Abstract

High power and high brightness InP based lasers around 2 µm are attractive for many applications due to their intrinsic compatibility with photonic integrated circuits. However, high output power and low lateral divergence are difficult to be realized simultaneously with the traditional ridge waveguide structure. In this paper, we demonstrate significantly enhanced performance of 1.96 µm InP based InGaAs quantum well lasers by tapered waveguide structures. The double-channel waveguide laser with a straight waveguide section and a small-angle tapered optical amplifier section showed fundamental transverse mode lasing with an excellent beam quality. In agreement with our designed waveguide structures, the devices’ lateral divergence is remarkably reduced. For the device with a 3° tapered angle, the narrowest full width at half maximum (FWHM) of 8.2° of the far-field distribution is realized and the continuous-wave output power, measured at 25 °C, is increased up to 40 mW, which is much higher than the 12 mW of the laser with only a straight ridge waveguide.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low lateral divergence 2 μm InGaSb/ AlGaAsSb broad-area quantum well lasers

Jiamin Rong, Enbo Xing, Yu Zhang, Lijie Wang, Shili Shu, Sicong Tian, Cunzhu Tong, Xiaoli Chai, Yingqiang Xu, Haiqiao Ni, Zhichuan Niu, and Lijun Wang
Opt. Express 24(7) 7246-7252 (2016)

The output power and beam divergence behaviors of tapered terahertz quantum cascade lasers

YanFang Li, Jian Wang, Ning Yang, Junqi Liu, Tao Wang, Fengqi Liu, Zhanguo Wang, Weidong Chu, and Suqing Duan
Opt. Express 21(13) 15998-16006 (2013)

2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit

Ruijun Wang, Stephan Sprengel, Gerhard Boehm, Muhammad Muneeb, Roel Baets, Markus-Christian Amann, and Gunther Roelkens
Opt. Express 24(18) 21081-21089 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359(1780), 635–644 (2001).
    [Crossref]
  2. A. Godard, “Infrared (2–12 µm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
    [Crossref]
  3. W. Lei and C. Jagadish, “Lasers and photodetectors for mid-infrared 2–3 µm applications,” J. Appl. Phys. 104(9), 091101 (2008).
    [Crossref]
  4. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, eds., 2 μm laser sources and their possible applications, Frontiers in Guided Wave Optics and Optoelectronics (INTECH, Croatia, 2010).
  5. H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
    [Crossref]
  6. G. W. Turner, H. K. Choi, and M. J. Manfra, “Ultralow-threshold (50 A/cm2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 µm,” Appl. Phys. Lett. 72(8), 876–878 (1998).
    [Crossref]
  7. A. Vizbaras, E. Dvinelis, M. Greibus, A. Trinkunas, D. Kovalenkovas, I. Šimonytė, and K. Vizbaras, “High-performance single-spatial mode GaSb type-I laser diodes around 2.1 µm,” in Proc. SPIE Quantum Sensing and Nanophotonic Devices XI, (International Society for Optics and Photonics, 2014), 899319.
  8. S. Luo, H. M. Ji, F. Gao, F. Xu, X. G. Yang, P. Liang, and T. Yang, “High performance 2150 nm-emitting InAs/InGaAs/InP quantum well lasers grown by metalorganic vapor phase epitaxy,” Opt. Express 23(7), 8383–8388 (2015).
    [Crossref]
  9. R. U. Martinelli, R. J. Menna, G. H. Olsen, and J. S. Vermaak, “1.95-µm strained InGaAs-InGaAsP-InP distributed-feedback quantum-well lasers,” IEEE Photonics Technol. Lett. 6(12), 1415–1417 (1994).
    [Crossref]
  10. M. Oishi, M. Yamamoto, and K. Kasaya, “2.0-µm single-mode operation of InGaAs-InGaAsP distributed-feedback buried-heterostructure quantum-well lasers,” IEEE Photonics Technol. Lett. 9(4), 431–433 (1997).
    [Crossref]
  11. D. Jie, A. Ubukata, and K. Matsumoto, “Characteristics dependence on confinement structure and single-mode operation in 2-µm compressively strained InGaAs-lnGaAsP quantum-well lasers,” IEEE Photonics Technol. Lett. 10(4), 513–515 (1998).
    [Crossref]
  12. T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1µm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87(21), 211903 (2005).
    [Crossref]
  13. Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 µm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
    [Crossref]
  14. F. Xu, S. Luo, F. Gao, H.-M. Ji, Z.-R. Lv, X.-G. Yang, and T. Yang, “2004-nm ridge-waveguide distributed feedback lasers with InGaAs multi-quantum wells,” IEEE Photonics Technol. Lett. 28(20), 2257–2260 (2016).
    [Crossref]
  15. T. Takeshita, T. Sato, M. Mitsuhara, R. Yoshimura, and H. Ishii, “Long-Term Degradation Behavior of 2.3-µm Wavelength Highly Strained InAs/InP MQW-DFB Lasers With a p-/n-InP Buried Heterostructure,” IEEE Trans. Electron Devices 59(4), 1056–1062 (2012).
    [Crossref]
  16. D. Wang, N. Zhuo, Y. Zhao, F. Cheng, S. Niu, J. Zhang, S. Zhai, L. Wang, S. Liu, F. Liu, and Z. Wang, “Improved performance of InP-based 2.1 µm InGaAsSb quantum well lasers using Sb as a surfactant,” Appl. Phys. Lett. 113(25), 251101 (2018).
    [Crossref]
  17. J. Rong, E. Xing, Y. Zhang, L. Wang, S. Shu, S. Tian, C. Tong, X. Chai, Y. Xu, H. Ni, Z. Niu, and L. Wang, “Low lateral divergence 2 µm InGaSb/ AlGaAsSb broad-area quantum well lasers,” Opt. Express 24(7), 7246–7252 (2016).
    [Crossref]
  18. H. Choi, J. Walpole, G. Turner, M. Conners, L. Missaggia, and M. Manfra, “GaInAsSb-AlGaAsSb tapered lasers emitting at 2.05 µm with 0.6-W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
    [Crossref]
  19. M. T. Kelemen, J. Weber, M. Mikulla, and G. Weimann, “High-power high-brightness tapered diode lasers and amplifiers,” in Integrated Optoelectronic Devices 2005, (SPIE, 2005), 11.
  20. B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. TrÄnkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
    [Crossref]
  21. X. Ma, A. Liu, H. Qu, A. Qi, X. Zhou, M. Wang, and W. Zheng, “High-Power Tapered Photonic Crystal Lasers With Slots for Narrow Spectral Width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
    [Crossref]
  22. W. W. Bewley, C. S. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. Abell, J. R. Meyer, and M. Kim, “High-power, high-brightness continuous-wave interband cascade lasers with tapered ridges,” Appl. Phys. Lett. 103(11), 111111 (2013).
    [Crossref]
  23. Y. Li, J. Wang, N. Yang, J. Liu, T. Wang, F. Liu, Z. Wang, W. Chu, and S. Duan, “The output power and beam divergence behaviors of tapered terahertz quantum cascade lasers,” Opt. Express 21(13), 15998–16006 (2013).
    [Crossref]
  24. J. Wang, W. Wu, X. Zhang, and S. Duan, “Analysis of terahertz quantum cascade laser beam,” Chinese Journal of Computational Physics 29(1), 127–132 (2012).
  25. J. Liu, F. Liu, L. Li, L. Wang, and Z. Wang, “A mini-staged multi-stacked quantum cascade laser for improved optical and thermal performance,” Semicond. Sci. Technol. 24(7), 075023 (2009).
    [Crossref]
  26. S. F. Yu, “Double-tapered-waveguide distributed feedback lasers for high-power single-mode operation,” IEEE J. Quantum Electron. 33(1), 71–80 (1997).
    [Crossref]

2018 (2)

D. Wang, N. Zhuo, Y. Zhao, F. Cheng, S. Niu, J. Zhang, S. Zhai, L. Wang, S. Liu, F. Liu, and Z. Wang, “Improved performance of InP-based 2.1 µm InGaAsSb quantum well lasers using Sb as a surfactant,” Appl. Phys. Lett. 113(25), 251101 (2018).
[Crossref]

X. Ma, A. Liu, H. Qu, A. Qi, X. Zhou, M. Wang, and W. Zheng, “High-Power Tapered Photonic Crystal Lasers With Slots for Narrow Spectral Width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

2016 (2)

F. Xu, S. Luo, F. Gao, H.-M. Ji, Z.-R. Lv, X.-G. Yang, and T. Yang, “2004-nm ridge-waveguide distributed feedback lasers with InGaAs multi-quantum wells,” IEEE Photonics Technol. Lett. 28(20), 2257–2260 (2016).
[Crossref]

J. Rong, E. Xing, Y. Zhang, L. Wang, S. Shu, S. Tian, C. Tong, X. Chai, Y. Xu, H. Ni, Z. Niu, and L. Wang, “Low lateral divergence 2 µm InGaSb/ AlGaAsSb broad-area quantum well lasers,” Opt. Express 24(7), 7246–7252 (2016).
[Crossref]

2015 (1)

2014 (1)

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 µm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

2013 (3)

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

W. W. Bewley, C. S. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. Abell, J. R. Meyer, and M. Kim, “High-power, high-brightness continuous-wave interband cascade lasers with tapered ridges,” Appl. Phys. Lett. 103(11), 111111 (2013).
[Crossref]

Y. Li, J. Wang, N. Yang, J. Liu, T. Wang, F. Liu, Z. Wang, W. Chu, and S. Duan, “The output power and beam divergence behaviors of tapered terahertz quantum cascade lasers,” Opt. Express 21(13), 15998–16006 (2013).
[Crossref]

2012 (2)

J. Wang, W. Wu, X. Zhang, and S. Duan, “Analysis of terahertz quantum cascade laser beam,” Chinese Journal of Computational Physics 29(1), 127–132 (2012).

T. Takeshita, T. Sato, M. Mitsuhara, R. Yoshimura, and H. Ishii, “Long-Term Degradation Behavior of 2.3-µm Wavelength Highly Strained InAs/InP MQW-DFB Lasers With a p-/n-InP Buried Heterostructure,” IEEE Trans. Electron Devices 59(4), 1056–1062 (2012).
[Crossref]

2009 (2)

J. Liu, F. Liu, L. Li, L. Wang, and Z. Wang, “A mini-staged multi-stacked quantum cascade laser for improved optical and thermal performance,” Semicond. Sci. Technol. 24(7), 075023 (2009).
[Crossref]

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. TrÄnkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

2008 (1)

W. Lei and C. Jagadish, “Lasers and photodetectors for mid-infrared 2–3 µm applications,” J. Appl. Phys. 104(9), 091101 (2008).
[Crossref]

2007 (1)

A. Godard, “Infrared (2–12 µm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

2005 (1)

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1µm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87(21), 211903 (2005).
[Crossref]

2001 (1)

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359(1780), 635–644 (2001).
[Crossref]

1998 (3)

D. Jie, A. Ubukata, and K. Matsumoto, “Characteristics dependence on confinement structure and single-mode operation in 2-µm compressively strained InGaAs-lnGaAsP quantum-well lasers,” IEEE Photonics Technol. Lett. 10(4), 513–515 (1998).
[Crossref]

G. W. Turner, H. K. Choi, and M. J. Manfra, “Ultralow-threshold (50 A/cm2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 µm,” Appl. Phys. Lett. 72(8), 876–878 (1998).
[Crossref]

H. Choi, J. Walpole, G. Turner, M. Conners, L. Missaggia, and M. Manfra, “GaInAsSb-AlGaAsSb tapered lasers emitting at 2.05 µm with 0.6-W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
[Crossref]

1997 (2)

S. F. Yu, “Double-tapered-waveguide distributed feedback lasers for high-power single-mode operation,” IEEE J. Quantum Electron. 33(1), 71–80 (1997).
[Crossref]

M. Oishi, M. Yamamoto, and K. Kasaya, “2.0-µm single-mode operation of InGaAs-InGaAsP distributed-feedback buried-heterostructure quantum-well lasers,” IEEE Photonics Technol. Lett. 9(4), 431–433 (1997).
[Crossref]

1994 (1)

R. U. Martinelli, R. J. Menna, G. H. Olsen, and J. S. Vermaak, “1.95-µm strained InGaAs-InGaAsP-InP distributed-feedback quantum-well lasers,” IEEE Photonics Technol. Lett. 6(12), 1415–1417 (1994).
[Crossref]

Abell, J.

W. W. Bewley, C. S. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. Abell, J. R. Meyer, and M. Kim, “High-power, high-brightness continuous-wave interband cascade lasers with tapered ridges,” Appl. Phys. Lett. 103(11), 111111 (2013).
[Crossref]

Adamiec, P.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. TrÄnkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Bewley, W. W.

W. W. Bewley, C. S. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. Abell, J. R. Meyer, and M. Kim, “High-power, high-brightness continuous-wave interband cascade lasers with tapered ridges,” Appl. Phys. Lett. 103(11), 111111 (2013).
[Crossref]

Bugge, F.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. TrÄnkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Canedy, C. L.

W. W. Bewley, C. S. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. Abell, J. R. Meyer, and M. Kim, “High-power, high-brightness continuous-wave interband cascade lasers with tapered ridges,” Appl. Phys. Lett. 103(11), 111111 (2013).
[Crossref]

Cao, Y.

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 µm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

Chai, X.

Chen, X.

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 µm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

Cheng, F.

D. Wang, N. Zhuo, Y. Zhao, F. Cheng, S. Niu, J. Zhang, S. Zhai, L. Wang, S. Liu, F. Liu, and Z. Wang, “Improved performance of InP-based 2.1 µm InGaAsSb quantum well lasers using Sb as a surfactant,” Appl. Phys. Lett. 113(25), 251101 (2018).
[Crossref]

Choi, H.

H. Choi, J. Walpole, G. Turner, M. Conners, L. Missaggia, and M. Manfra, “GaInAsSb-AlGaAsSb tapered lasers emitting at 2.05 µm with 0.6-W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
[Crossref]

Choi, H. K.

G. W. Turner, H. K. Choi, and M. J. Manfra, “Ultralow-threshold (50 A/cm2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 µm,” Appl. Phys. Lett. 72(8), 876–878 (1998).
[Crossref]

Chu, W.

Conners, M.

H. Choi, J. Walpole, G. Turner, M. Conners, L. Missaggia, and M. Manfra, “GaInAsSb-AlGaAsSb tapered lasers emitting at 2.05 µm with 0.6-W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
[Crossref]

Dittmar, F.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. TrÄnkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Duan, S.

Y. Li, J. Wang, N. Yang, J. Liu, T. Wang, F. Liu, Z. Wang, W. Chu, and S. Duan, “The output power and beam divergence behaviors of tapered terahertz quantum cascade lasers,” Opt. Express 21(13), 15998–16006 (2013).
[Crossref]

J. Wang, W. Wu, X. Zhang, and S. Duan, “Analysis of terahertz quantum cascade laser beam,” Chinese Journal of Computational Physics 29(1), 127–132 (2012).

Dvinelis, E.

A. Vizbaras, E. Dvinelis, M. Greibus, A. Trinkunas, D. Kovalenkovas, I. Šimonytė, and K. Vizbaras, “High-performance single-spatial mode GaSb type-I laser diodes around 2.1 µm,” in Proc. SPIE Quantum Sensing and Nanophotonic Devices XI, (International Society for Optics and Photonics, 2014), 899319.

Erbert, G.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. TrÄnkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Fricke, J.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. TrÄnkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Gannot, I.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359(1780), 635–644 (2001).
[Crossref]

Gao, F.

F. Xu, S. Luo, F. Gao, H.-M. Ji, Z.-R. Lv, X.-G. Yang, and T. Yang, “2004-nm ridge-waveguide distributed feedback lasers with InGaAs multi-quantum wells,” IEEE Photonics Technol. Lett. 28(20), 2257–2260 (2016).
[Crossref]

S. Luo, H. M. Ji, F. Gao, F. Xu, X. G. Yang, P. Liang, and T. Yang, “High performance 2150 nm-emitting InAs/InGaAs/InP quantum well lasers grown by metalorganic vapor phase epitaxy,” Opt. Express 23(7), 8383–8388 (2015).
[Crossref]

Godard, A.

A. Godard, “Infrared (2–12 µm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Greibus, M.

A. Vizbaras, E. Dvinelis, M. Greibus, A. Trinkunas, D. Kovalenkovas, I. Šimonytė, and K. Vizbaras, “High-performance single-spatial mode GaSb type-I laser diodes around 2.1 µm,” in Proc. SPIE Quantum Sensing and Nanophotonic Devices XI, (International Society for Optics and Photonics, 2014), 899319.

Gu, Y.

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 µm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

Gunning, F.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Han, W.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Hasler, K.-H.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. TrÄnkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Ilev, I. K.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359(1780), 635–644 (2001).
[Crossref]

Ishii, H.

T. Takeshita, T. Sato, M. Mitsuhara, R. Yoshimura, and H. Ishii, “Long-Term Degradation Behavior of 2.3-µm Wavelength Highly Strained InAs/InP MQW-DFB Lasers With a p-/n-InP Buried Heterostructure,” IEEE Trans. Electron Devices 59(4), 1056–1062 (2012).
[Crossref]

Jagadish, C.

W. Lei and C. Jagadish, “Lasers and photodetectors for mid-infrared 2–3 µm applications,” J. Appl. Phys. 104(9), 091101 (2008).
[Crossref]

Ji, H. M.

Ji, H.-M.

F. Xu, S. Luo, F. Gao, H.-M. Ji, Z.-R. Lv, X.-G. Yang, and T. Yang, “2004-nm ridge-waveguide distributed feedback lasers with InGaAs multi-quantum wells,” IEEE Photonics Technol. Lett. 28(20), 2257–2260 (2016).
[Crossref]

Jie, D.

D. Jie, A. Ubukata, and K. Matsumoto, “Characteristics dependence on confinement structure and single-mode operation in 2-µm compressively strained InGaAs-lnGaAsP quantum-well lasers,” IEEE Photonics Technol. Lett. 10(4), 513–515 (1998).
[Crossref]

Kasaya, K.

M. Oishi, M. Yamamoto, and K. Kasaya, “2.0-µm single-mode operation of InGaAs-InGaAsP distributed-feedback buried-heterostructure quantum-well lasers,” IEEE Photonics Technol. Lett. 9(4), 431–433 (1997).
[Crossref]

Kelemen, M. T.

M. T. Kelemen, J. Weber, M. Mikulla, and G. Weimann, “High-power high-brightness tapered diode lasers and amplifiers,” in Integrated Optoelectronic Devices 2005, (SPIE, 2005), 11.

Kelly, B.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Kim, C. S.

W. W. Bewley, C. S. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. Abell, J. R. Meyer, and M. Kim, “High-power, high-brightness continuous-wave interband cascade lasers with tapered ridges,” Appl. Phys. Lett. 103(11), 111111 (2013).
[Crossref]

Kim, M.

W. W. Bewley, C. S. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. Abell, J. R. Meyer, and M. Kim, “High-power, high-brightness continuous-wave interband cascade lasers with tapered ridges,” Appl. Phys. Lett. 103(11), 111111 (2013).
[Crossref]

Kondo, Y.

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1µm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87(21), 211903 (2005).
[Crossref]

Kovalenkovas, D.

A. Vizbaras, E. Dvinelis, M. Greibus, A. Trinkunas, D. Kovalenkovas, I. Šimonytė, and K. Vizbaras, “High-performance single-spatial mode GaSb type-I laser diodes around 2.1 µm,” in Proc. SPIE Quantum Sensing and Nanophotonic Devices XI, (International Society for Optics and Photonics, 2014), 899319.

Lei, W.

W. Lei and C. Jagadish, “Lasers and photodetectors for mid-infrared 2–3 µm applications,” J. Appl. Phys. 104(9), 091101 (2008).
[Crossref]

Li, H.

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 µm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

Li, L.

J. Liu, F. Liu, L. Li, L. Wang, and Z. Wang, “A mini-staged multi-stacked quantum cascade laser for improved optical and thermal performance,” Semicond. Sci. Technol. 24(7), 075023 (2009).
[Crossref]

Li, Y.

Liang, P.

Liu, A.

X. Ma, A. Liu, H. Qu, A. Qi, X. Zhou, M. Wang, and W. Zheng, “High-Power Tapered Photonic Crystal Lasers With Slots for Narrow Spectral Width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

Liu, F.

D. Wang, N. Zhuo, Y. Zhao, F. Cheng, S. Niu, J. Zhang, S. Zhai, L. Wang, S. Liu, F. Liu, and Z. Wang, “Improved performance of InP-based 2.1 µm InGaAsSb quantum well lasers using Sb as a surfactant,” Appl. Phys. Lett. 113(25), 251101 (2018).
[Crossref]

Y. Li, J. Wang, N. Yang, J. Liu, T. Wang, F. Liu, Z. Wang, W. Chu, and S. Duan, “The output power and beam divergence behaviors of tapered terahertz quantum cascade lasers,” Opt. Express 21(13), 15998–16006 (2013).
[Crossref]

J. Liu, F. Liu, L. Li, L. Wang, and Z. Wang, “A mini-staged multi-stacked quantum cascade laser for improved optical and thermal performance,” Semicond. Sci. Technol. 24(7), 075023 (2009).
[Crossref]

Liu, J.

Y. Li, J. Wang, N. Yang, J. Liu, T. Wang, F. Liu, Z. Wang, W. Chu, and S. Duan, “The output power and beam divergence behaviors of tapered terahertz quantum cascade lasers,” Opt. Express 21(13), 15998–16006 (2013).
[Crossref]

J. Liu, F. Liu, L. Li, L. Wang, and Z. Wang, “A mini-staged multi-stacked quantum cascade laser for improved optical and thermal performance,” Semicond. Sci. Technol. 24(7), 075023 (2009).
[Crossref]

Liu, S.

D. Wang, N. Zhuo, Y. Zhao, F. Cheng, S. Niu, J. Zhang, S. Zhai, L. Wang, S. Liu, F. Liu, and Z. Wang, “Improved performance of InP-based 2.1 µm InGaAsSb quantum well lasers using Sb as a surfactant,” Appl. Phys. Lett. 113(25), 251101 (2018).
[Crossref]

Luo, S.

F. Xu, S. Luo, F. Gao, H.-M. Ji, Z.-R. Lv, X.-G. Yang, and T. Yang, “2004-nm ridge-waveguide distributed feedback lasers with InGaAs multi-quantum wells,” IEEE Photonics Technol. Lett. 28(20), 2257–2260 (2016).
[Crossref]

S. Luo, H. M. Ji, F. Gao, F. Xu, X. G. Yang, P. Liang, and T. Yang, “High performance 2150 nm-emitting InAs/InGaAs/InP quantum well lasers grown by metalorganic vapor phase epitaxy,” Opt. Express 23(7), 8383–8388 (2015).
[Crossref]

Lv, Z.-R.

F. Xu, S. Luo, F. Gao, H.-M. Ji, Z.-R. Lv, X.-G. Yang, and T. Yang, “2004-nm ridge-waveguide distributed feedback lasers with InGaAs multi-quantum wells,” IEEE Photonics Technol. Lett. 28(20), 2257–2260 (2016).
[Crossref]

Ma, X.

X. Ma, A. Liu, H. Qu, A. Qi, X. Zhou, M. Wang, and W. Zheng, “High-Power Tapered Photonic Crystal Lasers With Slots for Narrow Spectral Width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

MacSuibhne, N.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Manfra, M.

H. Choi, J. Walpole, G. Turner, M. Conners, L. Missaggia, and M. Manfra, “GaInAsSb-AlGaAsSb tapered lasers emitting at 2.05 µm with 0.6-W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
[Crossref]

Manfra, M. J.

G. W. Turner, H. K. Choi, and M. J. Manfra, “Ultralow-threshold (50 A/cm2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 µm,” Appl. Phys. Lett. 72(8), 876–878 (1998).
[Crossref]

Martinelli, R. U.

R. U. Martinelli, R. J. Menna, G. H. Olsen, and J. S. Vermaak, “1.95-µm strained InGaAs-InGaAsP-InP distributed-feedback quantum-well lasers,” IEEE Photonics Technol. Lett. 6(12), 1415–1417 (1994).
[Crossref]

Matsumoto, K.

D. Jie, A. Ubukata, and K. Matsumoto, “Characteristics dependence on confinement structure and single-mode operation in 2-µm compressively strained InGaAs-lnGaAsP quantum-well lasers,” IEEE Photonics Technol. Lett. 10(4), 513–515 (1998).
[Crossref]

Menna, R. J.

R. U. Martinelli, R. J. Menna, G. H. Olsen, and J. S. Vermaak, “1.95-µm strained InGaAs-InGaAsP-InP distributed-feedback quantum-well lasers,” IEEE Photonics Technol. Lett. 6(12), 1415–1417 (1994).
[Crossref]

Merritt, C. D.

W. W. Bewley, C. S. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. Abell, J. R. Meyer, and M. Kim, “High-power, high-brightness continuous-wave interband cascade lasers with tapered ridges,” Appl. Phys. Lett. 103(11), 111111 (2013).
[Crossref]

Meyer, J. R.

W. W. Bewley, C. S. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. Abell, J. R. Meyer, and M. Kim, “High-power, high-brightness continuous-wave interband cascade lasers with tapered ridges,” Appl. Phys. Lett. 103(11), 111111 (2013).
[Crossref]

Mikulla, M.

M. T. Kelemen, J. Weber, M. Mikulla, and G. Weimann, “High-power high-brightness tapered diode lasers and amplifiers,” in Integrated Optoelectronic Devices 2005, (SPIE, 2005), 11.

Missaggia, L.

H. Choi, J. Walpole, G. Turner, M. Conners, L. Missaggia, and M. Manfra, “GaInAsSb-AlGaAsSb tapered lasers emitting at 2.05 µm with 0.6-W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
[Crossref]

Mitsuhara, M.

T. Takeshita, T. Sato, M. Mitsuhara, R. Yoshimura, and H. Ishii, “Long-Term Degradation Behavior of 2.3-µm Wavelength Highly Strained InAs/InP MQW-DFB Lasers With a p-/n-InP Buried Heterostructure,” IEEE Trans. Electron Devices 59(4), 1056–1062 (2012).
[Crossref]

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1µm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87(21), 211903 (2005).
[Crossref]

Ni, H.

Niu, S.

D. Wang, N. Zhuo, Y. Zhao, F. Cheng, S. Niu, J. Zhang, S. Zhai, L. Wang, S. Liu, F. Liu, and Z. Wang, “Improved performance of InP-based 2.1 µm InGaAsSb quantum well lasers using Sb as a surfactant,” Appl. Phys. Lett. 113(25), 251101 (2018).
[Crossref]

Niu, Z.

Nudds, N.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

O’Carroll, J.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Oishi, M.

M. Oishi, M. Yamamoto, and K. Kasaya, “2.0-µm single-mode operation of InGaAs-InGaAsP distributed-feedback buried-heterostructure quantum-well lasers,” IEEE Photonics Technol. Lett. 9(4), 431–433 (1997).
[Crossref]

Olsen, G. H.

R. U. Martinelli, R. J. Menna, G. H. Olsen, and J. S. Vermaak, “1.95-µm strained InGaAs-InGaAsP-InP distributed-feedback quantum-well lasers,” IEEE Photonics Technol. Lett. 6(12), 1415–1417 (1994).
[Crossref]

Phelan, R.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Qi, A.

X. Ma, A. Liu, H. Qu, A. Qi, X. Zhou, M. Wang, and W. Zheng, “High-Power Tapered Photonic Crystal Lasers With Slots for Narrow Spectral Width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

Qu, H.

X. Ma, A. Liu, H. Qu, A. Qi, X. Zhou, M. Wang, and W. Zheng, “High-Power Tapered Photonic Crystal Lasers With Slots for Narrow Spectral Width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

Rong, J.

Sato, T.

T. Takeshita, T. Sato, M. Mitsuhara, R. Yoshimura, and H. Ishii, “Long-Term Degradation Behavior of 2.3-µm Wavelength Highly Strained InAs/InP MQW-DFB Lasers With a p-/n-InP Buried Heterostructure,” IEEE Trans. Electron Devices 59(4), 1056–1062 (2012).
[Crossref]

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1µm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87(21), 211903 (2005).
[Crossref]

Shu, S.

Šimonyte, I.

A. Vizbaras, E. Dvinelis, M. Greibus, A. Trinkunas, D. Kovalenkovas, I. Šimonytė, and K. Vizbaras, “High-performance single-spatial mode GaSb type-I laser diodes around 2.1 µm,” in Proc. SPIE Quantum Sensing and Nanophotonic Devices XI, (International Society for Optics and Photonics, 2014), 899319.

Sumpf, B.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. TrÄnkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Takeshita, T.

T. Takeshita, T. Sato, M. Mitsuhara, R. Yoshimura, and H. Ishii, “Long-Term Degradation Behavior of 2.3-µm Wavelength Highly Strained InAs/InP MQW-DFB Lasers With a p-/n-InP Buried Heterostructure,” IEEE Trans. Electron Devices 59(4), 1056–1062 (2012).
[Crossref]

Tian, S.

Tong, C.

TrÄnkle, G.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. TrÄnkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Trinkunas, A.

A. Vizbaras, E. Dvinelis, M. Greibus, A. Trinkunas, D. Kovalenkovas, I. Šimonytė, and K. Vizbaras, “High-performance single-spatial mode GaSb type-I laser diodes around 2.1 µm,” in Proc. SPIE Quantum Sensing and Nanophotonic Devices XI, (International Society for Optics and Photonics, 2014), 899319.

Turner, G.

H. Choi, J. Walpole, G. Turner, M. Conners, L. Missaggia, and M. Manfra, “GaInAsSb-AlGaAsSb tapered lasers emitting at 2.05 µm with 0.6-W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
[Crossref]

Turner, G. W.

G. W. Turner, H. K. Choi, and M. J. Manfra, “Ultralow-threshold (50 A/cm2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 µm,” Appl. Phys. Lett. 72(8), 876–878 (1998).
[Crossref]

Ubukata, A.

D. Jie, A. Ubukata, and K. Matsumoto, “Characteristics dependence on confinement structure and single-mode operation in 2-µm compressively strained InGaAs-lnGaAsP quantum-well lasers,” IEEE Photonics Technol. Lett. 10(4), 513–515 (1998).
[Crossref]

Vermaak, J. S.

R. U. Martinelli, R. J. Menna, G. H. Olsen, and J. S. Vermaak, “1.95-µm strained InGaAs-InGaAsP-InP distributed-feedback quantum-well lasers,” IEEE Photonics Technol. Lett. 6(12), 1415–1417 (1994).
[Crossref]

Vizbaras, A.

A. Vizbaras, E. Dvinelis, M. Greibus, A. Trinkunas, D. Kovalenkovas, I. Šimonytė, and K. Vizbaras, “High-performance single-spatial mode GaSb type-I laser diodes around 2.1 µm,” in Proc. SPIE Quantum Sensing and Nanophotonic Devices XI, (International Society for Optics and Photonics, 2014), 899319.

Vizbaras, K.

A. Vizbaras, E. Dvinelis, M. Greibus, A. Trinkunas, D. Kovalenkovas, I. Šimonytė, and K. Vizbaras, “High-performance single-spatial mode GaSb type-I laser diodes around 2.1 µm,” in Proc. SPIE Quantum Sensing and Nanophotonic Devices XI, (International Society for Optics and Photonics, 2014), 899319.

Vurgaftman, I.

W. W. Bewley, C. S. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. Abell, J. R. Meyer, and M. Kim, “High-power, high-brightness continuous-wave interband cascade lasers with tapered ridges,” Appl. Phys. Lett. 103(11), 111111 (2013).
[Crossref]

Walpole, J.

H. Choi, J. Walpole, G. Turner, M. Conners, L. Missaggia, and M. Manfra, “GaInAsSb-AlGaAsSb tapered lasers emitting at 2.05 µm with 0.6-W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
[Crossref]

Wang, D.

D. Wang, N. Zhuo, Y. Zhao, F. Cheng, S. Niu, J. Zhang, S. Zhai, L. Wang, S. Liu, F. Liu, and Z. Wang, “Improved performance of InP-based 2.1 µm InGaAsSb quantum well lasers using Sb as a surfactant,” Appl. Phys. Lett. 113(25), 251101 (2018).
[Crossref]

Wang, J.

Y. Li, J. Wang, N. Yang, J. Liu, T. Wang, F. Liu, Z. Wang, W. Chu, and S. Duan, “The output power and beam divergence behaviors of tapered terahertz quantum cascade lasers,” Opt. Express 21(13), 15998–16006 (2013).
[Crossref]

J. Wang, W. Wu, X. Zhang, and S. Duan, “Analysis of terahertz quantum cascade laser beam,” Chinese Journal of Computational Physics 29(1), 127–132 (2012).

Wang, L.

D. Wang, N. Zhuo, Y. Zhao, F. Cheng, S. Niu, J. Zhang, S. Zhai, L. Wang, S. Liu, F. Liu, and Z. Wang, “Improved performance of InP-based 2.1 µm InGaAsSb quantum well lasers using Sb as a surfactant,” Appl. Phys. Lett. 113(25), 251101 (2018).
[Crossref]

J. Rong, E. Xing, Y. Zhang, L. Wang, S. Shu, S. Tian, C. Tong, X. Chai, Y. Xu, H. Ni, Z. Niu, and L. Wang, “Low lateral divergence 2 µm InGaSb/ AlGaAsSb broad-area quantum well lasers,” Opt. Express 24(7), 7246–7252 (2016).
[Crossref]

J. Rong, E. Xing, Y. Zhang, L. Wang, S. Shu, S. Tian, C. Tong, X. Chai, Y. Xu, H. Ni, Z. Niu, and L. Wang, “Low lateral divergence 2 µm InGaSb/ AlGaAsSb broad-area quantum well lasers,” Opt. Express 24(7), 7246–7252 (2016).
[Crossref]

J. Liu, F. Liu, L. Li, L. Wang, and Z. Wang, “A mini-staged multi-stacked quantum cascade laser for improved optical and thermal performance,” Semicond. Sci. Technol. 24(7), 075023 (2009).
[Crossref]

Wang, M.

X. Ma, A. Liu, H. Qu, A. Qi, X. Zhou, M. Wang, and W. Zheng, “High-Power Tapered Photonic Crystal Lasers With Slots for Narrow Spectral Width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

Wang, T.

Wang, X.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Wang, Z.

D. Wang, N. Zhuo, Y. Zhao, F. Cheng, S. Niu, J. Zhang, S. Zhai, L. Wang, S. Liu, F. Liu, and Z. Wang, “Improved performance of InP-based 2.1 µm InGaAsSb quantum well lasers using Sb as a surfactant,” Appl. Phys. Lett. 113(25), 251101 (2018).
[Crossref]

Y. Li, J. Wang, N. Yang, J. Liu, T. Wang, F. Liu, Z. Wang, W. Chu, and S. Duan, “The output power and beam divergence behaviors of tapered terahertz quantum cascade lasers,” Opt. Express 21(13), 15998–16006 (2013).
[Crossref]

J. Liu, F. Liu, L. Li, L. Wang, and Z. Wang, “A mini-staged multi-stacked quantum cascade laser for improved optical and thermal performance,” Semicond. Sci. Technol. 24(7), 075023 (2009).
[Crossref]

Watanabe, T.

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1µm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87(21), 211903 (2005).
[Crossref]

Waynant, R. W.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359(1780), 635–644 (2001).
[Crossref]

Weber, J.

M. T. Kelemen, J. Weber, M. Mikulla, and G. Weimann, “High-power high-brightness tapered diode lasers and amplifiers,” in Integrated Optoelectronic Devices 2005, (SPIE, 2005), 11.

Weimann, G.

M. T. Kelemen, J. Weber, M. Mikulla, and G. Weimann, “High-power high-brightness tapered diode lasers and amplifiers,” in Integrated Optoelectronic Devices 2005, (SPIE, 2005), 11.

Wenzel, H.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. TrÄnkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Wu, W.

J. Wang, W. Wu, X. Zhang, and S. Duan, “Analysis of terahertz quantum cascade laser beam,” Chinese Journal of Computational Physics 29(1), 127–132 (2012).

Xi, S.

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 µm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

Xing, E.

Xu, F.

F. Xu, S. Luo, F. Gao, H.-M. Ji, Z.-R. Lv, X.-G. Yang, and T. Yang, “2004-nm ridge-waveguide distributed feedback lasers with InGaAs multi-quantum wells,” IEEE Photonics Technol. Lett. 28(20), 2257–2260 (2016).
[Crossref]

S. Luo, H. M. Ji, F. Gao, F. Xu, X. G. Yang, P. Liang, and T. Yang, “High performance 2150 nm-emitting InAs/InGaAs/InP quantum well lasers grown by metalorganic vapor phase epitaxy,” Opt. Express 23(7), 8383–8388 (2015).
[Crossref]

Xu, Y.

Yamamoto, M.

M. Oishi, M. Yamamoto, and K. Kasaya, “2.0-µm single-mode operation of InGaAs-InGaAsP distributed-feedback buried-heterostructure quantum-well lasers,” IEEE Photonics Technol. Lett. 9(4), 431–433 (1997).
[Crossref]

Yang, H.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Yang, N.

Yang, T.

F. Xu, S. Luo, F. Gao, H.-M. Ji, Z.-R. Lv, X.-G. Yang, and T. Yang, “2004-nm ridge-waveguide distributed feedback lasers with InGaAs multi-quantum wells,” IEEE Photonics Technol. Lett. 28(20), 2257–2260 (2016).
[Crossref]

S. Luo, H. M. Ji, F. Gao, F. Xu, X. G. Yang, P. Liang, and T. Yang, “High performance 2150 nm-emitting InAs/InGaAs/InP quantum well lasers grown by metalorganic vapor phase epitaxy,” Opt. Express 23(7), 8383–8388 (2015).
[Crossref]

Yang, X. G.

Yang, X.-G.

F. Xu, S. Luo, F. Gao, H.-M. Ji, Z.-R. Lv, X.-G. Yang, and T. Yang, “2004-nm ridge-waveguide distributed feedback lasers with InGaAs multi-quantum wells,” IEEE Photonics Technol. Lett. 28(20), 2257–2260 (2016).
[Crossref]

Ye, N.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Yoshimura, R.

T. Takeshita, T. Sato, M. Mitsuhara, R. Yoshimura, and H. Ishii, “Long-Term Degradation Behavior of 2.3-µm Wavelength Highly Strained InAs/InP MQW-DFB Lasers With a p-/n-InP Buried Heterostructure,” IEEE Trans. Electron Devices 59(4), 1056–1062 (2012).
[Crossref]

Yu, S. F.

S. F. Yu, “Double-tapered-waveguide distributed feedback lasers for high-power single-mode operation,” IEEE J. Quantum Electron. 33(1), 71–80 (1997).
[Crossref]

Zhai, S.

D. Wang, N. Zhuo, Y. Zhao, F. Cheng, S. Niu, J. Zhang, S. Zhai, L. Wang, S. Liu, F. Liu, and Z. Wang, “Improved performance of InP-based 2.1 µm InGaAsSb quantum well lasers using Sb as a surfactant,” Appl. Phys. Lett. 113(25), 251101 (2018).
[Crossref]

Zhang, J.

D. Wang, N. Zhuo, Y. Zhao, F. Cheng, S. Niu, J. Zhang, S. Zhai, L. Wang, S. Liu, F. Liu, and Z. Wang, “Improved performance of InP-based 2.1 µm InGaAsSb quantum well lasers using Sb as a surfactant,” Appl. Phys. Lett. 113(25), 251101 (2018).
[Crossref]

Zhang, X.

J. Wang, W. Wu, X. Zhang, and S. Duan, “Analysis of terahertz quantum cascade laser beam,” Chinese Journal of Computational Physics 29(1), 127–132 (2012).

Zhang, Y.

J. Rong, E. Xing, Y. Zhang, L. Wang, S. Shu, S. Tian, C. Tong, X. Chai, Y. Xu, H. Ni, Z. Niu, and L. Wang, “Low lateral divergence 2 µm InGaSb/ AlGaAsSb broad-area quantum well lasers,” Opt. Express 24(7), 7246–7252 (2016).
[Crossref]

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 µm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

Zhao, Y.

D. Wang, N. Zhuo, Y. Zhao, F. Cheng, S. Niu, J. Zhang, S. Zhai, L. Wang, S. Liu, F. Liu, and Z. Wang, “Improved performance of InP-based 2.1 µm InGaAsSb quantum well lasers using Sb as a surfactant,” Appl. Phys. Lett. 113(25), 251101 (2018).
[Crossref]

Zheng, W.

X. Ma, A. Liu, H. Qu, A. Qi, X. Zhou, M. Wang, and W. Zheng, “High-Power Tapered Photonic Crystal Lasers With Slots for Narrow Spectral Width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

Zhou, L.

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 µm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

Zhou, X.

X. Ma, A. Liu, H. Qu, A. Qi, X. Zhou, M. Wang, and W. Zheng, “High-Power Tapered Photonic Crystal Lasers With Slots for Narrow Spectral Width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

Zhuo, N.

D. Wang, N. Zhuo, Y. Zhao, F. Cheng, S. Niu, J. Zhang, S. Zhai, L. Wang, S. Liu, F. Liu, and Z. Wang, “Improved performance of InP-based 2.1 µm InGaAsSb quantum well lasers using Sb as a surfactant,” Appl. Phys. Lett. 113(25), 251101 (2018).
[Crossref]

Zorn, M.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. TrÄnkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Appl. Phys. Express (1)

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 µm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

Appl. Phys. Lett. (4)

D. Wang, N. Zhuo, Y. Zhao, F. Cheng, S. Niu, J. Zhang, S. Zhai, L. Wang, S. Liu, F. Liu, and Z. Wang, “Improved performance of InP-based 2.1 µm InGaAsSb quantum well lasers using Sb as a surfactant,” Appl. Phys. Lett. 113(25), 251101 (2018).
[Crossref]

W. W. Bewley, C. S. Kim, C. L. Canedy, C. D. Merritt, I. Vurgaftman, J. Abell, J. R. Meyer, and M. Kim, “High-power, high-brightness continuous-wave interband cascade lasers with tapered ridges,” Appl. Phys. Lett. 103(11), 111111 (2013).
[Crossref]

G. W. Turner, H. K. Choi, and M. J. Manfra, “Ultralow-threshold (50 A/cm2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 µm,” Appl. Phys. Lett. 72(8), 876–878 (1998).
[Crossref]

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1µm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87(21), 211903 (2005).
[Crossref]

C. R. Phys. (1)

A. Godard, “Infrared (2–12 µm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Chinese Journal of Computational Physics (1)

J. Wang, W. Wu, X. Zhang, and S. Duan, “Analysis of terahertz quantum cascade laser beam,” Chinese Journal of Computational Physics 29(1), 127–132 (2012).

Electron. Lett. (1)

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

S. F. Yu, “Double-tapered-waveguide distributed feedback lasers for high-power single-mode operation,” IEEE J. Quantum Electron. 33(1), 71–80 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. TrÄnkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (6)

X. Ma, A. Liu, H. Qu, A. Qi, X. Zhou, M. Wang, and W. Zheng, “High-Power Tapered Photonic Crystal Lasers With Slots for Narrow Spectral Width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

H. Choi, J. Walpole, G. Turner, M. Conners, L. Missaggia, and M. Manfra, “GaInAsSb-AlGaAsSb tapered lasers emitting at 2.05 µm with 0.6-W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
[Crossref]

F. Xu, S. Luo, F. Gao, H.-M. Ji, Z.-R. Lv, X.-G. Yang, and T. Yang, “2004-nm ridge-waveguide distributed feedback lasers with InGaAs multi-quantum wells,” IEEE Photonics Technol. Lett. 28(20), 2257–2260 (2016).
[Crossref]

R. U. Martinelli, R. J. Menna, G. H. Olsen, and J. S. Vermaak, “1.95-µm strained InGaAs-InGaAsP-InP distributed-feedback quantum-well lasers,” IEEE Photonics Technol. Lett. 6(12), 1415–1417 (1994).
[Crossref]

M. Oishi, M. Yamamoto, and K. Kasaya, “2.0-µm single-mode operation of InGaAs-InGaAsP distributed-feedback buried-heterostructure quantum-well lasers,” IEEE Photonics Technol. Lett. 9(4), 431–433 (1997).
[Crossref]

D. Jie, A. Ubukata, and K. Matsumoto, “Characteristics dependence on confinement structure and single-mode operation in 2-µm compressively strained InGaAs-lnGaAsP quantum-well lasers,” IEEE Photonics Technol. Lett. 10(4), 513–515 (1998).
[Crossref]

IEEE Trans. Electron Devices (1)

T. Takeshita, T. Sato, M. Mitsuhara, R. Yoshimura, and H. Ishii, “Long-Term Degradation Behavior of 2.3-µm Wavelength Highly Strained InAs/InP MQW-DFB Lasers With a p-/n-InP Buried Heterostructure,” IEEE Trans. Electron Devices 59(4), 1056–1062 (2012).
[Crossref]

J. Appl. Phys. (1)

W. Lei and C. Jagadish, “Lasers and photodetectors for mid-infrared 2–3 µm applications,” J. Appl. Phys. 104(9), 091101 (2008).
[Crossref]

Opt. Express (3)

Phil. Trans. R. Soc. A (1)

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359(1780), 635–644 (2001).
[Crossref]

Semicond. Sci. Technol. (1)

J. Liu, F. Liu, L. Li, L. Wang, and Z. Wang, “A mini-staged multi-stacked quantum cascade laser for improved optical and thermal performance,” Semicond. Sci. Technol. 24(7), 075023 (2009).
[Crossref]

Other (3)

M. T. Kelemen, J. Weber, M. Mikulla, and G. Weimann, “High-power high-brightness tapered diode lasers and amplifiers,” in Integrated Optoelectronic Devices 2005, (SPIE, 2005), 11.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, eds., 2 μm laser sources and their possible applications, Frontiers in Guided Wave Optics and Optoelectronics (INTECH, Croatia, 2010).

A. Vizbaras, E. Dvinelis, M. Greibus, A. Trinkunas, D. Kovalenkovas, I. Šimonytė, and K. Vizbaras, “High-performance single-spatial mode GaSb type-I laser diodes around 2.1 µm,” in Proc. SPIE Quantum Sensing and Nanophotonic Devices XI, (International Society for Optics and Photonics, 2014), 899319.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) The calculated magnetic-field intensity |B|2 distribution of the tapered waveguide structure, (b) the details in straight waveguide section and (c) tapered optical amplifier section. (d) The black curve with squares is the relationship between the far-field divergence angle and different taper angles of the waveguide structure. The inset shows simulated angular distributions of the far-field beam intensity of different taper angle waveguide structures.
Fig. 2.
Fig. 2. (a) The 3D schematic of the tapered waveguide structure lasers with detailed parameters, (b) the top view of tapered waveguide structure, (c) the optical microscope image of back facet before coating, and (d) the output facet.
Fig. 3.
Fig. 3. P-I-V curves for the fabricated lasers at CW operation with the heatsink at 25 °C.
Fig. 4.
Fig. 4. Lateral far-field distribution measured in pulsed mode (30 kHz and 3 µs) for four different waveguide structures. The FWHM of the far-field profiles and injection current were listed in the figure. The inset in (d) shows a typical lateral far-field distribution of BA laser with 30 µm ridge.
Fig. 5.
Fig. 5. (a) Room-temperature EL spectrum of the MQWs wafer and CW lasing spectra of the four different waveguide structure lasers at 20 °C. (b) CW lasing spectra of 3° taper angle laser at different heat sink temperatures. The black spectra are coming from 0# structure laser for contrast.

Metrics