Abstract

We have shown experimentally the successful engineering of femtosecond pulse shaping at a 76 MHz repetition rate input pulse with an acousto-optic modulator (AOM). High repetition rate (HRR) femtosecond laser pulse shaping using an AOM in the Fourier plane was incomprehensible because of its intrinsic 100 kHz acoustic update limit. We demonstrate an effective way of pulse selection and a calibration routine (Fourier shift theorem), which enables generation of ∼10 MHz shaped output pulses from the HRR input pulse train. We have generated a temporally shifted rectangular shaped pulse profile by applying modulation on both the phase and amplitude of the ‘sinc’ RF modulation function.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses

C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren
Opt. Lett. 19(10) 737-739 (1994)

Pulse shaper in a loop: demonstration of cascadable ultrafast all-optical code translation

D. S. Seo, Z. Jiang, D. E. Leaird, and A. M. Weiner
Opt. Lett. 29(16) 1864-1866 (2004)

High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses

M. A. Dugan, J. X. Tull, and W. S. Warren
J. Opt. Soc. Am. B 14(9) 2348-2358 (1997)

References

  • View by:
  • |
  • |
  • |

  1. W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent Control of Quantum Dynamics: The Dream is Alive,” Science 259(5101), 1581–1589 (1993).
    [Crossref]
  2. D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374(6), 385–481 (2003).
    [Crossref]
  3. H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond pulse shaping, multiple-pulse spectroscopy, and optical control,” Annu. Rev. Phys. Chem. 46(1), 627–656 (1995).
    [Crossref]
  4. S. Shi and H. Rabitz, “Optimal control of selective vibrational excitation of harmonic linear chain molecules: analytic solution and restricted forms for the optimal fields,” J. Chem. Phys. 92(5), 2927–2937 (1990).
    [Crossref]
  5. S. Rice, B. Amstrup, R. Carlson, and A. Matro, “The use of pulse shaping to control the photodissociation of a diatomic molecule: preventing the best from being the enemy of the good,” J. Chem. Phys. 95(21), 8019–8027 (1991).
    [Crossref]
  6. J. S. Melinger, S. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, “Generation of narrowband inversion with broadband laser pulses,” Phys. Rev. Lett. 68(13), 2000–2003 (1992).
    [Crossref]
  7. S. Chelkowski, A. Bandrauk, and P. B. Corkum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65(19), 2355–2358 (1990).
    [Crossref]
  8. P. Gross, D. Neuhauser, and H. Rabitz, “Optimal control of curve-crossing systems,” J. Chem. Phys. 96(4), 2834–2845 (1992).
    [Crossref]
  9. E. E. Aubanel, J. Gauthier, and A. D. Bandrauk, “Molecular stabilization and angular distribution in photodissociation of H2+ in intense laser fields,” Phys. Rev. A 48(3), 2145–2152 (1993).
    [Crossref]
  10. D. Goswami and W. S. Warren, “Control of chemical dynamics by restricting intramolecular vibrational relaxation,” J. Chem. Phys. 99(6), 4509–4517 (1993).
    [Crossref]
  11. S. H. Shim and M. T. Zanni, “How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
    [Crossref]
  12. K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, “Multidimensional coherent spectroscopy made easy,” Chem. Phys. 341(1-3), 89–94 (2007).
    [Crossref]
  13. K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
    [Crossref]
  14. K. Ohmori, “Wave-Packet and coherent control dynamics,” Annu. Rev. Phys. Chem. 60(1), 487–511 (2009).
    [Crossref]
  15. M. Dantus and V. V. Lozovoy, “Experimental coherent laser control of physicochemical processes,” Chem. Rev. 104(4), 1813–1860 (2004).
    [Crossref]
  16. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Syfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282(5390), 919–922 (1998).
    [Crossref]
  17. D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396(6708), 239–242 (1998).
    [Crossref]
  18. S. Chen, A. Jaron-Becker, and A. Becker, “Time-dependent analysis of few-photon coherent control schemes,” Phys. Rev. A 82(1), 013414 (2010).
    [Crossref]
  19. S. H. Shim, D. B. Strasfeld, and M. T. Zanni, “Generation and characterization of phase and amplitude shaper femtosecond mid-IR pulses,” Opt. Express 14(26), 13120–13130 (2006).
    [Crossref]
  20. A. M. Weiner and J. P. Heritage, “Picosecond and femtosecond Fourier pulse shape synthesis,” Rev. Phys. Appl. 22(12), 1619–1628 (1987).
    [Crossref]
  21. O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24(12), 2530–2536 (1988).
    [Crossref]
  22. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19(3), 161–237 (1995).
    [Crossref]
  23. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [Crossref]
  24. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashortpulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25(8), 575–577 (2000).
    [Crossref]
  25. S. Coudreau, D. Kaplan, and P. Tournois, “Ultraviolet acousto-optic programmable dispersive filter laser pulse shaping in KDP,” Opt. Lett. 31(12), 1899–1901 (2006).
    [Crossref]
  26. C. Gu, Y. Chang, D. Zhang, J. Cheng, and S. Chen, “Femtosecond Laser Pulse Shaping at Megahertz Rate via a Digital Micromirror Device,” Opt. Lett. 40(17), 4018–4021 (2015).
    [Crossref]
  27. C. Gu, D. Zhang, Y. Chang, and S. Chen, “Digital Micromirror Device-based Ultrafast Pulse Shaping for Femtosecond Laser,” Opt. Lett. 40(12), 2870–2873 (2015).
    [Crossref]
  28. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19(10), 737–739 (1994).
    [Crossref]
  29. M. R. Fetterman, D. Goswami, D. Keusters, W. Yang, J.-K. Rhee, and W. S. Warren, “Ultrafast pulse shaping: amplification and characterization,” Opt. Express 3(10), 366–375 (1998).
    [Crossref]
  30. M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80(4-5), 441–444 (2005).
    [Crossref]
  31. M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14(9), 2348–2358 (1997).
    [Crossref]
  32. F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy,” Opt. Express 22(14), 16965–16975 (2014).
    [Crossref]
  33. N. M. Kearns, R. D. Mehlenbacher, A. C. Jones, and M. T. Zanni, “Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz,” Opt. Express 25(7), 7869 (2017).
    [Crossref]
  34. J. X. Tull, M. A. Dugan, and W. S. Warren, “High-Resolution, Ultrafast Laser Pulse Shaping and Its Applications,” Adv. Magn. Opt. Reson. 20, 1–65 (1997).
    [Crossref]
  35. A. Nag, P. A. Chaphekar, and D. Goswami, “Applying genetic algorithm optimization to a folded geometry acousto-optic modulated spatial pulse shaper,” Rev. Sci. Instrum. 81(1), 013101 (2010).
    [Crossref]
  36. W. Yang, D. Keusters, D. Goswami, and W. S. Warren, “Rapid ultrafine-tunable optical delay line at the 1.55-µm wavelength,” Opt. Lett. 23(23), 1843–1845 (1998).
    [Crossref]

2017 (1)

2015 (2)

2014 (1)

2010 (2)

A. Nag, P. A. Chaphekar, and D. Goswami, “Applying genetic algorithm optimization to a folded geometry acousto-optic modulated spatial pulse shaper,” Rev. Sci. Instrum. 81(1), 013101 (2010).
[Crossref]

S. Chen, A. Jaron-Becker, and A. Becker, “Time-dependent analysis of few-photon coherent control schemes,” Phys. Rev. A 82(1), 013414 (2010).
[Crossref]

2009 (3)

S. H. Shim and M. T. Zanni, “How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref]

K. Ohmori, “Wave-Packet and coherent control dynamics,” Annu. Rev. Phys. Chem. 60(1), 487–511 (2009).
[Crossref]

2007 (1)

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, “Multidimensional coherent spectroscopy made easy,” Chem. Phys. 341(1-3), 89–94 (2007).
[Crossref]

2006 (2)

2005 (1)

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80(4-5), 441–444 (2005).
[Crossref]

2004 (1)

M. Dantus and V. V. Lozovoy, “Experimental coherent laser control of physicochemical processes,” Chem. Rev. 104(4), 1813–1860 (2004).
[Crossref]

2003 (1)

D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374(6), 385–481 (2003).
[Crossref]

2000 (2)

1998 (4)

M. R. Fetterman, D. Goswami, D. Keusters, W. Yang, J.-K. Rhee, and W. S. Warren, “Ultrafast pulse shaping: amplification and characterization,” Opt. Express 3(10), 366–375 (1998).
[Crossref]

W. Yang, D. Keusters, D. Goswami, and W. S. Warren, “Rapid ultrafine-tunable optical delay line at the 1.55-µm wavelength,” Opt. Lett. 23(23), 1843–1845 (1998).
[Crossref]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Syfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282(5390), 919–922 (1998).
[Crossref]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396(6708), 239–242 (1998).
[Crossref]

1997 (2)

J. X. Tull, M. A. Dugan, and W. S. Warren, “High-Resolution, Ultrafast Laser Pulse Shaping and Its Applications,” Adv. Magn. Opt. Reson. 20, 1–65 (1997).
[Crossref]

M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14(9), 2348–2358 (1997).
[Crossref]

1995 (2)

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19(3), 161–237 (1995).
[Crossref]

H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond pulse shaping, multiple-pulse spectroscopy, and optical control,” Annu. Rev. Phys. Chem. 46(1), 627–656 (1995).
[Crossref]

1994 (1)

1993 (3)

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent Control of Quantum Dynamics: The Dream is Alive,” Science 259(5101), 1581–1589 (1993).
[Crossref]

E. E. Aubanel, J. Gauthier, and A. D. Bandrauk, “Molecular stabilization and angular distribution in photodissociation of H2+ in intense laser fields,” Phys. Rev. A 48(3), 2145–2152 (1993).
[Crossref]

D. Goswami and W. S. Warren, “Control of chemical dynamics by restricting intramolecular vibrational relaxation,” J. Chem. Phys. 99(6), 4509–4517 (1993).
[Crossref]

1992 (2)

J. S. Melinger, S. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, “Generation of narrowband inversion with broadband laser pulses,” Phys. Rev. Lett. 68(13), 2000–2003 (1992).
[Crossref]

P. Gross, D. Neuhauser, and H. Rabitz, “Optimal control of curve-crossing systems,” J. Chem. Phys. 96(4), 2834–2845 (1992).
[Crossref]

1991 (1)

S. Rice, B. Amstrup, R. Carlson, and A. Matro, “The use of pulse shaping to control the photodissociation of a diatomic molecule: preventing the best from being the enemy of the good,” J. Chem. Phys. 95(21), 8019–8027 (1991).
[Crossref]

1990 (2)

S. Shi and H. Rabitz, “Optimal control of selective vibrational excitation of harmonic linear chain molecules: analytic solution and restricted forms for the optimal fields,” J. Chem. Phys. 92(5), 2927–2937 (1990).
[Crossref]

S. Chelkowski, A. Bandrauk, and P. B. Corkum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65(19), 2355–2358 (1990).
[Crossref]

1988 (1)

O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24(12), 2530–2536 (1988).
[Crossref]

1987 (1)

A. M. Weiner and J. P. Heritage, “Picosecond and femtosecond Fourier pulse shape synthesis,” Rev. Phys. Appl. 22(12), 1619–1628 (1987).
[Crossref]

Amstrup, B.

S. Rice, B. Amstrup, R. Carlson, and A. Matro, “The use of pulse shaping to control the photodissociation of a diatomic molecule: preventing the best from being the enemy of the good,” J. Chem. Phys. 95(21), 8019–8027 (1991).
[Crossref]

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Syfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282(5390), 919–922 (1998).
[Crossref]

Aubanel, E. E.

E. E. Aubanel, J. Gauthier, and A. D. Bandrauk, “Molecular stabilization and angular distribution in photodissociation of H2+ in intense laser fields,” Phys. Rev. A 48(3), 2145–2152 (1993).
[Crossref]

Bandrauk, A.

S. Chelkowski, A. Bandrauk, and P. B. Corkum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65(19), 2355–2358 (1990).
[Crossref]

Bandrauk, A. D.

E. E. Aubanel, J. Gauthier, and A. D. Bandrauk, “Molecular stabilization and angular distribution in photodissociation of H2+ in intense laser fields,” Phys. Rev. A 48(3), 2145–2152 (1993).
[Crossref]

Bartelt, A.

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80(4-5), 441–444 (2005).
[Crossref]

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Syfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282(5390), 919–922 (1998).
[Crossref]

Becker, A.

S. Chen, A. Jaron-Becker, and A. Becker, “Time-dependent analysis of few-photon coherent control schemes,” Phys. Rev. A 82(1), 013414 (2010).
[Crossref]

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Syfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282(5390), 919–922 (1998).
[Crossref]

Brixner, T.

F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy,” Opt. Express 22(14), 16965–16975 (2014).
[Crossref]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Syfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282(5390), 919–922 (1998).
[Crossref]

Carlson, R.

S. Rice, B. Amstrup, R. Carlson, and A. Matro, “The use of pulse shaping to control the photodissociation of a diatomic molecule: preventing the best from being the enemy of the good,” J. Chem. Phys. 95(21), 8019–8027 (1991).
[Crossref]

Chang, Y.

Chaphekar, P. A.

A. Nag, P. A. Chaphekar, and D. Goswami, “Applying genetic algorithm optimization to a folded geometry acousto-optic modulated spatial pulse shaper,” Rev. Sci. Instrum. 81(1), 013101 (2010).
[Crossref]

Chelkowski, S.

S. Chelkowski, A. Bandrauk, and P. B. Corkum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65(19), 2355–2358 (1990).
[Crossref]

Chen, S.

Cheng, J.

Cheng, Z.

Corkum, P. B.

S. Chelkowski, A. Bandrauk, and P. B. Corkum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65(19), 2355–2358 (1990).
[Crossref]

Coudreau, S.

Cundiff, S. T.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref]

Dahleh, M.

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent Control of Quantum Dynamics: The Dream is Alive,” Science 259(5101), 1581–1589 (1993).
[Crossref]

Dantus, M.

M. Dantus and V. V. Lozovoy, “Experimental coherent laser control of physicochemical processes,” Chem. Rev. 104(4), 1813–1860 (2004).
[Crossref]

Dugan, M. A.

J. X. Tull, M. A. Dugan, and W. S. Warren, “High-Resolution, Ultrafast Laser Pulse Shaping and Its Applications,” Adv. Magn. Opt. Reson. 20, 1–65 (1997).
[Crossref]

M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14(9), 2348–2358 (1997).
[Crossref]

Eck, R.

Fetterman, M. R.

Gandhi, S.

J. S. Melinger, S. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, “Generation of narrowband inversion with broadband laser pulses,” Phys. Rev. Lett. 68(13), 2000–2003 (1992).
[Crossref]

Gauthier, J.

E. E. Aubanel, J. Gauthier, and A. D. Bandrauk, “Molecular stabilization and angular distribution in photodissociation of H2+ in intense laser fields,” Phys. Rev. A 48(3), 2145–2152 (1993).
[Crossref]

Gerber, G.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Syfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282(5390), 919–922 (1998).
[Crossref]

Goswami, D.

A. Nag, P. A. Chaphekar, and D. Goswami, “Applying genetic algorithm optimization to a folded geometry acousto-optic modulated spatial pulse shaper,” Rev. Sci. Instrum. 81(1), 013101 (2010).
[Crossref]

D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374(6), 385–481 (2003).
[Crossref]

M. R. Fetterman, D. Goswami, D. Keusters, W. Yang, J.-K. Rhee, and W. S. Warren, “Ultrafast pulse shaping: amplification and characterization,” Opt. Express 3(10), 366–375 (1998).
[Crossref]

W. Yang, D. Keusters, D. Goswami, and W. S. Warren, “Rapid ultrafine-tunable optical delay line at the 1.55-µm wavelength,” Opt. Lett. 23(23), 1843–1845 (1998).
[Crossref]

W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19(10), 737–739 (1994).
[Crossref]

D. Goswami and W. S. Warren, “Control of chemical dynamics by restricting intramolecular vibrational relaxation,” J. Chem. Phys. 99(6), 4509–4517 (1993).
[Crossref]

Gross, P.

P. Gross, D. Neuhauser, and H. Rabitz, “Optimal control of curve-crossing systems,” J. Chem. Phys. 96(4), 2834–2845 (1992).
[Crossref]

Gu, C.

Gundogdu, K.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref]

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, “Multidimensional coherent spectroscopy made easy,” Chem. Phys. 341(1-3), 89–94 (2007).
[Crossref]

Hariharan, A.

J. S. Melinger, S. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, “Generation of narrowband inversion with broadband laser pulses,” Phys. Rev. Lett. 68(13), 2000–2003 (1992).
[Crossref]

Heritage, J. P.

A. M. Weiner and J. P. Heritage, “Picosecond and femtosecond Fourier pulse shape synthesis,” Rev. Phys. Appl. 22(12), 1619–1628 (1987).
[Crossref]

Hillegas, W.

Jaron-Becker, A.

S. Chen, A. Jaron-Becker, and A. Becker, “Time-dependent analysis of few-photon coherent control schemes,” Phys. Rev. A 82(1), 013414 (2010).
[Crossref]

Jones, A. C.

Kanal, F.

Kaplan, D.

Kawashima, H.

H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond pulse shaping, multiple-pulse spectroscopy, and optical control,” Annu. Rev. Phys. Chem. 46(1), 627–656 (1995).
[Crossref]

Kearns, N. M.

Keiber, S.

Keusters, D.

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Syfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282(5390), 919–922 (1998).
[Crossref]

Laude, V.

Li, X. Q.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref]

Lozovoy, V. V.

M. Dantus and V. V. Lozovoy, “Experimental coherent laser control of physicochemical processes,” Chem. Rev. 104(4), 1813–1860 (2004).
[Crossref]

Martinez, O. E.

O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24(12), 2530–2536 (1988).
[Crossref]

Matro, A.

S. Rice, B. Amstrup, R. Carlson, and A. Matro, “The use of pulse shaping to control the photodissociation of a diatomic molecule: preventing the best from being the enemy of the good,” J. Chem. Phys. 95(21), 8019–8027 (1991).
[Crossref]

Mehendale, M.

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80(4-5), 441–444 (2005).
[Crossref]

Mehlenbacher, R. D.

Melinger, J. S.

J. S. Melinger, S. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, “Generation of narrowband inversion with broadband laser pulses,” Phys. Rev. Lett. 68(13), 2000–2003 (1992).
[Crossref]

Meshulach, D.

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396(6708), 239–242 (1998).
[Crossref]

Nag, A.

A. Nag, P. A. Chaphekar, and D. Goswami, “Applying genetic algorithm optimization to a folded geometry acousto-optic modulated spatial pulse shaper,” Rev. Sci. Instrum. 81(1), 013101 (2010).
[Crossref]

Nelson, K. A.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref]

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, “Multidimensional coherent spectroscopy made easy,” Chem. Phys. 341(1-3), 89–94 (2007).
[Crossref]

H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond pulse shaping, multiple-pulse spectroscopy, and optical control,” Annu. Rev. Phys. Chem. 46(1), 627–656 (1995).
[Crossref]

Neuhauser, D.

P. Gross, D. Neuhauser, and H. Rabitz, “Optimal control of curve-crossing systems,” J. Chem. Phys. 96(4), 2834–2845 (1992).
[Crossref]

Ohmori, K.

K. Ohmori, “Wave-Packet and coherent control dynamics,” Annu. Rev. Phys. Chem. 60(1), 487–511 (2009).
[Crossref]

Rabitz, H.

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80(4-5), 441–444 (2005).
[Crossref]

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent Control of Quantum Dynamics: The Dream is Alive,” Science 259(5101), 1581–1589 (1993).
[Crossref]

P. Gross, D. Neuhauser, and H. Rabitz, “Optimal control of curve-crossing systems,” J. Chem. Phys. 96(4), 2834–2845 (1992).
[Crossref]

S. Shi and H. Rabitz, “Optimal control of selective vibrational excitation of harmonic linear chain molecules: analytic solution and restricted forms for the optimal fields,” J. Chem. Phys. 92(5), 2927–2937 (1990).
[Crossref]

Rhee, J.-K.

Rice, S.

S. Rice, B. Amstrup, R. Carlson, and A. Matro, “The use of pulse shaping to control the photodissociation of a diatomic molecule: preventing the best from being the enemy of the good,” J. Chem. Phys. 95(21), 8019–8027 (1991).
[Crossref]

Roth, M.

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80(4-5), 441–444 (2005).
[Crossref]

Shi, S.

S. Shi and H. Rabitz, “Optimal control of selective vibrational excitation of harmonic linear chain molecules: analytic solution and restricted forms for the optimal fields,” J. Chem. Phys. 92(5), 2927–2937 (1990).
[Crossref]

Shim, S. H.

S. H. Shim and M. T. Zanni, “How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref]

S. H. Shim, D. B. Strasfeld, and M. T. Zanni, “Generation and characterization of phase and amplitude shaper femtosecond mid-IR pulses,” Opt. Express 14(26), 13120–13130 (2006).
[Crossref]

Silberberg, Y.

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396(6708), 239–242 (1998).
[Crossref]

Spielmann, C.

Stone, K. W.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref]

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, “Multidimensional coherent spectroscopy made easy,” Chem. Phys. 341(1-3), 89–94 (2007).
[Crossref]

Strasfeld, D. B.

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Syfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282(5390), 919–922 (1998).
[Crossref]

Strickland, D.

Syfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Syfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282(5390), 919–922 (1998).
[Crossref]

Tournois, P.

Tull, J. X.

M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14(9), 2348–2358 (1997).
[Crossref]

J. X. Tull, M. A. Dugan, and W. S. Warren, “High-Resolution, Ultrafast Laser Pulse Shaping and Its Applications,” Adv. Magn. Opt. Reson. 20, 1–65 (1997).
[Crossref]

W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19(10), 737–739 (1994).
[Crossref]

J. S. Melinger, S. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, “Generation of narrowband inversion with broadband laser pulses,” Phys. Rev. Lett. 68(13), 2000–2003 (1992).
[Crossref]

Turner, D. B.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref]

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, “Multidimensional coherent spectroscopy made easy,” Chem. Phys. 341(1-3), 89–94 (2007).
[Crossref]

Verluise, F.

Warren, W. S.

W. Yang, D. Keusters, D. Goswami, and W. S. Warren, “Rapid ultrafine-tunable optical delay line at the 1.55-µm wavelength,” Opt. Lett. 23(23), 1843–1845 (1998).
[Crossref]

M. R. Fetterman, D. Goswami, D. Keusters, W. Yang, J.-K. Rhee, and W. S. Warren, “Ultrafast pulse shaping: amplification and characterization,” Opt. Express 3(10), 366–375 (1998).
[Crossref]

M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14(9), 2348–2358 (1997).
[Crossref]

J. X. Tull, M. A. Dugan, and W. S. Warren, “High-Resolution, Ultrafast Laser Pulse Shaping and Its Applications,” Adv. Magn. Opt. Reson. 20, 1–65 (1997).
[Crossref]

W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19(10), 737–739 (1994).
[Crossref]

D. Goswami and W. S. Warren, “Control of chemical dynamics by restricting intramolecular vibrational relaxation,” J. Chem. Phys. 99(6), 4509–4517 (1993).
[Crossref]

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent Control of Quantum Dynamics: The Dream is Alive,” Science 259(5101), 1581–1589 (1993).
[Crossref]

J. S. Melinger, S. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, “Generation of narrowband inversion with broadband laser pulses,” Phys. Rev. Lett. 68(13), 2000–2003 (1992).
[Crossref]

Wefers, M. M.

H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond pulse shaping, multiple-pulse spectroscopy, and optical control,” Annu. Rev. Phys. Chem. 46(1), 627–656 (1995).
[Crossref]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19(3), 161–237 (1995).
[Crossref]

A. M. Weiner and J. P. Heritage, “Picosecond and femtosecond Fourier pulse shape synthesis,” Rev. Phys. Appl. 22(12), 1619–1628 (1987).
[Crossref]

Yang, W.

Zanni, M. T.

Zhang, D.

Adv. Magn. Opt. Reson. (1)

J. X. Tull, M. A. Dugan, and W. S. Warren, “High-Resolution, Ultrafast Laser Pulse Shaping and Its Applications,” Adv. Magn. Opt. Reson. 20, 1–65 (1997).
[Crossref]

Annu. Rev. Phys. Chem. (2)

H. Kawashima, M. M. Wefers, and K. A. Nelson, “Femtosecond pulse shaping, multiple-pulse spectroscopy, and optical control,” Annu. Rev. Phys. Chem. 46(1), 627–656 (1995).
[Crossref]

K. Ohmori, “Wave-Packet and coherent control dynamics,” Annu. Rev. Phys. Chem. 60(1), 487–511 (2009).
[Crossref]

Appl. Phys. B (1)

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80(4-5), 441–444 (2005).
[Crossref]

Chem. Phys. (1)

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, “Multidimensional coherent spectroscopy made easy,” Chem. Phys. 341(1-3), 89–94 (2007).
[Crossref]

Chem. Rev. (1)

M. Dantus and V. V. Lozovoy, “Experimental coherent laser control of physicochemical processes,” Chem. Rev. 104(4), 1813–1860 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24(12), 2530–2536 (1988).
[Crossref]

J. Chem. Phys. (4)

D. Goswami and W. S. Warren, “Control of chemical dynamics by restricting intramolecular vibrational relaxation,” J. Chem. Phys. 99(6), 4509–4517 (1993).
[Crossref]

S. Shi and H. Rabitz, “Optimal control of selective vibrational excitation of harmonic linear chain molecules: analytic solution and restricted forms for the optimal fields,” J. Chem. Phys. 92(5), 2927–2937 (1990).
[Crossref]

S. Rice, B. Amstrup, R. Carlson, and A. Matro, “The use of pulse shaping to control the photodissociation of a diatomic molecule: preventing the best from being the enemy of the good,” J. Chem. Phys. 95(21), 8019–8027 (1991).
[Crossref]

P. Gross, D. Neuhauser, and H. Rabitz, “Optimal control of curve-crossing systems,” J. Chem. Phys. 96(4), 2834–2845 (1992).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396(6708), 239–242 (1998).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Phys. Chem. Chem. Phys. (1)

S. H. Shim and M. T. Zanni, “How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref]

Phys. Rep. (1)

D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374(6), 385–481 (2003).
[Crossref]

Phys. Rev. A (2)

E. E. Aubanel, J. Gauthier, and A. D. Bandrauk, “Molecular stabilization and angular distribution in photodissociation of H2+ in intense laser fields,” Phys. Rev. A 48(3), 2145–2152 (1993).
[Crossref]

S. Chen, A. Jaron-Becker, and A. Becker, “Time-dependent analysis of few-photon coherent control schemes,” Phys. Rev. A 82(1), 013414 (2010).
[Crossref]

Phys. Rev. Lett. (2)

J. S. Melinger, S. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, “Generation of narrowband inversion with broadband laser pulses,” Phys. Rev. Lett. 68(13), 2000–2003 (1992).
[Crossref]

S. Chelkowski, A. Bandrauk, and P. B. Corkum, “Efficient molecular dissociation by a chirped ultrashort infrared laser pulse,” Phys. Rev. Lett. 65(19), 2355–2358 (1990).
[Crossref]

Prog. Quantum Electron. (1)

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19(3), 161–237 (1995).
[Crossref]

Rev. Phys. Appl. (1)

A. M. Weiner and J. P. Heritage, “Picosecond and femtosecond Fourier pulse shape synthesis,” Rev. Phys. Appl. 22(12), 1619–1628 (1987).
[Crossref]

Rev. Sci. Instrum. (2)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

A. Nag, P. A. Chaphekar, and D. Goswami, “Applying genetic algorithm optimization to a folded geometry acousto-optic modulated spatial pulse shaper,” Rev. Sci. Instrum. 81(1), 013101 (2010).
[Crossref]

Science (3)

W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent Control of Quantum Dynamics: The Dream is Alive,” Science 259(5101), 1581–1589 (1993).
[Crossref]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Syfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282(5390), 919–922 (1998).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Q. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic layout of the optical set-up contains zero dispersion 4-F geometry with AOM in the Fourier plane. The generated RF wave is converted to an acoustic wave by a piezoelectric transducer to the AOM. This traveling acoustic wave inside AOM acts as a diffractive grating mask. In our particular method, only a fraction of pulses is diffracted. The need and usefulness of this fractionalized diffraction are discussed later.
Fig. 2.
Fig. 2. Cartoon representation of the selection process involved in the MHz pulse shaping using AOM. The applied RF window creates traveling grating, which deflects several pulses (1-9) in sequence. The fact is that all deflected pulses do not contain the entire spectrum, as they are selected via a traveling grating inside the AOM.
Fig. 3.
Fig. 3. Cross-correlation signal from pulses deflected using 10 µs RF pulse segment with variable duration of radio pulse window: (a) When radio pulse window is too narrow (i.e., 0.1 µs and 0.05 µs), deformation in cross-correlation signal is significant as the number of completely diffracted pulses are rather low. (b) The enhanced cross-correlation features show the fact that pulse width decreases as the duration of radio window increases. After reaching 2 µs and beyond, the pulse width does not change and satisfactorily overlaps with the cross-correlation trace of the original pulse (output from the pulse shaper when no modulation is present).
Fig. 4.
Fig. 4. Measured Photodiode signals of the deflected pulses are presented here. (a) The deflected signal due to different RF window function. (b) 2µs windowed Photodiode signal and some of its zoomed in parts. (c) The envelope of the waveform signals in (a).
Fig. 5.
Fig. 5. Time segmented RF pulses applied to AOM, which creates the delayed optical pulses in the temporal domain. Applied RF pulse is a 2µs window within a 10µs time segment with 1 MHz to 40 MHz oscillation frequencies. In (a), the real part of the RF signal generated using 1 MHz oscillation frequency has been pictorially represented and (b) is the corresponding imaginary part of the sinusoidal modulation, and (c) shows the cross-correlation traces of delayed optical pulses created by different oscillation frequencies.
Fig. 6.
Fig. 6. Peak shift due to different linear phase sweep for both the case of 1 µs and 2 µs window is represented here. Though 2 µs window creates pulses whose average effect resembles that of original pulse and 1 µs window does not do so, the linear sweep results in the same shift for both the cases.
Fig. 7.
Fig. 7. Pixelated representation of spectral domain pulse and radio pulse: The goal is to establish one to one correlation between the two-pixel forms.
Fig. 8.
Fig. 8. Flow chart to find out the exact correspondence between pixelated transfer function (M(pω)) and pixelated radio pulse f(p­RF) from experimental measurements of peak shift via application of different sinusoidal modulation. Bold lines are main flow chart, and dotted lines are for comparison and checking.
Fig. 9.
Fig. 9. Intensity modulation through a combination of ‘sin’ functions and cross-correlation traces of shaped pulse is represented. Input RF pulse corresponding to equations (2a, 2b) are depicted in (a) and (b). Experimental and expected values corresponding to RF (a) and (b) is presented in (c) and (d). Using the previously mentioned method, we get the expected cross-correlation, which is in good agreement with experiment.
Fig. 10.
Fig. 10. Intensity modulation through ‘sinc’ RF function generates a square pulse in the temporal domain. Experimental cross-correlation of the generated square pulse is represented: (a) Cross-correlation of the output from only ‘sinc’ RF modulation; (b) same ‘sinc’ RF with a linear sweep and pre-compensated ‘sinc’ RF modulation with a linear sweep.
Fig. 11.
Fig. 11. (a) The plot of the imaginary and real part of the pre-compensated RF signal that is generated by adding a third-order phase with the linear frequency sweep. Experimental cross-correlation signal and expected square pulse (using αRF) are presented in (b) that are quite good agreement with each other.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ξout(ωl)=ξin(ωl)M(ωl)
λ=d(sinϕsinθ)andx=f×tan(θλ±θλ0)
f(t+α)FourierTransforme2πiωαF(ω)
f1(tRF)=sin(2πνRF1tRF)+0.35sin(2πνRF2tRF)+0.25sin(2πνRF4tRF)+0.1sin(2πνRF6tRF)
f2(tRF)=sin(2πνRF2tRF)+0.2sin(2πνRF4tRF)+0.4sin(2πνRF6tRF)whereνRF1=1MHz, νRF2=2MHz,νRF4=4MHz,νRF6=6MHz
f1(pRF)=sin(2π.1.pRF)+0.35sin(2π.2.pRF)+0.25sin(2π.4.pRF)+0.1sin(2π.6.pRF)
f1(pω)=sin(2π.1.aNpω)+0.35sin(2π.2.aNpω)+0.25sin(2π.4.aNpω)+0.1sin(2π.6.aNpω)
fsinc(tRF)=sin(πνRF10tRF)πνRF10tRF.exp[i(2πνRF10tRF20πνRF10tRF3)]whereνRF10=10MHz

Metrics