm3+:YLF Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–7 (2018).
[Crossref]

L. Du, G. B. Jiang, L. L. Miao, B. Huang, J. Yi, C. J. Zhao, and S. C. Wen, “Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator,” Opt. Mater. Express 8(4), 926 (2018).
[Crossref]

2017 (2)

2016 (2)

2015 (1)

H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

2013 (1)

X. Chao, J. B. Jeffries, and R. K. Hanson, “Real-time, in situ, continuous monitoring of CO in a pulverized-coal-fired power plant with a 2.3 µm laser absorption sensor,” Appl. Phys. B: Lasers Opt. 110(3), 359–365 (2013).
[Crossref]

2008 (2)

S. T. Fard, W. Hofmann, P. T. Fard, G. Böhm, M. Ortsiefer, E. Kwok, M.-C. Amann, and L. Chrostowski, “Optical Absorption Glucose Measurements Using 2.3-µm Vertical-Cavity Semiconductor Lasers,” IEEE Photonics Technol. Lett. 20(11), 930–932 (2008).
[Crossref]

I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “Tunable, Single-Frequency, and Multi-Watt Continuous-Wave Cr2+:ZnSe Lasers,” Opt. Express 16(6), 4145–4153 (2008).
[Crossref]

2006 (2)

U. Demirbas and A. Sennaroglu, “Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm,” Opt. Lett. 31(15), 2293–2295 (2006).
[Crossref]

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

2005 (3)

S. Civiš, V. Horká, T. Šimeček, E. Hulicius, J. Pangrác, J. Oswald, O. Petříček, Y. Rouillard, C. Alibert, and R. Werner, “GaSb based lasers operating near 2.3 µm for high resolution absorption spectroscopy,” Spectrochim. Acta, Part A 61(13-14), 3066–3069 (2005).
[Crossref]

L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, and F. Genty, “Vertical cavity surface emitting laser sources for gas detection,” Phys. Status Solidi A 202(4), 631–635 (2005).
[Crossref]

J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, and J. Wagner, “Tunable Laser Diode System for Noninvasive Blood Glucose Measurements,” Appl. Spectrosc. 59(12), 1480–1484 (2005).
[Crossref]

2004 (1)

J. Wagner, Ch. Mann, M. Rattunde, and G. Weimann, “Infrared semiconductor lasers for sensing and diagnostics,” Appl. Phys. A: Mater. Sci. Process. 78(4), 505–512 (2004).
[Crossref]

2000 (1)

V. Sudesh and J. A. Piper, “Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 µm,” IEEE J. Quantum Electron. 36(7), 879–884 (2000).
[Crossref]

1997 (1)

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Maze, “Narrow linewidth, tunable Tm/sup 3+/-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1103–1111 (1997).
[Crossref]

1994 (1)

Alibert, C.

S. Civiš, V. Horká, T. Šimeček, E. Hulicius, J. Pangrác, J. Oswald, O. Petříček, Y. Rouillard, C. Alibert, and R. Werner, “GaSb based lasers operating near 2.3 µm for high resolution absorption spectroscopy,” Spectrochim. Acta, Part A 61(13-14), 3066–3069 (2005).
[Crossref]

Amann, M.-C.

R. J. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24(18), 21081 (2016).
[Crossref]

S. T. Fard, W. Hofmann, P. T. Fard, G. Böhm, M. Ortsiefer, E. Kwok, M.-C. Amann, and L. Chrostowski, “Optical Absorption Glucose Measurements Using 2.3-µm Vertical-Cavity Semiconductor Lasers,” IEEE Photonics Technol. Lett. 20(11), 930–932 (2008).
[Crossref]

Arnold, M. A.

Baets, R.

Boehm, G.

Böhm, G.

S. T. Fard, W. Hofmann, P. T. Fard, G. Böhm, M. Ortsiefer, E. Kwok, M.-C. Amann, and L. Chrostowski, “Optical Absorption Glucose Measurements Using 2.3-µm Vertical-Cavity Semiconductor Lasers,” IEEE Photonics Technol. Lett. 20(11), 930–932 (2008).
[Crossref]

Canbaz, F.

Carrig, T. J.

W. S. Pelouch, G. J. Wagner, T. J. Carrig, and W. J. Scharpf, “Mid-Wave ZGP OPOs Pumped by a Cr:ZnSe Laser,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), paper PD1.

Cerutti, L.

L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, and F. Genty, “Vertical cavity surface emitting laser sources for gas detection,” Phys. Status Solidi A 202(4), 631–635 (2005).
[Crossref]

Chao, X.

X. Chao, J. B. Jeffries, and R. K. Hanson, “Real-time, in situ, continuous monitoring of CO in a pulverized-coal-fired power plant with a 2.3 µm laser absorption sensor,” Appl. Phys. B: Lasers Opt. 110(3), 359–365 (2013).
[Crossref]

Chen, H. W.

S. Q. Wang, H. T. Huang, X. Liu, H. W. Chen, W. Zhou, S. D. Liu, and D. Y. Shen, “Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers,” Opt. Mater. 88, 630–634 (2019).
[Crossref]

Chrostowski, L.

S. T. Fard, W. Hofmann, P. T. Fard, G. Böhm, M. Ortsiefer, E. Kwok, M.-C. Amann, and L. Chrostowski, “Optical Absorption Glucose Measurements Using 2.3-µm Vertical-Cavity Semiconductor Lasers,” IEEE Photonics Technol. Lett. 20(11), 930–932 (2008).
[Crossref]

Civiš, S.

S. Civiš, V. Horká, T. Šimeček, E. Hulicius, J. Pangrác, J. Oswald, O. Petříček, Y. Rouillard, C. Alibert, and R. Werner, “GaSb based lasers operating near 2.3 µm for high resolution absorption spectroscopy,” Spectrochim. Acta, Part A 61(13-14), 3066–3069 (2005).
[Crossref]

Demirbas, U.

Donegan, J. F.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Maze, “Narrow linewidth, tunable Tm/sup 3+/-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1103–1111 (1997).
[Crossref]

Du, L.

Esterowitz, L.

Fard, P. T.

S. T. Fard, W. Hofmann, P. T. Fard, G. Böhm, M. Ortsiefer, E. Kwok, M.-C. Amann, and L. Chrostowski, “Optical Absorption Glucose Measurements Using 2.3-µm Vertical-Cavity Semiconductor Lasers,” IEEE Photonics Technol. Lett. 20(11), 930–932 (2008).
[Crossref]

Fard, S. T.

S. T. Fard, W. Hofmann, P. T. Fard, G. Böhm, M. Ortsiefer, E. Kwok, M.-C. Amann, and L. Chrostowski, “Optical Absorption Glucose Measurements Using 2.3-µm Vertical-Cavity Semiconductor Lasers,” IEEE Photonics Technol. Lett. 20(11), 930–932 (2008).
[Crossref]

Fedorov, V. V.

Gapontsev, V.

Garcia, M.

L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, and F. Genty, “Vertical cavity surface emitting laser sources for gas detection,” Phys. Status Solidi A 202(4), 631–635 (2005).
[Crossref]

Garnache, A.

L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, and F. Genty, “Vertical cavity surface emitting laser sources for gas detection,” Phys. Status Solidi A 202(4), 631–635 (2005).
[Crossref]

Geerlings, E.

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

Genty, F.

L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, and F. Genty, “Vertical cavity surface emitting laser sources for gas detection,” Phys. Status Solidi A 202(4), 631–635 (2005).
[Crossref]

Guo, Q.

H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Hanson, R. K.

X. Chao, J. B. Jeffries, and R. K. Hanson, “Real-time, in situ, continuous monitoring of CO in a pulverized-coal-fired power plant with a 2.3 µm laser absorption sensor,” Appl. Phys. B: Lasers Opt. 110(3), 359–365 (2013).
[Crossref]

Hegarty, J.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Maze, “Narrow linewidth, tunable Tm/sup 3+/-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1103–1111 (1997).
[Crossref]

Hofmann, W.

S. T. Fard, W. Hofmann, P. T. Fard, G. Böhm, M. Ortsiefer, E. Kwok, M.-C. Amann, and L. Chrostowski, “Optical Absorption Glucose Measurements Using 2.3-µm Vertical-Cavity Semiconductor Lasers,” IEEE Photonics Technol. Lett. 20(11), 930–932 (2008).
[Crossref]

Horká, V.

S. Civiš, V. Horká, T. Šimeček, E. Hulicius, J. Pangrác, J. Oswald, O. Petříček, Y. Rouillard, C. Alibert, and R. Werner, “GaSb based lasers operating near 2.3 µm for high resolution absorption spectroscopy,” Spectrochim. Acta, Part A 61(13-14), 3066–3069 (2005).
[Crossref]

Hu, S.

Huang, B.

Huang, H. T.

S. Q. Wang, H. T. Huang, X. Liu, H. W. Chen, W. Zhou, S. D. Liu, and D. Y. Shen, “Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers,” Opt. Mater. 88, 630–634 (2019).
[Crossref]

Hulicius, E.

S. Civiš, V. Horká, T. Šimeček, E. Hulicius, J. Pangrác, J. Oswald, O. Petříček, Y. Rouillard, C. Alibert, and R. Werner, “GaSb based lasers operating near 2.3 µm for high resolution absorption spectroscopy,” Spectrochim. Acta, Part A 61(13-14), 3066–3069 (2005).
[Crossref]

Huo, J. J.

Jeffries, J. B.

X. Chao, J. B. Jeffries, and R. K. Hanson, “Real-time, in situ, continuous monitoring of CO in a pulverized-coal-fired power plant with a 2.3 µm laser absorption sensor,” Appl. Phys. B: Lasers Opt. 110(3), 359–365 (2013).
[Crossref]

Jiang, G. B.

Jiang, H.

Kaufel, G.

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

Kwok, E.

S. T. Fard, W. Hofmann, P. T. Fard, G. Böhm, M. Ortsiefer, E. Kwok, M.-C. Amann, and L. Chrostowski, “Optical Absorption Glucose Measurements Using 2.3-µm Vertical-Cavity Semiconductor Lasers,” IEEE Photonics Technol. Lett. 20(11), 930–932 (2008).
[Crossref]

Leng, Y. X.

Li, C.

Liu, S. D.

S. Q. Wang, H. T. Huang, X. Liu, H. W. Chen, W. Zhou, S. D. Liu, and D. Y. Shen, “Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers,” Opt. Mater. 88, 630–634 (2019).
[Crossref]

Liu, X.

S. Q. Wang, H. T. Huang, X. Liu, H. W. Chen, W. Zhou, S. D. Liu, and D. Y. Shen, “Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers,” Opt. Mater. 88, 630–634 (2019).
[Crossref]

MacCraith, B. D.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Maze, “Narrow linewidth, tunable Tm/sup 3+/-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1103–1111 (1997).
[Crossref]

Mann, Ch.

J. Wagner, Ch. Mann, M. Rattunde, and G. Weimann, “Infrared semiconductor lasers for sensing and diagnostics,” Appl. Phys. A: Mater. Sci. Process. 78(4), 505–512 (2004).
[Crossref]

Maze, G.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Maze, “Narrow linewidth, tunable Tm/sup 3+/-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1103–1111 (1997).
[Crossref]

McAleavey, F. J.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Maze, “Narrow linewidth, tunable Tm/sup 3+/-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1103–1111 (1997).
[Crossref]

Mermelstein, C.

Miao, L. L.

Mirov, M.

Mirov, S.

Mirov, S. B.

Moskalev, I.

Moskalev, I. S.

Muneeb, M.

O’Gorman, J.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Maze, “Narrow linewidth, tunable Tm/sup 3+/-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1103–1111 (1997).
[Crossref]

Olesberg, J. T.

Ortsiefer, M.

S. T. Fard, W. Hofmann, P. T. Fard, G. Böhm, M. Ortsiefer, E. Kwok, M.-C. Amann, and L. Chrostowski, “Optical Absorption Glucose Measurements Using 2.3-µm Vertical-Cavity Semiconductor Lasers,” IEEE Photonics Technol. Lett. 20(11), 930–932 (2008).
[Crossref]

Oswald, J.

S. Civiš, V. Horká, T. Šimeček, E. Hulicius, J. Pangrác, J. Oswald, O. Petříček, Y. Rouillard, C. Alibert, and R. Werner, “GaSb based lasers operating near 2.3 µm for high resolution absorption spectroscopy,” Spectrochim. Acta, Part A 61(13-14), 3066–3069 (2005).
[Crossref]

Ouvrard, A.

L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, and F. Genty, “Vertical cavity surface emitting laser sources for gas detection,” Phys. Status Solidi A 202(4), 631–635 (2005).
[Crossref]

Pangrác, J.

S. Civiš, V. Horká, T. Šimeček, E. Hulicius, J. Pangrác, J. Oswald, O. Petříček, Y. Rouillard, C. Alibert, and R. Werner, “GaSb based lasers operating near 2.3 µm for high resolution absorption spectroscopy,” Spectrochim. Acta, Part A 61(13-14), 3066–3069 (2005).
[Crossref]

Pelouch, W. S.

W. S. Pelouch, G. J. Wagner, T. J. Carrig, and W. J. Scharpf, “Mid-Wave ZGP OPOs Pumped by a Cr:ZnSe Laser,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), paper PD1.

Petrícek, O.

S. Civiš, V. Horká, T. Šimeček, E. Hulicius, J. Pangrác, J. Oswald, O. Petříček, Y. Rouillard, C. Alibert, and R. Werner, “GaSb based lasers operating near 2.3 µm for high resolution absorption spectroscopy,” Spectrochim. Acta, Part A 61(13-14), 3066–3069 (2005).
[Crossref]

Pinto, J. F.

Piper, J. A.

V. Sudesh and J. A. Piper, “Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 µm,” IEEE J. Quantum Electron. 36(7), 879–884 (2000).
[Crossref]

Rattunde, M.

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

J. Wagner, Ch. Mann, M. Rattunde, and G. Weimann, “Infrared semiconductor lasers for sensing and diagnostics,” Appl. Phys. A: Mater. Sci. Process. 78(4), 505–512 (2004).
[Crossref]

Roelkens, G.

Rosenblatt, G. H.

Rouillard, Y.

S. Civiš, V. Horká, T. Šimeček, E. Hulicius, J. Pangrác, J. Oswald, O. Petříček, Y. Rouillard, C. Alibert, and R. Werner, “GaSb based lasers operating near 2.3 µm for high resolution absorption spectroscopy,” Spectrochim. Acta, Part A 61(13-14), 3066–3069 (2005).
[Crossref]

Scharpf, W. J.

W. S. Pelouch, G. J. Wagner, T. J. Carrig, and W. J. Scharpf, “Mid-Wave ZGP OPOs Pumped by a Cr:ZnSe Laser,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), paper PD1.

Schmitz, J.

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, and J. Wagner, “Tunable Laser Diode System for Noninvasive Blood Glucose Measurements,” Appl. Spectrosc. 59(12), 1480–1484 (2005).
[Crossref]

Sennaroglu, A.

Shen, D. Y.

S. Q. Wang, H. T. Huang, X. Liu, H. W. Chen, W. Zhou, S. D. Liu, and D. Y. Shen, “Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers,” Opt. Mater. 88, 630–634 (2019).
[Crossref]

Šimecek, T.

S. Civiš, V. Horká, T. Šimeček, E. Hulicius, J. Pangrác, J. Oswald, O. Petříček, Y. Rouillard, C. Alibert, and R. Werner, “GaSb based lasers operating near 2.3 µm for high resolution absorption spectroscopy,” Spectrochim. Acta, Part A 61(13-14), 3066–3069 (2005).
[Crossref]

Sprengel, S.

Sudesh, V.

V. Sudesh and J. A. Piper, “Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 µm,” IEEE J. Quantum Electron. 36(7), 879–884 (2000).
[Crossref]

Tan, P.

H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Vasilyev, S.

Wagner, G. J.

W. S. Pelouch, G. J. Wagner, T. J. Carrig, and W. J. Scharpf, “Mid-Wave ZGP OPOs Pumped by a Cr:ZnSe Laser,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), paper PD1.

Wagner, J.

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, and J. Wagner, “Tunable Laser Diode System for Noninvasive Blood Glucose Measurements,” Appl. Spectrosc. 59(12), 1480–1484 (2005).
[Crossref]

J. Wagner, Ch. Mann, M. Rattunde, and G. Weimann, “Infrared semiconductor lasers for sensing and diagnostics,” Appl. Phys. A: Mater. Sci. Process. 78(4), 505–512 (2004).
[Crossref]

Wang, H.

H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Wang, J.

Wang, L.

Wang, R. J.

Wang, S. Q.

S. Q. Wang, H. T. Huang, X. Liu, H. W. Chen, W. Zhou, S. D. Liu, and D. Y. Shen, “Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers,” Opt. Mater. 88, 630–634 (2019).
[Crossref]

Wang, X.

H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Weimann, G.

J. Wagner, Ch. Mann, M. Rattunde, and G. Weimann, “Infrared semiconductor lasers for sensing and diagnostics,” Appl. Phys. A: Mater. Sci. Process. 78(4), 505–512 (2004).
[Crossref]

Wen, S. C.

Werner, R.

S. Civiš, V. Horká, T. Šimeček, E. Hulicius, J. Pangrác, J. Oswald, O. Petříček, Y. Rouillard, C. Alibert, and R. Werner, “GaSb based lasers operating near 2.3 µm for high resolution absorption spectroscopy,” Spectrochim. Acta, Part A 61(13-14), 3066–3069 (2005).
[Crossref]

Wu, H.

Wu, J.

H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Wu, X.

Xia, F.

H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Xing, T.

Yang, L.

H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Yi, J.

Yorulmaz, I.

I. Yorulmaz and A. Sennaroglu, “Low-Threshold Diode-Pumped 2.3-µm Tm3+:YLF Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–7 (2018).
[Crossref]

F. Canbaz, I. Yorulmaz, and A. Sennaroglu, “2.3-µm Tm3+:YLF laser passively Q-switched with a Cr2+:ZnSe saturable absorber,” Opt. Lett. 42(9), 1656–1659 (2017).
[Crossref]

Zappe, H.

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

Zhao, C. J.

Zhao, H.

H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Zhong, H.

H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Zhou, W.

S. Q. Wang, H. T. Huang, X. Liu, H. W. Chen, W. Zhou, S. D. Liu, and D. Y. Shen, “Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers,” Opt. Mater. 88, 630–634 (2019).
[Crossref]

Appl. Phys. A: Mater. Sci. Process. (1)

J. Wagner, Ch. Mann, M. Rattunde, and G. Weimann, “Infrared semiconductor lasers for sensing and diagnostics,” Appl. Phys. A: Mater. Sci. Process. 78(4), 505–512 (2004).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

X. Chao, J. B. Jeffries, and R. K. Hanson, “Real-time, in situ, continuous monitoring of CO in a pulverized-coal-fired power plant with a 2.3 µm laser absorption sensor,” Appl. Phys. B: Lasers Opt. 110(3), 359–365 (2013).
[Crossref]

Appl. Spectrosc. (1)

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

V. Sudesh and J. A. Piper, “Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 µm,” IEEE J. Quantum Electron. 36(7), 879–884 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Maze, “Narrow linewidth, tunable Tm/sup 3+/-doped fluoride fiber laser for optical-based hydrocarbon gas sensing,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1103–1111 (1997).
[Crossref]

I. Yorulmaz and A. Sennaroglu, “Low-Threshold Diode-Pumped 2.3-µm Tm3+:YLF Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–7 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (2)

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

S. T. Fard, W. Hofmann, P. T. Fard, G. Böhm, M. Ortsiefer, E. Kwok, M.-C. Amann, and L. Chrostowski, “Optical Absorption Glucose Measurements Using 2.3-µm Vertical-Cavity Semiconductor Lasers,” IEEE Photonics Technol. Lett. 20(11), 930–932 (2008).
[Crossref]

Nano Res. (1)

H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, and H. Wang, “Interlayer interactions in anisotropic atomically thin rhenium diselenide,” Nano Res. 8(11), 3651–3661 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. (1)

S. Q. Wang, H. T. Huang, X. Liu, H. W. Chen, W. Zhou, S. D. Liu, and D. Y. Shen, “Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers,” Opt. Mater. 88, 630–634 (2019).
[Crossref]

Opt. Mater. Express (1)

Phys. Status Solidi A (1)

L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, and F. Genty, “Vertical cavity surface emitting laser sources for gas detection,” Phys. Status Solidi A 202(4), 631–635 (2005).
[Crossref]

Spectrochim. Acta, Part A (1)

S. Civiš, V. Horká, T. Šimeček, E. Hulicius, J. Pangrác, J. Oswald, O. Petříček, Y. Rouillard, C. Alibert, and R. Werner, “GaSb based lasers operating near 2.3 µm for high resolution absorption spectroscopy,” Spectrochim. Acta, Part A 61(13-14), 3066–3069 (2005).
[Crossref]

Other (1)

W. S. Pelouch, G. J. Wagner, T. J. Carrig, and W. J. Scharpf, “Mid-Wave ZGP OPOs Pumped by a Cr:ZnSe Laser,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), paper PD1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. The absorption spectrum of the ReSe2 with the inset showing the AFM image of ReSe2.
Fig. 2.
Fig. 2. (a) Z-scan curve of ReSe2-based SOC and (b) nonlinear transmission versus energy intensity.
Fig. 3.
Fig. 3. The unpolarized fluorescence spectrum of the 1.5 at.% a-cut Tm:YLF for 3H43H5 transition.
Fig. 4.
Fig. 4. Experimental arrangement for the LD end-pumped PQS 2.3 µm Tm:YLF laser.
Fig. 5.
Fig. 5. (a) Output power versus absorbed pump power under CW and PQS operation. (b) The three-dimensional beam profile and power intensity distribution.
Fig. 6.
Fig. 6. (a) Lasing spectrum of Tm:YLF CW and PQS laser. (b) The pulse width and pulse repetition rate versus the absorbed pump power.
Fig. 7.
Fig. 7. Typical pulse train and single pulse with the pulse width of 716 ns at the repetition rate of 5.0 kHz.

Metrics