Abstract

A proof-of-principle demonstration of a novel method of background subtraction for optical coherence tomography is presented using a full-field time-domain set-up. This single-shot method is based on time-averaged sampling of a sinusoidal phase modulation in the reference arm. It can significantly suppress motion artifacts as well as entirely eliminate phase-noise induced background subtraction errors that corrupt the images obtained using other methods. When used with Fourier domain set-ups, this technique can also eliminate arbitrarily strong autocorrelation artifacts.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control

S. Witte, M. Baclayon, E. J. G. Peterman, R. F. G. Toonen, H. D. Mansvelder, and M. L. Groot
Opt. Express 17(14) 11335-11349 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. A. Puliafito, J. S. Schuman, M. R. Hee, and J. G. Fujimoto, Optical coherence tomography of ocular diseases (SLACK Inc., 1996).
  2. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Second Edition (Springer International Publishing, 2015).
  3. E. A. Swanson, D. Huang, C. P. Lin, C. A. Puliafito, M. R. Hee, and J. G. Fujimoto, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992).
    [Crossref]
  4. A. F. Fercher, K. Mengedoht, and W. Werner, “Eye-length measurement by interferometry with partially coherent light,” Opt. Lett. 13(3), 186–188 (1988).
    [Crossref]
  5. C. K. Hitzenberger, W. Drexler, and A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthalmol. Visual Sci. 33, 98–103 (1992), https://iovs.arvojournals.org/article.aspx?articleid=2160990.
  6. J. Fujimoto and E. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT1–OCT13 (2016).
    [Crossref]
  7. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244–246 (1998).
    [Crossref]
  8. A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41(4), 805–812 (2002).
    [Crossref]
  9. H. M. Subhash, “Full-field and single-shot full-field optical coherence tomography: A novel technique for biomedical imaging applications,” Adv. Opt. Technol. 2012, 1–26 (2012).
    [Crossref]
  10. O. Thouvenin, C. Apelian, A. Nahas, M. Fink, and C. Boccara, “Full-field optical coherence tomography as a diagnosis tool: recent progress with multimodal imaging,” Appl. Sci. 7(3), 236 (2017).
    [Crossref]
  11. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, , et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  12. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [Crossref]
  13. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [Crossref]
  14. A. Grebenyuk, A. Federici, V. Ryabukho, and A. Dubois, “Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination,” Appl. Opt. 53(8), 1697–1708 (2014).
    [Crossref]
  15. E. Auksorius and A. C. Boccara, “Fingerprint imaging from the inside of a finger with full-field optical coherence tomography,” Biomed. Opt. Express 6(11), 4465–4471 (2015).
    [Crossref]
  16. M. S. Hrebesh and M. Sato, “Real-time single-shot full-field OCT based on dual-channel phase-stepper optics and 2D quaternionic analytic signal processing,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, vol. 7168 (International Society for Optics and Photonics, 2009), p. 71681H.
  17. Y. Watanabe and M. Sato, “Quasi-single shot axial-lateral parallel time domain optical coherence tomography with Hilbert transformation,” Opt. Express 16(2), 524–534 (2008).
    [Crossref]
  18. Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
    [Crossref]
  19. H. Nandakumar, A. K. Subramania, and S. Srivastava, “Sub-4-micron full-field optical coherence tomography on a budget,” Sadhana 43(6), 97 (2018).
    [Crossref]
  20. P. Egan, F. Lakestani, M. P. Whelan, and M. J. Connelly, “Full-field optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera,” Opt. Eng. 45(1), 015601 (2006).
    [Crossref]
  21. S. Bourquin, P. Seitz, and R. P. Salathé, “Optical coherence topography based on a two-dimensional smart detector array,” Opt. Lett. 26(8), 512–514 (2001).
    [Crossref]
  22. R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51(12), 3231–3239 (2006).
    [Crossref]
  23. M. Shalaby and S. S. Al-Sowayan, “Autocorrelation noise free optical coherence tomography using the novel concept of resonant oct (roct),” J. Eur. Opt. Soc. Publ. 12(1), 10 (2016).
    [Crossref]
  24. D. Hillmann, H. Spahr, H. Sudkamp, C. Hain, L. Hinkel, G. Franke, and G. Hüttmann, “Off-axis reference beam for full-field swept-source oct and holoscopy,” Opt. Express 25(22), 27770–27784 (2017).
    [Crossref]
  25. W.-C. Kuo, C.-M. Lai, Y.-S. Huang, C.-Y. Chang, and Y.-M. Kuo, “Balanced detection for spectral domain optical coherence tomography,” Opt. Express 21(16), 19280–19291 (2013).
    [Crossref]
  26. E. Bo, X. Liu, S. Chen, X. Yu, X. Wang, and L. Liu, “Spectral-domain optical coherence tomography with dual-balanced detection for auto-correlation artifacts reduction,” Opt. Express 23(21), 28050–28058 (2015).
    [Crossref]
  27. V. Sudarshanam and K. Srinivasan, “Universal dynamic phase-calibration technique for fiber-optic interferometric sensors and phase modulators,” Opt. Lett. 14(22), 1287–1289 (1989).
    [Crossref]
  28. L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging (John Wiley & Sons, 2012).
  29. G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools (2000).
  30. H. Nandakumar, “ASKlive,” https://github.com/hn-88/ASKlive (2018).

2018 (1)

H. Nandakumar, A. K. Subramania, and S. Srivastava, “Sub-4-micron full-field optical coherence tomography on a budget,” Sadhana 43(6), 97 (2018).
[Crossref]

2017 (2)

O. Thouvenin, C. Apelian, A. Nahas, M. Fink, and C. Boccara, “Full-field optical coherence tomography as a diagnosis tool: recent progress with multimodal imaging,” Appl. Sci. 7(3), 236 (2017).
[Crossref]

D. Hillmann, H. Spahr, H. Sudkamp, C. Hain, L. Hinkel, G. Franke, and G. Hüttmann, “Off-axis reference beam for full-field swept-source oct and holoscopy,” Opt. Express 25(22), 27770–27784 (2017).
[Crossref]

2016 (2)

J. Fujimoto and E. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT1–OCT13 (2016).
[Crossref]

M. Shalaby and S. S. Al-Sowayan, “Autocorrelation noise free optical coherence tomography using the novel concept of resonant oct (roct),” J. Eur. Opt. Soc. Publ. 12(1), 10 (2016).
[Crossref]

2015 (2)

2014 (1)

2013 (1)

2012 (1)

H. M. Subhash, “Full-field and single-shot full-field optical coherence tomography: A novel technique for biomedical imaging applications,” Adv. Opt. Technol. 2012, 1–26 (2012).
[Crossref]

2008 (2)

Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
[Crossref]

Y. Watanabe and M. Sato, “Quasi-single shot axial-lateral parallel time domain optical coherence tomography with Hilbert transformation,” Opt. Express 16(2), 524–534 (2008).
[Crossref]

2006 (2)

P. Egan, F. Lakestani, M. P. Whelan, and M. J. Connelly, “Full-field optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera,” Opt. Eng. 45(1), 015601 (2006).
[Crossref]

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51(12), 3231–3239 (2006).
[Crossref]

2002 (1)

2001 (1)

1998 (1)

1997 (1)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

1992 (2)

C. K. Hitzenberger, W. Drexler, and A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthalmol. Visual Sci. 33, 98–103 (1992), https://iovs.arvojournals.org/article.aspx?articleid=2160990.

E. A. Swanson, D. Huang, C. P. Lin, C. A. Puliafito, M. R. Hee, and J. G. Fujimoto, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, , et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

1989 (1)

1988 (1)

Al-Sowayan, S. S.

M. Shalaby and S. S. Al-Sowayan, “Autocorrelation noise free optical coherence tomography using the novel concept of resonant oct (roct),” J. Eur. Opt. Soc. Publ. 12(1), 10 (2016).
[Crossref]

Apelian, C.

O. Thouvenin, C. Apelian, A. Nahas, M. Fink, and C. Boccara, “Full-field optical coherence tomography as a diagnosis tool: recent progress with multimodal imaging,” Appl. Sci. 7(3), 236 (2017).
[Crossref]

Auksorius, E.

Beaurepaire, E.

Blanchot, L.

Bo, E.

Boccara, A. C.

Boccara, A.-C.

Boccara, C.

O. Thouvenin, C. Apelian, A. Nahas, M. Fink, and C. Boccara, “Full-field optical coherence tomography as a diagnosis tool: recent progress with multimodal imaging,” Appl. Sci. 7(3), 236 (2017).
[Crossref]

Bourquin, S.

Bradski, G.

G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools (2000).

Chang, C.-Y.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, , et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Chen, S.

Chinn, S. R.

Connelly, M. J.

P. Egan, F. Lakestani, M. P. Whelan, and M. J. Connelly, “Full-field optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera,” Opt. Eng. 45(1), 015601 (2006).
[Crossref]

Drexler, W.

C. K. Hitzenberger, W. Drexler, and A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthalmol. Visual Sci. 33, 98–103 (1992), https://iovs.arvojournals.org/article.aspx?articleid=2160990.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Second Edition (Springer International Publishing, 2015).

Dubois, A.

Egan, P.

P. Egan, F. Lakestani, M. P. Whelan, and M. J. Connelly, “Full-field optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera,” Opt. Eng. 45(1), 015601 (2006).
[Crossref]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Federici, A.

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

C. K. Hitzenberger, W. Drexler, and A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthalmol. Visual Sci. 33, 98–103 (1992), https://iovs.arvojournals.org/article.aspx?articleid=2160990.

A. F. Fercher, K. Mengedoht, and W. Werner, “Eye-length measurement by interferometry with partially coherent light,” Opt. Lett. 13(3), 186–188 (1988).
[Crossref]

Fink, M.

O. Thouvenin, C. Apelian, A. Nahas, M. Fink, and C. Boccara, “Full-field optical coherence tomography as a diagnosis tool: recent progress with multimodal imaging,” Appl. Sci. 7(3), 236 (2017).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, , et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Franke, G.

Fujimoto, J.

J. Fujimoto and E. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT1–OCT13 (2016).
[Crossref]

Fujimoto, J. G.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[Crossref]

E. A. Swanson, D. Huang, C. P. Lin, C. A. Puliafito, M. R. Hee, and J. G. Fujimoto, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992).
[Crossref]

C. A. Puliafito, J. S. Schuman, M. R. Hee, and J. G. Fujimoto, Optical coherence tomography of ocular diseases (SLACK Inc., 1996).

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Second Edition (Springer International Publishing, 2015).

Grebenyuk, A.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, , et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hain, C.

Hee, M. R.

E. A. Swanson, D. Huang, C. P. Lin, C. A. Puliafito, M. R. Hee, and J. G. Fujimoto, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, , et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

C. A. Puliafito, J. S. Schuman, M. R. Hee, and J. G. Fujimoto, Optical coherence tomography of ocular diseases (SLACK Inc., 1996).

Hillmann, D.

Hinkel, L.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

C. K. Hitzenberger, W. Drexler, and A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthalmol. Visual Sci. 33, 98–103 (1992), https://iovs.arvojournals.org/article.aspx?articleid=2160990.

Hrebesh, M. S.

M. S. Hrebesh and M. Sato, “Real-time single-shot full-field OCT based on dual-channel phase-stepper optics and 2D quaternionic analytic signal processing,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, vol. 7168 (International Society for Optics and Photonics, 2009), p. 71681H.

Huang, D.

E. A. Swanson, D. Huang, C. P. Lin, C. A. Puliafito, M. R. Hee, and J. G. Fujimoto, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, , et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Huang, Y.-S.

Hüttmann, G.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Kuo, W.-C.

Kuo, Y.-M.

Lai, C.-M.

Lakestani, F.

P. Egan, F. Lakestani, M. P. Whelan, and M. J. Connelly, “Full-field optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera,” Opt. Eng. 45(1), 015601 (2006).
[Crossref]

Lebec, M.

Lin, C. P.

E. A. Swanson, D. Huang, C. P. Lin, C. A. Puliafito, M. R. Hee, and J. G. Fujimoto, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, , et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Liu, L.

Liu, X.

Ma, Z.

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51(12), 3231–3239 (2006).
[Crossref]

Mengedoht, K.

Nahas, A.

O. Thouvenin, C. Apelian, A. Nahas, M. Fink, and C. Boccara, “Full-field optical coherence tomography as a diagnosis tool: recent progress with multimodal imaging,” Appl. Sci. 7(3), 236 (2017).
[Crossref]

Nandakumar, H.

H. Nandakumar, A. K. Subramania, and S. Srivastava, “Sub-4-micron full-field optical coherence tomography on a budget,” Sadhana 43(6), 97 (2018).
[Crossref]

H. Nandakumar, “ASKlive,” https://github.com/hn-88/ASKlive (2018).

Puliafito, C. A.

E. A. Swanson, D. Huang, C. P. Lin, C. A. Puliafito, M. R. Hee, and J. G. Fujimoto, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, , et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

C. A. Puliafito, J. S. Schuman, M. R. Hee, and J. G. Fujimoto, Optical coherence tomography of ocular diseases (SLACK Inc., 1996).

Ryabukho, V.

Saint-Jalmes, H.

Salathé, R. P.

Sato, M.

Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
[Crossref]

Y. Watanabe and M. Sato, “Quasi-single shot axial-lateral parallel time domain optical coherence tomography with Hilbert transformation,” Opt. Express 16(2), 524–534 (2008).
[Crossref]

M. S. Hrebesh and M. Sato, “Real-time single-shot full-field OCT based on dual-channel phase-stepper optics and 2D quaternionic analytic signal processing,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, vol. 7168 (International Society for Optics and Photonics, 2009), p. 71681H.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, , et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

C. A. Puliafito, J. S. Schuman, M. R. Hee, and J. G. Fujimoto, Optical coherence tomography of ocular diseases (SLACK Inc., 1996).

Seitz, P.

Shalaby, M.

M. Shalaby and S. S. Al-Sowayan, “Autocorrelation noise free optical coherence tomography using the novel concept of resonant oct (roct),” J. Eur. Opt. Soc. Publ. 12(1), 10 (2016).
[Crossref]

Spahr, H.

Srinivasan, K.

Srivastava, S.

H. Nandakumar, A. K. Subramania, and S. Srivastava, “Sub-4-micron full-field optical coherence tomography on a budget,” Sadhana 43(6), 97 (2018).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, , et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Subhash, H. M.

H. M. Subhash, “Full-field and single-shot full-field optical coherence tomography: A novel technique for biomedical imaging applications,” Adv. Opt. Technol. 2012, 1–26 (2012).
[Crossref]

Subramania, A. K.

H. Nandakumar, A. K. Subramania, and S. Srivastava, “Sub-4-micron full-field optical coherence tomography on a budget,” Sadhana 43(6), 97 (2018).
[Crossref]

Sudarshanam, V.

Sudkamp, H.

Swanson, E.

J. Fujimoto and E. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT1–OCT13 (2016).
[Crossref]

Swanson, E. A.

Thouvenin, O.

O. Thouvenin, C. Apelian, A. Nahas, M. Fink, and C. Boccara, “Full-field optical coherence tomography as a diagnosis tool: recent progress with multimodal imaging,” Appl. Sci. 7(3), 236 (2017).
[Crossref]

Vabre, L.

Wang, L. V.

L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging (John Wiley & Sons, 2012).

Wang, R. K.

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51(12), 3231–3239 (2006).
[Crossref]

Wang, X.

Watanabe, Y.

Y. Watanabe and M. Sato, “Quasi-single shot axial-lateral parallel time domain optical coherence tomography with Hilbert transformation,” Opt. Express 16(2), 524–534 (2008).
[Crossref]

Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
[Crossref]

Werner, W.

Whelan, M. P.

P. Egan, F. Lakestani, M. P. Whelan, and M. J. Connelly, “Full-field optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera,” Opt. Eng. 45(1), 015601 (2006).
[Crossref]

Wu, H.-i.

L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging (John Wiley & Sons, 2012).

Yu, X.

Adv. Opt. Technol. (1)

H. M. Subhash, “Full-field and single-shot full-field optical coherence tomography: A novel technique for biomedical imaging applications,” Adv. Opt. Technol. 2012, 1–26 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Sci. (1)

O. Thouvenin, C. Apelian, A. Nahas, M. Fink, and C. Boccara, “Full-field optical coherence tomography as a diagnosis tool: recent progress with multimodal imaging,” Appl. Sci. 7(3), 236 (2017).
[Crossref]

Biomed. Opt. Express (1)

Invest. Ophthalmol. Visual Sci. (2)

C. K. Hitzenberger, W. Drexler, and A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthalmol. Visual Sci. 33, 98–103 (1992), https://iovs.arvojournals.org/article.aspx?articleid=2160990.

J. Fujimoto and E. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT1–OCT13 (2016).
[Crossref]

J. Eur. Opt. Soc. Publ. (1)

M. Shalaby and S. S. Al-Sowayan, “Autocorrelation noise free optical coherence tomography using the novel concept of resonant oct (roct),” J. Eur. Opt. Soc. Publ. 12(1), 10 (2016).
[Crossref]

Opt. Commun. (2)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
[Crossref]

Opt. Eng. (1)

P. Egan, F. Lakestani, M. P. Whelan, and M. J. Connelly, “Full-field optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera,” Opt. Eng. 45(1), 015601 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Phys. Med. Biol. (1)

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51(12), 3231–3239 (2006).
[Crossref]

Sadhana (1)

H. Nandakumar, A. K. Subramania, and S. Srivastava, “Sub-4-micron full-field optical coherence tomography on a budget,” Sadhana 43(6), 97 (2018).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, , et al., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Other (6)

C. A. Puliafito, J. S. Schuman, M. R. Hee, and J. G. Fujimoto, Optical coherence tomography of ocular diseases (SLACK Inc., 1996).

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Second Edition (Springer International Publishing, 2015).

M. S. Hrebesh and M. Sato, “Real-time single-shot full-field OCT based on dual-channel phase-stepper optics and 2D quaternionic analytic signal processing,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, vol. 7168 (International Society for Optics and Photonics, 2009), p. 71681H.

L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging (John Wiley & Sons, 2012).

G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools (2000).

H. Nandakumar, “ASKlive,” https://github.com/hn-88/ASKlive (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of our OCT setup.
Fig. 2.
Fig. 2. Comparison of background subtraction methods when imaging a metallic sample. En-face single-shot and averaged images using, (a) and (b) the ${J_0}$ null technique, (c) and (d) ${\pi }$ phase-shifting, (e) and (f) alternate frame subtraction. The ${J_0}$ null technique is tolerant to phase noise induced by sample vibration, while the other techniques result in banding artifacts and distortion. A lateral area of 7.5 mm x 5.6 mm is imaged here.
Fig. 3.
Fig. 3. Comparison of background subtraction methods when imaging an onion skin moving at 2 ${\mu m/s}$. B-scan single-shot and averaged images respectively using the ${J_0}$ null technique (a) and (b), ${\pi }$ phase-shifting (c) and (d), and alternate frame subtraction (e) and (f). The ${J_0}$ null technique is tolerant to phase noise induced by sample motion, while the other techniques result in missing layers in the single-shot B-scans. The lateral extent along the x-axis is 7.5 mm and the axial extent is 100 ${\mu m}$ for these B-scans.
Fig. 4.
Fig. 4. Comparison of background subtraction methods when imaging a volunteer’s finger, stabilized by pressing it against a glass plate. En-face single-shot and averaged images respectively using the ${J_0}$ null technique (a) and (b), ${\pi }$ phase-shifting (c) and (d), and alternate frame subtraction (e) and (f). The ${J_0}$ null technique is tolerant to phase noise induced by sample motion, while the other techniques result in en-face images with banding artifacts pointed out by the arrows. The area imaged here is 7.5 mm by 5.6 mm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Δz=2ln2πλ2Δλ.
Δr=4λfπD
I(x,y)=Iinc(x,y)+A(x,y)cos[ϕ(x,y)]
I(x,y,t)=Iinc(x,y)+A(x,y)cos[ϕ(x,y)+Msin(ωt+θ)]
cos[xsin(θ)]=J0(x)+2n=1J2n(x)cos(2nθ)
sin[xsin(θ)]=2n=1J2n1(x)sin[(2n1)θ]
I(x,y,t)=Iinc(x,y)+A(x,y){cos[ϕ(x,y)](J0(M)+2n=1J2n(M)cos[2n(ωt+θ)])sin[ϕ(x,y)]2n=1J2n1(M)sin[(2n1)(ωt+θ)]}
Isub(x,y)=A(x,y)cos[ϕ(x,y)]
I(x,y,k)=S(k)rR2+ 2S(k)rRrs(x,y,ls)cos(2k(nslslR))dls+ S(k)|rs(x,y,ls)exp[i2k(nsls)]dls|2
IJ0(x,y,k)=S(k)rR2+ 2S(k)rRrs(x,y,ls)cos[2k(nslslR)Msin(ωt+θ)]dls+ S(k)|rs(x,y,ls)exp[i2k(nsls)]dls|2
Iπ(x,y)=Iinc(x,y)+A(x,y)cos[ϕ(x,y)+π]
Iadj(x,y)=Iinc(x,y)+A(x,y)cos[ϕ(x,y)+β]

Metrics