Abstract

We present the first measurements of the [Xe]4f75d16s6p$\;^{11}{F_J}$ excited state hyperfine coefficients and isotope shifts of spin-forbidden transitions of atomic gadolinium (Gd) at 726 and 743 nm in a hollow cathode gas discharge. In addition, we performed a King Plot analysis to determine specific mass shift and field shift constants for these lines. Moreover, we observed King Plot nonlinearity for the 743 nm transition, which is an effect recently proposed to aid in searches for hypothetical new light bosons. Spectroscopic results obtained from this study will facilitate the development of more efficient isotope separation techniques, enable narrowband laser cooling of Gd for novel dipolar physics investigations, and foster technological advances in high precision atomic clocks and quantum enhanced metrology.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Isotope shifts of multipole lines of Pb I and Pb II

Tomasz Jaroslaw Wasowicz, Slawomir Werbowy, Jerzy Kwela, and Ryszard Drozdowski
J. Opt. Soc. Am. B 27(12) 2628-2631 (2010)

Absolute frequency and isotope shift measurements of mercury 1S03P1 transition

Marcin Witkowski, Grzegorz Kowzan, Rodolfo Munoz-Rodriguez, Roman Ciuryło, Piotr Szymon Żuchowski, Piotr Masłowski, and Michał Zawada
Opt. Express 27(8) 11069-11083 (2019)

Measurement of hyperfine structure and isotope shifts in the Dy 421 nm transition

Nathan Leefer, Arman Cingöz, and Dmitry Budker
Opt. Lett. 34(17) 2548-2550 (2009)

References

  • View by:
  • |
  • |
  • |

  1. P. Pyykko, “Magically magnetic gadolinium,” Nat. Chem. 7(8), 680 (2015).
    [Crossref]
  2. E. J. Angstmann, V. A. Dzuba, V. V. Flambuam, A. Yu Nevsky, and S. G. Karshenboim, “Narrow atomic transitions with enhanced sensitivity to variation of the fine structure constant,” J. Phys. B: At., Mol. Opt. Phys. 39(8), 1937–1944 (2006).
    [Crossref]
  3. A. Kozlov, V. A. Dzuba, and V. V. Flambaum, “Optical atomic clocks with suppressed blackbody-radiation shift,” Phys. Rev. A 90(4), 042505 (2014).
    [Crossref]
  4. A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, “Magnetic Field-Induced Spectroscopy of Forbidden Optical Transitions with Application to Lattice-Based Optical Atomic Clocks,” Phys. Rev. Lett. 96(8), 083001 (2006).
    [Crossref]
  5. S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Laser Cooling to Quantum Degeneracy,” Phys. Rev. Lett. 110(26), 263003 (2013).
    [Crossref]
  6. C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute Transition Frequencies and Quantum Interference in a Frequency Comb Based Measurement of the 6,7Li D Lines,” Phys. Rev. Lett. 107(2), 023001 (2011).
    [Crossref]
  7. R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, and J. C. Travis, “Galvanic detection of optical absorptions in a gas discharge,” Appl. Phys. Lett. 29(11), 727–729 (1976).
    [Crossref]
  8. C. C. Davis, Lasers and Electro-Optics (Cambridge University Press, New York, 1996)
  9. I. I. Sobelman, Atomic spectra and radiative transitions (Springer-Verlag, Berlin, 1979).
  10. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, 1974).
  11. R. D. Cowarn, The Theory of Atomic Structure and Spectra (University of California Press, Los-Angeles, 1981).
  12. S. Buttgenback, Hyperfine Structure in 4d- and 5d- Shell Atom (Springer-Verlag, Berlin, 1982).
  13. E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49(1), 31–75 (1977).
    [Crossref]
  14. W. G. Jin, H. Sakata, M. Wakasugi, T. Horiguchi, and Y. Yoshizawa, “J dependences of the isotope shift and hyperfine structure in Gd i 4f75d6s29D, 4f75d6s6p9D, and 9F terms,” Phys. Rev. A. 42(3), 1416–1423 (1990).
    [Crossref]
  15. G. K. Woodgate, Elementary atomic structure (McGraw-Hill, 1970).
  16. W. H. King, Isotope Shifts in Atomic Spectra (Plenum, 1984).
  17. G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. Dejager, “Nuclear Ground State Charge Radii from Electromagnetic Interactions,” At. Data Nucl. Data Tables 60(2), 177–285 (1995).
    [Crossref]
  18. K. Blaum, B. A. Bushaw, S. Diel, C. H. Geppert, A. Kuschnick, P. Muller, W. Nortershauser, A. Schmitt, and K. Wendt, Isotope shifts and hyperfine structure in the [Xe]4f75d 6s29DJ → [Xe]4f75d 6s 6p 9FJ+1 transitions of gadolinium, EPD: Atm. Mol. Opt. P. Phys. 11, 37–44 (2000).
  19. D. C. Morton, “Atomic Data for Resonance Absorption Lines. II. Wavelengths Longward of the Lyman Limit for Heavy Elements.,” Astr. J., Suppl. Ser. 130, 403–436 (2000).
  20. P. Aufmuth, K. Heilig, and A. Steudel, “Changes in mean-square nuclear charge radii from optical isotope shifts,” At. Data Nucl. Data Tables 37(3), 455–490 (1987).
    [Crossref]
  21. H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: Isotope shifts and changes in mean-square nuclear charge radii,” Z. Phys. A 296(4), 281–286 (1980).
    [Crossref]
  22. J. R. Taylor, An Introduction to Error Analysis (University Science Books, 1997).
  23. W.C. Martin, R. Zalubas, and L. Hagan, “Atomic Energy Levels –The Rare Earth Elements,” Nat. Stand. Ref. Data Ser., NSRDS-NBS 60, 422 (1978).
  24. V. V. Flambaum, A. J. Geddes, and A. V. Viatkina, “Isotope shift, nonlinearity of King plots, and the search for new particles,” Phys. Rev. A. 97(3), 032510 (2018).
    [Crossref]

2018 (1)

V. V. Flambaum, A. J. Geddes, and A. V. Viatkina, “Isotope shift, nonlinearity of King plots, and the search for new particles,” Phys. Rev. A. 97(3), 032510 (2018).
[Crossref]

2015 (1)

P. Pyykko, “Magically magnetic gadolinium,” Nat. Chem. 7(8), 680 (2015).
[Crossref]

2014 (1)

A. Kozlov, V. A. Dzuba, and V. V. Flambaum, “Optical atomic clocks with suppressed blackbody-radiation shift,” Phys. Rev. A 90(4), 042505 (2014).
[Crossref]

2013 (1)

S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Laser Cooling to Quantum Degeneracy,” Phys. Rev. Lett. 110(26), 263003 (2013).
[Crossref]

2011 (1)

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute Transition Frequencies and Quantum Interference in a Frequency Comb Based Measurement of the 6,7Li D Lines,” Phys. Rev. Lett. 107(2), 023001 (2011).
[Crossref]

2006 (2)

A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, “Magnetic Field-Induced Spectroscopy of Forbidden Optical Transitions with Application to Lattice-Based Optical Atomic Clocks,” Phys. Rev. Lett. 96(8), 083001 (2006).
[Crossref]

E. J. Angstmann, V. A. Dzuba, V. V. Flambuam, A. Yu Nevsky, and S. G. Karshenboim, “Narrow atomic transitions with enhanced sensitivity to variation of the fine structure constant,” J. Phys. B: At., Mol. Opt. Phys. 39(8), 1937–1944 (2006).
[Crossref]

2000 (2)

K. Blaum, B. A. Bushaw, S. Diel, C. H. Geppert, A. Kuschnick, P. Muller, W. Nortershauser, A. Schmitt, and K. Wendt, Isotope shifts and hyperfine structure in the [Xe]4f75d 6s29DJ → [Xe]4f75d 6s 6p 9FJ+1 transitions of gadolinium, EPD: Atm. Mol. Opt. P. Phys. 11, 37–44 (2000).

D. C. Morton, “Atomic Data for Resonance Absorption Lines. II. Wavelengths Longward of the Lyman Limit for Heavy Elements.,” Astr. J., Suppl. Ser. 130, 403–436 (2000).

1995 (1)

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. Dejager, “Nuclear Ground State Charge Radii from Electromagnetic Interactions,” At. Data Nucl. Data Tables 60(2), 177–285 (1995).
[Crossref]

1990 (1)

W. G. Jin, H. Sakata, M. Wakasugi, T. Horiguchi, and Y. Yoshizawa, “J dependences of the isotope shift and hyperfine structure in Gd i 4f75d6s29D, 4f75d6s6p9D, and 9F terms,” Phys. Rev. A. 42(3), 1416–1423 (1990).
[Crossref]

1987 (1)

P. Aufmuth, K. Heilig, and A. Steudel, “Changes in mean-square nuclear charge radii from optical isotope shifts,” At. Data Nucl. Data Tables 37(3), 455–490 (1987).
[Crossref]

1980 (1)

H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: Isotope shifts and changes in mean-square nuclear charge radii,” Z. Phys. A 296(4), 281–286 (1980).
[Crossref]

1978 (1)

W.C. Martin, R. Zalubas, and L. Hagan, “Atomic Energy Levels –The Rare Earth Elements,” Nat. Stand. Ref. Data Ser., NSRDS-NBS 60, 422 (1978).

1977 (1)

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49(1), 31–75 (1977).
[Crossref]

1976 (1)

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, and J. C. Travis, “Galvanic detection of optical absorptions in a gas discharge,” Appl. Phys. Lett. 29(11), 727–729 (1976).
[Crossref]

Angstmann, E. J.

E. J. Angstmann, V. A. Dzuba, V. V. Flambuam, A. Yu Nevsky, and S. G. Karshenboim, “Narrow atomic transitions with enhanced sensitivity to variation of the fine structure constant,” J. Phys. B: At., Mol. Opt. Phys. 39(8), 1937–1944 (2006).
[Crossref]

Arimondo, E.

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49(1), 31–75 (1977).
[Crossref]

Aufmuth, P.

P. Aufmuth, K. Heilig, and A. Steudel, “Changes in mean-square nuclear charge radii from optical isotope shifts,” At. Data Nucl. Data Tables 37(3), 455–490 (1987).
[Crossref]

Barber, Z. W.

A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, “Magnetic Field-Induced Spectroscopy of Forbidden Optical Transitions with Application to Lattice-Based Optical Atomic Clocks,” Phys. Rev. Lett. 96(8), 083001 (2006).
[Crossref]

Bernhardt, C.

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. Dejager, “Nuclear Ground State Charge Radii from Electromagnetic Interactions,” At. Data Nucl. Data Tables 60(2), 177–285 (1995).
[Crossref]

Blaum, K.

K. Blaum, B. A. Bushaw, S. Diel, C. H. Geppert, A. Kuschnick, P. Muller, W. Nortershauser, A. Schmitt, and K. Wendt, Isotope shifts and hyperfine structure in the [Xe]4f75d 6s29DJ → [Xe]4f75d 6s 6p 9FJ+1 transitions of gadolinium, EPD: Atm. Mol. Opt. P. Phys. 11, 37–44 (2000).

Brand, H.

H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: Isotope shifts and changes in mean-square nuclear charge radii,” Z. Phys. A 296(4), 281–286 (1980).
[Crossref]

Brewer, S. M.

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute Transition Frequencies and Quantum Interference in a Frequency Comb Based Measurement of the 6,7Li D Lines,” Phys. Rev. Lett. 107(2), 023001 (2011).
[Crossref]

Brown, R. C.

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute Transition Frequencies and Quantum Interference in a Frequency Comb Based Measurement of the 6,7Li D Lines,” Phys. Rev. Lett. 107(2), 023001 (2011).
[Crossref]

Bushaw, B. A.

K. Blaum, B. A. Bushaw, S. Diel, C. H. Geppert, A. Kuschnick, P. Muller, W. Nortershauser, A. Schmitt, and K. Wendt, Isotope shifts and hyperfine structure in the [Xe]4f75d 6s29DJ → [Xe]4f75d 6s 6p 9FJ+1 transitions of gadolinium, EPD: Atm. Mol. Opt. P. Phys. 11, 37–44 (2000).

Buttgenback, S.

S. Buttgenback, Hyperfine Structure in 4d- and 5d- Shell Atom (Springer-Verlag, Berlin, 1982).

Cowarn, R. D.

R. D. Cowarn, The Theory of Atomic Structure and Spectra (University of California Press, Los-Angeles, 1981).

Davis, C. C.

C. C. Davis, Lasers and Electro-Optics (Cambridge University Press, New York, 1996)

Dejager, C. W.

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. Dejager, “Nuclear Ground State Charge Radii from Electromagnetic Interactions,” At. Data Nucl. Data Tables 60(2), 177–285 (1995).
[Crossref]

Diel, S.

K. Blaum, B. A. Bushaw, S. Diel, C. H. Geppert, A. Kuschnick, P. Muller, W. Nortershauser, A. Schmitt, and K. Wendt, Isotope shifts and hyperfine structure in the [Xe]4f75d 6s29DJ → [Xe]4f75d 6s 6p 9FJ+1 transitions of gadolinium, EPD: Atm. Mol. Opt. P. Phys. 11, 37–44 (2000).

Dzuba, V. A.

A. Kozlov, V. A. Dzuba, and V. V. Flambaum, “Optical atomic clocks with suppressed blackbody-radiation shift,” Phys. Rev. A 90(4), 042505 (2014).
[Crossref]

E. J. Angstmann, V. A. Dzuba, V. V. Flambuam, A. Yu Nevsky, and S. G. Karshenboim, “Narrow atomic transitions with enhanced sensitivity to variation of the fine structure constant,” J. Phys. B: At., Mol. Opt. Phys. 39(8), 1937–1944 (2006).
[Crossref]

Edmonds, A. R.

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, 1974).

Flambaum, V. V.

V. V. Flambaum, A. J. Geddes, and A. V. Viatkina, “Isotope shift, nonlinearity of King plots, and the search for new particles,” Phys. Rev. A. 97(3), 032510 (2018).
[Crossref]

A. Kozlov, V. A. Dzuba, and V. V. Flambaum, “Optical atomic clocks with suppressed blackbody-radiation shift,” Phys. Rev. A 90(4), 042505 (2014).
[Crossref]

Flambuam, V. V.

E. J. Angstmann, V. A. Dzuba, V. V. Flambuam, A. Yu Nevsky, and S. G. Karshenboim, “Narrow atomic transitions with enhanced sensitivity to variation of the fine structure constant,” J. Phys. B: At., Mol. Opt. Phys. 39(8), 1937–1944 (2006).
[Crossref]

Fricke, G.

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. Dejager, “Nuclear Ground State Charge Radii from Electromagnetic Interactions,” At. Data Nucl. Data Tables 60(2), 177–285 (1995).
[Crossref]

Geddes, A. J.

V. V. Flambaum, A. J. Geddes, and A. V. Viatkina, “Isotope shift, nonlinearity of King plots, and the search for new particles,” Phys. Rev. A. 97(3), 032510 (2018).
[Crossref]

Geppert, C. H.

K. Blaum, B. A. Bushaw, S. Diel, C. H. Geppert, A. Kuschnick, P. Muller, W. Nortershauser, A. Schmitt, and K. Wendt, Isotope shifts and hyperfine structure in the [Xe]4f75d 6s29DJ → [Xe]4f75d 6s 6p 9FJ+1 transitions of gadolinium, EPD: Atm. Mol. Opt. P. Phys. 11, 37–44 (2000).

Gillaspy, J. D.

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute Transition Frequencies and Quantum Interference in a Frequency Comb Based Measurement of the 6,7Li D Lines,” Phys. Rev. Lett. 107(2), 023001 (2011).
[Crossref]

Green, R. B.

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, and J. C. Travis, “Galvanic detection of optical absorptions in a gas discharge,” Appl. Phys. Lett. 29(11), 727–729 (1976).
[Crossref]

Grimm, R.

S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Laser Cooling to Quantum Degeneracy,” Phys. Rev. Lett. 110(26), 263003 (2013).
[Crossref]

Hagan, L.

W.C. Martin, R. Zalubas, and L. Hagan, “Atomic Energy Levels –The Rare Earth Elements,” Nat. Stand. Ref. Data Ser., NSRDS-NBS 60, 422 (1978).

Heilig, K.

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. Dejager, “Nuclear Ground State Charge Radii from Electromagnetic Interactions,” At. Data Nucl. Data Tables 60(2), 177–285 (1995).
[Crossref]

P. Aufmuth, K. Heilig, and A. Steudel, “Changes in mean-square nuclear charge radii from optical isotope shifts,” At. Data Nucl. Data Tables 37(3), 455–490 (1987).
[Crossref]

Hollberg, L.

A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, “Magnetic Field-Induced Spectroscopy of Forbidden Optical Transitions with Application to Lattice-Based Optical Atomic Clocks,” Phys. Rev. Lett. 96(8), 083001 (2006).
[Crossref]

Horiguchi, T.

W. G. Jin, H. Sakata, M. Wakasugi, T. Horiguchi, and Y. Yoshizawa, “J dependences of the isotope shift and hyperfine structure in Gd i 4f75d6s29D, 4f75d6s6p9D, and 9F terms,” Phys. Rev. A. 42(3), 1416–1423 (1990).
[Crossref]

Hoyt, C. W.

A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, “Magnetic Field-Induced Spectroscopy of Forbidden Optical Transitions with Application to Lattice-Based Optical Atomic Clocks,” Phys. Rev. Lett. 96(8), 083001 (2006).
[Crossref]

Inguscio, M.

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49(1), 31–75 (1977).
[Crossref]

Jin, W. G.

W. G. Jin, H. Sakata, M. Wakasugi, T. Horiguchi, and Y. Yoshizawa, “J dependences of the isotope shift and hyperfine structure in Gd i 4f75d6s29D, 4f75d6s6p9D, and 9F terms,” Phys. Rev. A. 42(3), 1416–1423 (1990).
[Crossref]

Karshenboim, S. G.

E. J. Angstmann, V. A. Dzuba, V. V. Flambuam, A. Yu Nevsky, and S. G. Karshenboim, “Narrow atomic transitions with enhanced sensitivity to variation of the fine structure constant,” J. Phys. B: At., Mol. Opt. Phys. 39(8), 1937–1944 (2006).
[Crossref]

Keller, R. A.

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, and J. C. Travis, “Galvanic detection of optical absorptions in a gas discharge,” Appl. Phys. Lett. 29(11), 727–729 (1976).
[Crossref]

King, W. H.

W. H. King, Isotope Shifts in Atomic Spectra (Plenum, 1984).

Kozlov, A.

A. Kozlov, V. A. Dzuba, and V. V. Flambaum, “Optical atomic clocks with suppressed blackbody-radiation shift,” Phys. Rev. A 90(4), 042505 (2014).
[Crossref]

Kuschnick, A.

K. Blaum, B. A. Bushaw, S. Diel, C. H. Geppert, A. Kuschnick, P. Muller, W. Nortershauser, A. Schmitt, and K. Wendt, Isotope shifts and hyperfine structure in the [Xe]4f75d 6s29DJ → [Xe]4f75d 6s 6p 9FJ+1 transitions of gadolinium, EPD: Atm. Mol. Opt. P. Phys. 11, 37–44 (2000).

Luther, G. G.

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, and J. C. Travis, “Galvanic detection of optical absorptions in a gas discharge,” Appl. Phys. Lett. 29(11), 727–729 (1976).
[Crossref]

Martin, W.C.

W.C. Martin, R. Zalubas, and L. Hagan, “Atomic Energy Levels –The Rare Earth Elements,” Nat. Stand. Ref. Data Ser., NSRDS-NBS 60, 422 (1978).

Morton, D. C.

D. C. Morton, “Atomic Data for Resonance Absorption Lines. II. Wavelengths Longward of the Lyman Limit for Heavy Elements.,” Astr. J., Suppl. Ser. 130, 403–436 (2000).

Muller, P.

K. Blaum, B. A. Bushaw, S. Diel, C. H. Geppert, A. Kuschnick, P. Muller, W. Nortershauser, A. Schmitt, and K. Wendt, Isotope shifts and hyperfine structure in the [Xe]4f75d 6s29DJ → [Xe]4f75d 6s 6p 9FJ+1 transitions of gadolinium, EPD: Atm. Mol. Opt. P. Phys. 11, 37–44 (2000).

Nevsky, A. Yu

E. J. Angstmann, V. A. Dzuba, V. V. Flambuam, A. Yu Nevsky, and S. G. Karshenboim, “Narrow atomic transitions with enhanced sensitivity to variation of the fine structure constant,” J. Phys. B: At., Mol. Opt. Phys. 39(8), 1937–1944 (2006).
[Crossref]

Nortershauser, W.

K. Blaum, B. A. Bushaw, S. Diel, C. H. Geppert, A. Kuschnick, P. Muller, W. Nortershauser, A. Schmitt, and K. Wendt, Isotope shifts and hyperfine structure in the [Xe]4f75d 6s29DJ → [Xe]4f75d 6s 6p 9FJ+1 transitions of gadolinium, EPD: Atm. Mol. Opt. P. Phys. 11, 37–44 (2000).

Oates, C. W.

A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, “Magnetic Field-Induced Spectroscopy of Forbidden Optical Transitions with Application to Lattice-Based Optical Atomic Clocks,” Phys. Rev. Lett. 96(8), 083001 (2006).
[Crossref]

Pasquiou, B.

S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Laser Cooling to Quantum Degeneracy,” Phys. Rev. Lett. 110(26), 263003 (2013).
[Crossref]

Porto, J. V.

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute Transition Frequencies and Quantum Interference in a Frequency Comb Based Measurement of the 6,7Li D Lines,” Phys. Rev. Lett. 107(2), 023001 (2011).
[Crossref]

Pyykko, P.

P. Pyykko, “Magically magnetic gadolinium,” Nat. Chem. 7(8), 680 (2015).
[Crossref]

Sakata, H.

W. G. Jin, H. Sakata, M. Wakasugi, T. Horiguchi, and Y. Yoshizawa, “J dependences of the isotope shift and hyperfine structure in Gd i 4f75d6s29D, 4f75d6s6p9D, and 9F terms,” Phys. Rev. A. 42(3), 1416–1423 (1990).
[Crossref]

Sansonetti, C. J.

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute Transition Frequencies and Quantum Interference in a Frequency Comb Based Measurement of the 6,7Li D Lines,” Phys. Rev. Lett. 107(2), 023001 (2011).
[Crossref]

Schaller, L. A.

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. Dejager, “Nuclear Ground State Charge Radii from Electromagnetic Interactions,” At. Data Nucl. Data Tables 60(2), 177–285 (1995).
[Crossref]

Schellenberg, L.

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. Dejager, “Nuclear Ground State Charge Radii from Electromagnetic Interactions,” At. Data Nucl. Data Tables 60(2), 177–285 (1995).
[Crossref]

Schenck, P. K.

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, and J. C. Travis, “Galvanic detection of optical absorptions in a gas discharge,” Appl. Phys. Lett. 29(11), 727–729 (1976).
[Crossref]

Schmitt, A.

K. Blaum, B. A. Bushaw, S. Diel, C. H. Geppert, A. Kuschnick, P. Muller, W. Nortershauser, A. Schmitt, and K. Wendt, Isotope shifts and hyperfine structure in the [Xe]4f75d 6s29DJ → [Xe]4f75d 6s 6p 9FJ+1 transitions of gadolinium, EPD: Atm. Mol. Opt. P. Phys. 11, 37–44 (2000).

Schreck, F.

S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Laser Cooling to Quantum Degeneracy,” Phys. Rev. Lett. 110(26), 263003 (2013).
[Crossref]

Seibert, B.

H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: Isotope shifts and changes in mean-square nuclear charge radii,” Z. Phys. A 296(4), 281–286 (1980).
[Crossref]

Shera, E. B.

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. Dejager, “Nuclear Ground State Charge Radii from Electromagnetic Interactions,” At. Data Nucl. Data Tables 60(2), 177–285 (1995).
[Crossref]

Simien, C. E.

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute Transition Frequencies and Quantum Interference in a Frequency Comb Based Measurement of the 6,7Li D Lines,” Phys. Rev. Lett. 107(2), 023001 (2011).
[Crossref]

Sobelman, I. I.

I. I. Sobelman, Atomic spectra and radiative transitions (Springer-Verlag, Berlin, 1979).

Stellmer, S.

S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Laser Cooling to Quantum Degeneracy,” Phys. Rev. Lett. 110(26), 263003 (2013).
[Crossref]

Steudel, A.

P. Aufmuth, K. Heilig, and A. Steudel, “Changes in mean-square nuclear charge radii from optical isotope shifts,” At. Data Nucl. Data Tables 37(3), 455–490 (1987).
[Crossref]

H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: Isotope shifts and changes in mean-square nuclear charge radii,” Z. Phys. A 296(4), 281–286 (1980).
[Crossref]

Taichenachev, A. V.

A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, “Magnetic Field-Induced Spectroscopy of Forbidden Optical Transitions with Application to Lattice-Based Optical Atomic Clocks,” Phys. Rev. Lett. 96(8), 083001 (2006).
[Crossref]

Tan, J. N.

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute Transition Frequencies and Quantum Interference in a Frequency Comb Based Measurement of the 6,7Li D Lines,” Phys. Rev. Lett. 107(2), 023001 (2011).
[Crossref]

Taylor, J. R.

J. R. Taylor, An Introduction to Error Analysis (University Science Books, 1997).

Travis, J. C.

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, and J. C. Travis, “Galvanic detection of optical absorptions in a gas discharge,” Appl. Phys. Lett. 29(11), 727–729 (1976).
[Crossref]

Viatkina, A. V.

V. V. Flambaum, A. J. Geddes, and A. V. Viatkina, “Isotope shift, nonlinearity of King plots, and the search for new particles,” Phys. Rev. A. 97(3), 032510 (2018).
[Crossref]

Violino, P.

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49(1), 31–75 (1977).
[Crossref]

Wakasugi, M.

W. G. Jin, H. Sakata, M. Wakasugi, T. Horiguchi, and Y. Yoshizawa, “J dependences of the isotope shift and hyperfine structure in Gd i 4f75d6s29D, 4f75d6s6p9D, and 9F terms,” Phys. Rev. A. 42(3), 1416–1423 (1990).
[Crossref]

Wendt, K.

K. Blaum, B. A. Bushaw, S. Diel, C. H. Geppert, A. Kuschnick, P. Muller, W. Nortershauser, A. Schmitt, and K. Wendt, Isotope shifts and hyperfine structure in the [Xe]4f75d 6s29DJ → [Xe]4f75d 6s 6p 9FJ+1 transitions of gadolinium, EPD: Atm. Mol. Opt. P. Phys. 11, 37–44 (2000).

Woodgate, G. K.

G. K. Woodgate, Elementary atomic structure (McGraw-Hill, 1970).

Wu, S.

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute Transition Frequencies and Quantum Interference in a Frequency Comb Based Measurement of the 6,7Li D Lines,” Phys. Rev. Lett. 107(2), 023001 (2011).
[Crossref]

Yoshizawa, Y.

W. G. Jin, H. Sakata, M. Wakasugi, T. Horiguchi, and Y. Yoshizawa, “J dependences of the isotope shift and hyperfine structure in Gd i 4f75d6s29D, 4f75d6s6p9D, and 9F terms,” Phys. Rev. A. 42(3), 1416–1423 (1990).
[Crossref]

Yudin, V. I.

A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, “Magnetic Field-Induced Spectroscopy of Forbidden Optical Transitions with Application to Lattice-Based Optical Atomic Clocks,” Phys. Rev. Lett. 96(8), 083001 (2006).
[Crossref]

Zalubas, R.

W.C. Martin, R. Zalubas, and L. Hagan, “Atomic Energy Levels –The Rare Earth Elements,” Nat. Stand. Ref. Data Ser., NSRDS-NBS 60, 422 (1978).

Appl. Phys. Lett. (1)

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, and J. C. Travis, “Galvanic detection of optical absorptions in a gas discharge,” Appl. Phys. Lett. 29(11), 727–729 (1976).
[Crossref]

Astr. J., Suppl. Ser. (1)

D. C. Morton, “Atomic Data for Resonance Absorption Lines. II. Wavelengths Longward of the Lyman Limit for Heavy Elements.,” Astr. J., Suppl. Ser. 130, 403–436 (2000).

At. Data Nucl. Data Tables (2)

P. Aufmuth, K. Heilig, and A. Steudel, “Changes in mean-square nuclear charge radii from optical isotope shifts,” At. Data Nucl. Data Tables 37(3), 455–490 (1987).
[Crossref]

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. Dejager, “Nuclear Ground State Charge Radii from Electromagnetic Interactions,” At. Data Nucl. Data Tables 60(2), 177–285 (1995).
[Crossref]

EPD: Atm. Mol. Opt. P. Phys. (1)

K. Blaum, B. A. Bushaw, S. Diel, C. H. Geppert, A. Kuschnick, P. Muller, W. Nortershauser, A. Schmitt, and K. Wendt, Isotope shifts and hyperfine structure in the [Xe]4f75d 6s29DJ → [Xe]4f75d 6s 6p 9FJ+1 transitions of gadolinium, EPD: Atm. Mol. Opt. P. Phys. 11, 37–44 (2000).

J. Phys. B: At., Mol. Opt. Phys. (1)

E. J. Angstmann, V. A. Dzuba, V. V. Flambuam, A. Yu Nevsky, and S. G. Karshenboim, “Narrow atomic transitions with enhanced sensitivity to variation of the fine structure constant,” J. Phys. B: At., Mol. Opt. Phys. 39(8), 1937–1944 (2006).
[Crossref]

Nat. Chem. (1)

P. Pyykko, “Magically magnetic gadolinium,” Nat. Chem. 7(8), 680 (2015).
[Crossref]

Nat. Stand. Ref. Data Ser., NSRDS-NBS (1)

W.C. Martin, R. Zalubas, and L. Hagan, “Atomic Energy Levels –The Rare Earth Elements,” Nat. Stand. Ref. Data Ser., NSRDS-NBS 60, 422 (1978).

Phys. Rev. A (1)

A. Kozlov, V. A. Dzuba, and V. V. Flambaum, “Optical atomic clocks with suppressed blackbody-radiation shift,” Phys. Rev. A 90(4), 042505 (2014).
[Crossref]

Phys. Rev. A. (2)

W. G. Jin, H. Sakata, M. Wakasugi, T. Horiguchi, and Y. Yoshizawa, “J dependences of the isotope shift and hyperfine structure in Gd i 4f75d6s29D, 4f75d6s6p9D, and 9F terms,” Phys. Rev. A. 42(3), 1416–1423 (1990).
[Crossref]

V. V. Flambaum, A. J. Geddes, and A. V. Viatkina, “Isotope shift, nonlinearity of King plots, and the search for new particles,” Phys. Rev. A. 97(3), 032510 (2018).
[Crossref]

Phys. Rev. Lett. (3)

A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg, “Magnetic Field-Induced Spectroscopy of Forbidden Optical Transitions with Application to Lattice-Based Optical Atomic Clocks,” Phys. Rev. Lett. 96(8), 083001 (2006).
[Crossref]

S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Laser Cooling to Quantum Degeneracy,” Phys. Rev. Lett. 110(26), 263003 (2013).
[Crossref]

C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute Transition Frequencies and Quantum Interference in a Frequency Comb Based Measurement of the 6,7Li D Lines,” Phys. Rev. Lett. 107(2), 023001 (2011).
[Crossref]

Rev. Mod. Phys. (1)

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49(1), 31–75 (1977).
[Crossref]

Z. Phys. A (1)

H. Brand, B. Seibert, and A. Steudel, “Laser-atomic-beam spectroscopy in Sm: Isotope shifts and changes in mean-square nuclear charge radii,” Z. Phys. A 296(4), 281–286 (1980).
[Crossref]

Other (8)

J. R. Taylor, An Introduction to Error Analysis (University Science Books, 1997).

G. K. Woodgate, Elementary atomic structure (McGraw-Hill, 1970).

W. H. King, Isotope Shifts in Atomic Spectra (Plenum, 1984).

C. C. Davis, Lasers and Electro-Optics (Cambridge University Press, New York, 1996)

I. I. Sobelman, Atomic spectra and radiative transitions (Springer-Verlag, Berlin, 1979).

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, 1974).

R. D. Cowarn, The Theory of Atomic Structure and Spectra (University of California Press, Los-Angeles, 1981).

S. Buttgenback, Hyperfine Structure in 4d- and 5d- Shell Atom (Springer-Verlag, Berlin, 1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Energy level diagram of the ground (4f75d6s2) and excited (4f75d6s6p) states of transitions in this study.
Fig. 2.
Fig. 2. Optogalvanic spectrum of $^9{D_4} \to {}^{11}{F_3}$ transition for gadolinium isotopes. The experimental data is the solid thick dark line, a fit to Eq. (1) is the thin dashed line. The vertical lines indicate the relative intensities and positions of hyperfine components. The four intense hyperfine components of Gd 157 (Gd 155) isotope transitions in terms of F numbers are the following: a(a’):4.5,3.5; b(b’):5.5,4.5; c(c’):3.5,2.5; d(d’):2.5,1.5.
Fig. 3.
Fig. 3. King-plot for 726 nm line from Table 1. The normalized reduced isotope shifts are plotted against the normalized reduced isotope shift of a reference transition at 422 nm [15]. The straight line is a least-square fit, and the error bars represent standard error of regression.
Fig. 4.
Fig. 4. King-plot for 743 nm line from Table 1. The circled data point does not fall on the regression line, which indicates nonlinearity of the plot.

Tables (3)

Tables Icon

Table 1. Hyperfine coefficients Ae and Be of excited states.

Tables Icon

Table 2. Gd I measured isotope shifts (νA – ν160) of 9 D J 11 F J transitions. All values in GHz.

Tables Icon

Table 3. Isotope shift constants values for MNM , MSM, Fi , and Ei / Ej

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I ( ν ) = n I n e x p [ ( ν ν n ) 2 0.36 Δ υ i 2 ] ,
I H Y P , n = ( 2 F g + 1 ) ( 2 F e + 1 ) | { J g F e I F g J e 1 } | 2 | J g | | d | | J e | 2 ,
E i   ( F i , J i ,   I ) = 1 2 A i C i + 3 C i ( C i + 1 ) 4 I ( I + 1 ) J i ( J i + 1 ) 8 I ( 2 I 1 ) J i ( 2 J i 1 ) B i ,
A 155 = ( I 155 I 157 ) ( μ 155 μ 157 ) A 157 ,
δ υ i A B = F i λ A B + δ ν M A B A B
δ ν N M , i = M N M , i = m e m n A B A B ν i ,
δ ν F S , i = F i λ A B ,
A B A B   δ υ i A B = F i A B A B λ A B + δ ν S M , i .
δ υ R , i A B = M A B × ( δ υ i A B δ ν N M , i ) × [ A s t d A s t d A s t d A s t d ] ,
δ υ R , i A , B = F i F j δ υ R , j A , B + ( δ ν S M , i F i F j δ ν S M , j ) ( A s t d A s t d A s t d A s t d )
y = ( δ ν S M , i F i F j δ ν S M , j ) ( A s t d A s t d A s t d A s t d ) .

Metrics