Abstract

A novel external cloak with homogeneous properties is proposed and designed based on the coordinate transformation. By contrast with the reported external cloaks, the homogeneous properties make the cloak designed here applicable to practical fabrication. Both symmetric and asymmetric structured polygonal external cloaks are investigated here, which provides a new perspective to designing arbitrary transformation based devices, breaking through the limitation of previously reported cloak designs with symmetric structures and inhomogeneous material parameters. It represents important progress toward the practical fabrication of the metamaterial-assisted invisible external cloak.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Target illusion by shifting a distance

Chengfu Yang, Ming Huang, Jingjing Yang, Fuchun Mao, and Tinghua Li
Opt. Express 26(19) 24280-24293 (2018)

Homogeneous optical cloak constructed with uniform layered structures

Jingjing Zhang, Liu Liu, Yu Luo, Shuang Zhang, and Niels Asger Mortensen
Opt. Express 19(9) 8625-8631 (2011)

Cylindrical electromagnetic external cloak with only axial material parameter spatially variant

Tinghua Li, Ming Huang, Jingjing Yang, Yuping Yao, and Jiang Yu
Opt. Mater. Express 1(5) 911-920 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. R. Smith, and D. Schurig, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref]
  2. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [Crossref]
  3. X. Zang, B. Cai, and Y. Zhu, “Shifting media for carpet cloaks, antiobject independent illusion optics, and a restoring device,” Appl. Opt. 52(9), 1832–1837 (2013).
    [Crossref]
  4. X. Chen, Y. Q. Fu, and N. C. Yuan, “Invisible cloak design with controlled constitutive parameters and arbitrary shaped boundaries through Helmholtz’s equation,” Opt. Express 17(5), 3581–3586 (2009).
    [Crossref]
  5. T. Tatsuo and O. Matoba, “Hamiltonian-based ray-tracing method with triangular-mesh representation for a large-scale cloaking device with an arbitrary shape,” Appl. Opt. 55(13), 3456–3461 (2016).
    [Crossref]
  6. P. Jarutatsanangkoon, W. S. Mohammed, and W. Pijitrojana, “Transformation optics based on unitary vectors and Fermat’s principle for arbitrary spatial transformation design,” Appl. Opt. 57(29), 8632–8639 (2018).
    [Crossref]
  7. C. Li and F. Li, “Two-dimensional electromagnetic cloaks with arbitrary geometries,” Opt. Express 16(17), 13414–13420 (2008).
    [Crossref]
  8. A. Veltri, “Designs for electromagnetic cloaking a three-dimensional arbitrary shaped star-domain,” Opt. Express 17(22), 20494–20501 (2009).
    [Crossref]
  9. H. Ma, S. B. Qu, Z. Xu, and J. Wang, “The open cloak,” Appl. Phys. Lett. 94(10), 103501 (2009).
    [Crossref]
  10. X. He and L. Z. Wu, “Design of two-dimensional open cloaks with finite material parameters for thermodynamics,” Appl. Phys. Lett. 102(21), 211912 (2013).
    [Crossref]
  11. B. Zheng, H. A. Madni, and H. S. Chen, “Open cloak designed with transformation optics,” In Electromagnetic Theory (EMTS). URSI International Symposium, IEEE, 607–608 (2016).
  12. Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
    [Crossref]
  13. P. Vura, A. Rajput, and K. V. Srivastava, “Composite-shaped external cloaks with homogeneous material properties,” IEEE Antennas Wireless Propag. Lett. 15, 282–285 (2016).
    [Crossref]
  14. B. L. Li, T. H. Li, J. Wu, M. Hui, G. Yuan, and Y. Zhu, “An arbitrary-shaped acoustic cloak with merits beyond the internal and external cloaks,” Acoust. Phys. 63(1), 45–53 (2017).
    [Crossref]
  15. T. Han, C. W. Qiu, and X. Tang, “Distributed external cloak without embedded antiobjects,” Opt. Lett. 35(15), 2642–2644 (2010).
    [Crossref]
  16. B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light: Sci. Appl. 5(12), e16177 (2016).
    [Crossref]
  17. J. J. Yang, M. Huang, C. F. Yang, and J. Yu, “Reciprocal invisibility cloak based on complementary media,” Eur. Phys. J. D 61(3), 731–736 (2011).
    [Crossref]
  18. S. Xi, H. S. Chen, B. L. Wu, and J. A. Kong, “One directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
    [Crossref]
  19. Y. Cheng, F. Yang, J. Y. Xu, and X. J. Liu, “A multilayer structured acoustic cloak with homogeneous isotropic materials,” Appl. Phys. Lett. 92(15), 151913 (2008).
    [Crossref]
  20. T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3(1), 1593 (2013).
    [Crossref]
  21. J. Zhu, T. N. Chen, Q. X. Liang, X. Wang, J. Xiong, and P. Jiang, “A unidirectional acoustic cloak for multilayered background media with homogeneous metamaterials,” J. Phys. D: Appl. Phys. 48(30), 305502 (2015).
    [Crossref]
  22. M. Fazeli, S. H. Sedighy, and H. R. Hassani, “Homogeneous near-perfect invisible ground and free space cloak,” Int. J. Mod. Phys. B 31(09), 1750059 (2017).
    [Crossref]
  23. T. Han, X. Tang, and F. Xiao, “External cloak with homogeneous material,” J. Phys. D: Appl. Phys. 42(23), 235403 (2009).
    [Crossref]
  24. P. Vura, A. Rajput, K. Saurav, and K. V. Srivastava, “Hexagonal shaped reciprocal external cloak with homogeneous material properties,” In Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE International Symposium, 526–527 (2015).
  25. A. Rajput and K. V. Srivastava, “Approximated complementary cloak with diagonally homogeneous material parameters using shifted parabolic coordinate system,” IEEE Trans. Antennas Propag. 65(3), 1458–1463 (2017).
    [Crossref]
  26. J. J. Yang, M. Huang, and Y. L. Li, “Reciprocal invisible cloak with homogeneous metamaterials,” Prog. Electromagn. Res. 21, 105–115 (2011).
    [Crossref]
  27. H. A. Madni, B. Zheng, Y. Yang, H. Wang, X. Zhang, W. Yin, and H. Chen, “Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method,” Sci. Rep. 6(1), 36846 (2016).
    [Crossref]
  28. H. A. Madni, K. Hussain, W. X. Jiang, S. Liu, A. Aziz, S. Iqbal, and T. J. Cui, “A novel EM concentrator with open-concentrator region based on multi-folded transformation optics,” Sci. Rep. 8(1), 9641 (2018).
    [Crossref]
  29. H. A. Madni, N. Aslam, S. Iqbal, S. Liu, and W. X. Jiang, “Design of a homogeneous-material cloak and illusion devices for active and passive scatterers with multi-folded transformation optics,” J. Opt. Soc. Am. B 35(10), 2399–2404 (2018).
    [Crossref]
  30. C. F. Yang, M. Huang, J. H. Yang, F. C. Mao, and T. H. Li, “Target illusion by shifting a distance,” Opt. Express 26(19), 24280–24293 (2018).
    [Crossref]
  31. C. F. Yang, M. Huang, J. J. Yang, T. H. Li, F. C. Mao, and P. Li, “Arbitrarily shaped homogeneous concentrator and its layered realization,” Opt. Commun. 435, 150–158 (2019).
    [Crossref]
  32. C. F. Yang, M. Huang, J. J. Yang, and F. C. Mao, “Homogeneous Multifunction Devices Designing and Layered Implementing Based on Rotary Medium,” Sci. Rep. 8(1), 17339 (2018).
    [Crossref]
  33. C. F. Yang, M. Huang, J. J. Yang, F. C. Mao, T. H. Li, P. Li, and P. S. Ren, “Homogeneous transparent device and its layered realization,” Chin. Phys. B 27(12), 124101 (2018).
    [Crossref]
  34. T. Han, C. Qiu, and X. Tang, “An arbitrarily shaped cloak with nonsingular and homogeneous parameters designed using a twofold transformation,” J. Opt. 12(9), 095103 (2010).
    [Crossref]
  35. A. Rajput and K. V. Srivastava, “Arbitrary Shaped Reciprocal External Cloak with Nonsingular and Homogeneous Material Parameters Using Expanding Coordinate Transformation,” Plasmonics 12(3), 771–781 (2017).
    [Crossref]
  36. C. F. Yang, M. Huang, J. J. Yang, Z. Xiao, and J. H. Peng, “An External Cylindrical Cloak with N-Sided Regular Polygonal Cross-Section Based on Complementary Medium,” Mod. Phys. Lett. B 24(22), 2357–2364 (2010).
    [Crossref]
  37. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref]

2019 (1)

C. F. Yang, M. Huang, J. J. Yang, T. H. Li, F. C. Mao, and P. Li, “Arbitrarily shaped homogeneous concentrator and its layered realization,” Opt. Commun. 435, 150–158 (2019).
[Crossref]

2018 (6)

C. F. Yang, M. Huang, J. J. Yang, and F. C. Mao, “Homogeneous Multifunction Devices Designing and Layered Implementing Based on Rotary Medium,” Sci. Rep. 8(1), 17339 (2018).
[Crossref]

C. F. Yang, M. Huang, J. J. Yang, F. C. Mao, T. H. Li, P. Li, and P. S. Ren, “Homogeneous transparent device and its layered realization,” Chin. Phys. B 27(12), 124101 (2018).
[Crossref]

H. A. Madni, K. Hussain, W. X. Jiang, S. Liu, A. Aziz, S. Iqbal, and T. J. Cui, “A novel EM concentrator with open-concentrator region based on multi-folded transformation optics,” Sci. Rep. 8(1), 9641 (2018).
[Crossref]

H. A. Madni, N. Aslam, S. Iqbal, S. Liu, and W. X. Jiang, “Design of a homogeneous-material cloak and illusion devices for active and passive scatterers with multi-folded transformation optics,” J. Opt. Soc. Am. B 35(10), 2399–2404 (2018).
[Crossref]

C. F. Yang, M. Huang, J. H. Yang, F. C. Mao, and T. H. Li, “Target illusion by shifting a distance,” Opt. Express 26(19), 24280–24293 (2018).
[Crossref]

P. Jarutatsanangkoon, W. S. Mohammed, and W. Pijitrojana, “Transformation optics based on unitary vectors and Fermat’s principle for arbitrary spatial transformation design,” Appl. Opt. 57(29), 8632–8639 (2018).
[Crossref]

2017 (4)

A. Rajput and K. V. Srivastava, “Arbitrary Shaped Reciprocal External Cloak with Nonsingular and Homogeneous Material Parameters Using Expanding Coordinate Transformation,” Plasmonics 12(3), 771–781 (2017).
[Crossref]

B. L. Li, T. H. Li, J. Wu, M. Hui, G. Yuan, and Y. Zhu, “An arbitrary-shaped acoustic cloak with merits beyond the internal and external cloaks,” Acoust. Phys. 63(1), 45–53 (2017).
[Crossref]

M. Fazeli, S. H. Sedighy, and H. R. Hassani, “Homogeneous near-perfect invisible ground and free space cloak,” Int. J. Mod. Phys. B 31(09), 1750059 (2017).
[Crossref]

A. Rajput and K. V. Srivastava, “Approximated complementary cloak with diagonally homogeneous material parameters using shifted parabolic coordinate system,” IEEE Trans. Antennas Propag. 65(3), 1458–1463 (2017).
[Crossref]

2016 (4)

T. Tatsuo and O. Matoba, “Hamiltonian-based ray-tracing method with triangular-mesh representation for a large-scale cloaking device with an arbitrary shape,” Appl. Opt. 55(13), 3456–3461 (2016).
[Crossref]

P. Vura, A. Rajput, and K. V. Srivastava, “Composite-shaped external cloaks with homogeneous material properties,” IEEE Antennas Wireless Propag. Lett. 15, 282–285 (2016).
[Crossref]

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light: Sci. Appl. 5(12), e16177 (2016).
[Crossref]

H. A. Madni, B. Zheng, Y. Yang, H. Wang, X. Zhang, W. Yin, and H. Chen, “Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method,” Sci. Rep. 6(1), 36846 (2016).
[Crossref]

2015 (1)

J. Zhu, T. N. Chen, Q. X. Liang, X. Wang, J. Xiong, and P. Jiang, “A unidirectional acoustic cloak for multilayered background media with homogeneous metamaterials,” J. Phys. D: Appl. Phys. 48(30), 305502 (2015).
[Crossref]

2013 (3)

T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3(1), 1593 (2013).
[Crossref]

X. He and L. Z. Wu, “Design of two-dimensional open cloaks with finite material parameters for thermodynamics,” Appl. Phys. Lett. 102(21), 211912 (2013).
[Crossref]

X. Zang, B. Cai, and Y. Zhu, “Shifting media for carpet cloaks, antiobject independent illusion optics, and a restoring device,” Appl. Opt. 52(9), 1832–1837 (2013).
[Crossref]

2011 (2)

J. J. Yang, M. Huang, C. F. Yang, and J. Yu, “Reciprocal invisibility cloak based on complementary media,” Eur. Phys. J. D 61(3), 731–736 (2011).
[Crossref]

J. J. Yang, M. Huang, and Y. L. Li, “Reciprocal invisible cloak with homogeneous metamaterials,” Prog. Electromagn. Res. 21, 105–115 (2011).
[Crossref]

2010 (3)

T. Han, C. W. Qiu, and X. Tang, “Distributed external cloak without embedded antiobjects,” Opt. Lett. 35(15), 2642–2644 (2010).
[Crossref]

C. F. Yang, M. Huang, J. J. Yang, Z. Xiao, and J. H. Peng, “An External Cylindrical Cloak with N-Sided Regular Polygonal Cross-Section Based on Complementary Medium,” Mod. Phys. Lett. B 24(22), 2357–2364 (2010).
[Crossref]

T. Han, C. Qiu, and X. Tang, “An arbitrarily shaped cloak with nonsingular and homogeneous parameters designed using a twofold transformation,” J. Opt. 12(9), 095103 (2010).
[Crossref]

2009 (7)

T. Han, X. Tang, and F. Xiao, “External cloak with homogeneous material,” J. Phys. D: Appl. Phys. 42(23), 235403 (2009).
[Crossref]

S. Xi, H. S. Chen, B. L. Wu, and J. A. Kong, “One directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref]

X. Chen, Y. Q. Fu, and N. C. Yuan, “Invisible cloak design with controlled constitutive parameters and arbitrary shaped boundaries through Helmholtz’s equation,” Opt. Express 17(5), 3581–3586 (2009).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref]

A. Veltri, “Designs for electromagnetic cloaking a three-dimensional arbitrary shaped star-domain,” Opt. Express 17(22), 20494–20501 (2009).
[Crossref]

H. Ma, S. B. Qu, Z. Xu, and J. Wang, “The open cloak,” Appl. Phys. Lett. 94(10), 103501 (2009).
[Crossref]

2008 (2)

C. Li and F. Li, “Two-dimensional electromagnetic cloaks with arbitrary geometries,” Opt. Express 16(17), 13414–13420 (2008).
[Crossref]

Y. Cheng, F. Yang, J. Y. Xu, and X. J. Liu, “A multilayer structured acoustic cloak with homogeneous isotropic materials,” Appl. Phys. Lett. 92(15), 151913 (2008).
[Crossref]

2006 (1)

J. B. Pendry, D. R. Smith, and D. Schurig, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Aslam, N.

Aziz, A.

H. A. Madni, K. Hussain, W. X. Jiang, S. Liu, A. Aziz, S. Iqbal, and T. J. Cui, “A novel EM concentrator with open-concentrator region based on multi-folded transformation optics,” Sci. Rep. 8(1), 9641 (2018).
[Crossref]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref]

Cai, B.

Chan, C. T.

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref]

Chen, H.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light: Sci. Appl. 5(12), e16177 (2016).
[Crossref]

H. A. Madni, B. Zheng, Y. Yang, H. Wang, X. Zhang, W. Yin, and H. Chen, “Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method,” Sci. Rep. 6(1), 36846 (2016).
[Crossref]

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref]

Chen, H. S.

S. Xi, H. S. Chen, B. L. Wu, and J. A. Kong, “One directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

B. Zheng, H. A. Madni, and H. S. Chen, “Open cloak designed with transformation optics,” In Electromagnetic Theory (EMTS). URSI International Symposium, IEEE, 607–608 (2016).

Chen, T. N.

J. Zhu, T. N. Chen, Q. X. Liang, X. Wang, J. Xiong, and P. Jiang, “A unidirectional acoustic cloak for multilayered background media with homogeneous metamaterials,” J. Phys. D: Appl. Phys. 48(30), 305502 (2015).
[Crossref]

Chen, X.

Cheng, Y.

Y. Cheng, F. Yang, J. Y. Xu, and X. J. Liu, “A multilayer structured acoustic cloak with homogeneous isotropic materials,” Appl. Phys. Lett. 92(15), 151913 (2008).
[Crossref]

Cui, T. J.

H. A. Madni, K. Hussain, W. X. Jiang, S. Liu, A. Aziz, S. Iqbal, and T. J. Cui, “A novel EM concentrator with open-concentrator region based on multi-folded transformation optics,” Sci. Rep. 8(1), 9641 (2018).
[Crossref]

Fazeli, M.

M. Fazeli, S. H. Sedighy, and H. R. Hassani, “Homogeneous near-perfect invisible ground and free space cloak,” Int. J. Mod. Phys. B 31(09), 1750059 (2017).
[Crossref]

Fu, Y. Q.

Han, T.

T. Han, C. W. Qiu, and X. Tang, “Distributed external cloak without embedded antiobjects,” Opt. Lett. 35(15), 2642–2644 (2010).
[Crossref]

T. Han, C. Qiu, and X. Tang, “An arbitrarily shaped cloak with nonsingular and homogeneous parameters designed using a twofold transformation,” J. Opt. 12(9), 095103 (2010).
[Crossref]

T. Han, X. Tang, and F. Xiao, “External cloak with homogeneous material,” J. Phys. D: Appl. Phys. 42(23), 235403 (2009).
[Crossref]

Han, T. C.

T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3(1), 1593 (2013).
[Crossref]

Hao, R.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light: Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Hassani, H. R.

M. Fazeli, S. H. Sedighy, and H. R. Hassani, “Homogeneous near-perfect invisible ground and free space cloak,” Int. J. Mod. Phys. B 31(09), 1750059 (2017).
[Crossref]

He, X.

X. He and L. Z. Wu, “Design of two-dimensional open cloaks with finite material parameters for thermodynamics,” Appl. Phys. Lett. 102(21), 211912 (2013).
[Crossref]

Huang, M.

C. F. Yang, M. Huang, J. J. Yang, T. H. Li, F. C. Mao, and P. Li, “Arbitrarily shaped homogeneous concentrator and its layered realization,” Opt. Commun. 435, 150–158 (2019).
[Crossref]

C. F. Yang, M. Huang, J. J. Yang, F. C. Mao, T. H. Li, P. Li, and P. S. Ren, “Homogeneous transparent device and its layered realization,” Chin. Phys. B 27(12), 124101 (2018).
[Crossref]

C. F. Yang, M. Huang, J. J. Yang, and F. C. Mao, “Homogeneous Multifunction Devices Designing and Layered Implementing Based on Rotary Medium,” Sci. Rep. 8(1), 17339 (2018).
[Crossref]

C. F. Yang, M. Huang, J. H. Yang, F. C. Mao, and T. H. Li, “Target illusion by shifting a distance,” Opt. Express 26(19), 24280–24293 (2018).
[Crossref]

J. J. Yang, M. Huang, and Y. L. Li, “Reciprocal invisible cloak with homogeneous metamaterials,” Prog. Electromagn. Res. 21, 105–115 (2011).
[Crossref]

J. J. Yang, M. Huang, C. F. Yang, and J. Yu, “Reciprocal invisibility cloak based on complementary media,” Eur. Phys. J. D 61(3), 731–736 (2011).
[Crossref]

C. F. Yang, M. Huang, J. J. Yang, Z. Xiao, and J. H. Peng, “An External Cylindrical Cloak with N-Sided Regular Polygonal Cross-Section Based on Complementary Medium,” Mod. Phys. Lett. B 24(22), 2357–2364 (2010).
[Crossref]

Hui, M.

B. L. Li, T. H. Li, J. Wu, M. Hui, G. Yuan, and Y. Zhu, “An arbitrary-shaped acoustic cloak with merits beyond the internal and external cloaks,” Acoust. Phys. 63(1), 45–53 (2017).
[Crossref]

Hussain, K.

H. A. Madni, K. Hussain, W. X. Jiang, S. Liu, A. Aziz, S. Iqbal, and T. J. Cui, “A novel EM concentrator with open-concentrator region based on multi-folded transformation optics,” Sci. Rep. 8(1), 9641 (2018).
[Crossref]

Iqbal, S.

H. A. Madni, K. Hussain, W. X. Jiang, S. Liu, A. Aziz, S. Iqbal, and T. J. Cui, “A novel EM concentrator with open-concentrator region based on multi-folded transformation optics,” Sci. Rep. 8(1), 9641 (2018).
[Crossref]

H. A. Madni, N. Aslam, S. Iqbal, S. Liu, and W. X. Jiang, “Design of a homogeneous-material cloak and illusion devices for active and passive scatterers with multi-folded transformation optics,” J. Opt. Soc. Am. B 35(10), 2399–2404 (2018).
[Crossref]

Jarutatsanangkoon, P.

Jiang, P.

J. Zhu, T. N. Chen, Q. X. Liang, X. Wang, J. Xiong, and P. Jiang, “A unidirectional acoustic cloak for multilayered background media with homogeneous metamaterials,” J. Phys. D: Appl. Phys. 48(30), 305502 (2015).
[Crossref]

Jiang, W. X.

H. A. Madni, K. Hussain, W. X. Jiang, S. Liu, A. Aziz, S. Iqbal, and T. J. Cui, “A novel EM concentrator with open-concentrator region based on multi-folded transformation optics,” Sci. Rep. 8(1), 9641 (2018).
[Crossref]

H. A. Madni, N. Aslam, S. Iqbal, S. Liu, and W. X. Jiang, “Design of a homogeneous-material cloak and illusion devices for active and passive scatterers with multi-folded transformation optics,” J. Opt. Soc. Am. B 35(10), 2399–2404 (2018).
[Crossref]

Kong, J. A.

S. Xi, H. S. Chen, B. L. Wu, and J. A. Kong, “One directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

Lai, Y.

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref]

Li, B. L.

B. L. Li, T. H. Li, J. Wu, M. Hui, G. Yuan, and Y. Zhu, “An arbitrary-shaped acoustic cloak with merits beyond the internal and external cloaks,” Acoust. Phys. 63(1), 45–53 (2017).
[Crossref]

Li, B. W.

T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3(1), 1593 (2013).
[Crossref]

Li, C.

Li, E.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light: Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Li, F.

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref]

Li, P.

C. F. Yang, M. Huang, J. J. Yang, T. H. Li, F. C. Mao, and P. Li, “Arbitrarily shaped homogeneous concentrator and its layered realization,” Opt. Commun. 435, 150–158 (2019).
[Crossref]

C. F. Yang, M. Huang, J. J. Yang, F. C. Mao, T. H. Li, P. Li, and P. S. Ren, “Homogeneous transparent device and its layered realization,” Chin. Phys. B 27(12), 124101 (2018).
[Crossref]

Li, T. H.

C. F. Yang, M. Huang, J. J. Yang, T. H. Li, F. C. Mao, and P. Li, “Arbitrarily shaped homogeneous concentrator and its layered realization,” Opt. Commun. 435, 150–158 (2019).
[Crossref]

C. F. Yang, M. Huang, J. J. Yang, F. C. Mao, T. H. Li, P. Li, and P. S. Ren, “Homogeneous transparent device and its layered realization,” Chin. Phys. B 27(12), 124101 (2018).
[Crossref]

C. F. Yang, M. Huang, J. H. Yang, F. C. Mao, and T. H. Li, “Target illusion by shifting a distance,” Opt. Express 26(19), 24280–24293 (2018).
[Crossref]

B. L. Li, T. H. Li, J. Wu, M. Hui, G. Yuan, and Y. Zhu, “An arbitrary-shaped acoustic cloak with merits beyond the internal and external cloaks,” Acoust. Phys. 63(1), 45–53 (2017).
[Crossref]

Li, Y. L.

J. J. Yang, M. Huang, and Y. L. Li, “Reciprocal invisible cloak with homogeneous metamaterials,” Prog. Electromagn. Res. 21, 105–115 (2011).
[Crossref]

Liang, Q. X.

J. Zhu, T. N. Chen, Q. X. Liang, X. Wang, J. Xiong, and P. Jiang, “A unidirectional acoustic cloak for multilayered background media with homogeneous metamaterials,” J. Phys. D: Appl. Phys. 48(30), 305502 (2015).
[Crossref]

Liu, S.

H. A. Madni, N. Aslam, S. Iqbal, S. Liu, and W. X. Jiang, “Design of a homogeneous-material cloak and illusion devices for active and passive scatterers with multi-folded transformation optics,” J. Opt. Soc. Am. B 35(10), 2399–2404 (2018).
[Crossref]

H. A. Madni, K. Hussain, W. X. Jiang, S. Liu, A. Aziz, S. Iqbal, and T. J. Cui, “A novel EM concentrator with open-concentrator region based on multi-folded transformation optics,” Sci. Rep. 8(1), 9641 (2018).
[Crossref]

Liu, X.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light: Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Liu, X. J.

Y. Cheng, F. Yang, J. Y. Xu, and X. J. Liu, “A multilayer structured acoustic cloak with homogeneous isotropic materials,” Appl. Phys. Lett. 92(15), 151913 (2008).
[Crossref]

Ma, H.

H. Ma, S. B. Qu, Z. Xu, and J. Wang, “The open cloak,” Appl. Phys. Lett. 94(10), 103501 (2009).
[Crossref]

Madni, H. A.

H. A. Madni, K. Hussain, W. X. Jiang, S. Liu, A. Aziz, S. Iqbal, and T. J. Cui, “A novel EM concentrator with open-concentrator region based on multi-folded transformation optics,” Sci. Rep. 8(1), 9641 (2018).
[Crossref]

H. A. Madni, N. Aslam, S. Iqbal, S. Liu, and W. X. Jiang, “Design of a homogeneous-material cloak and illusion devices for active and passive scatterers with multi-folded transformation optics,” J. Opt. Soc. Am. B 35(10), 2399–2404 (2018).
[Crossref]

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light: Sci. Appl. 5(12), e16177 (2016).
[Crossref]

H. A. Madni, B. Zheng, Y. Yang, H. Wang, X. Zhang, W. Yin, and H. Chen, “Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method,” Sci. Rep. 6(1), 36846 (2016).
[Crossref]

B. Zheng, H. A. Madni, and H. S. Chen, “Open cloak designed with transformation optics,” In Electromagnetic Theory (EMTS). URSI International Symposium, IEEE, 607–608 (2016).

Mao, F. C.

C. F. Yang, M. Huang, J. J. Yang, T. H. Li, F. C. Mao, and P. Li, “Arbitrarily shaped homogeneous concentrator and its layered realization,” Opt. Commun. 435, 150–158 (2019).
[Crossref]

C. F. Yang, M. Huang, J. J. Yang, and F. C. Mao, “Homogeneous Multifunction Devices Designing and Layered Implementing Based on Rotary Medium,” Sci. Rep. 8(1), 17339 (2018).
[Crossref]

C. F. Yang, M. Huang, J. J. Yang, F. C. Mao, T. H. Li, P. Li, and P. S. Ren, “Homogeneous transparent device and its layered realization,” Chin. Phys. B 27(12), 124101 (2018).
[Crossref]

C. F. Yang, M. Huang, J. H. Yang, F. C. Mao, and T. H. Li, “Target illusion by shifting a distance,” Opt. Express 26(19), 24280–24293 (2018).
[Crossref]

Matoba, O.

Mohammed, W. S.

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Pendry, J. B.

J. B. Pendry, D. R. Smith, and D. Schurig, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Peng, J. H.

C. F. Yang, M. Huang, J. J. Yang, Z. Xiao, and J. H. Peng, “An External Cylindrical Cloak with N-Sided Regular Polygonal Cross-Section Based on Complementary Medium,” Mod. Phys. Lett. B 24(22), 2357–2364 (2010).
[Crossref]

Pijitrojana, W.

Qiu, C.

T. Han, C. Qiu, and X. Tang, “An arbitrarily shaped cloak with nonsingular and homogeneous parameters designed using a twofold transformation,” J. Opt. 12(9), 095103 (2010).
[Crossref]

Qiu, C. W.

T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3(1), 1593 (2013).
[Crossref]

T. Han, C. W. Qiu, and X. Tang, “Distributed external cloak without embedded antiobjects,” Opt. Lett. 35(15), 2642–2644 (2010).
[Crossref]

Qu, S. B.

H. Ma, S. B. Qu, Z. Xu, and J. Wang, “The open cloak,” Appl. Phys. Lett. 94(10), 103501 (2009).
[Crossref]

Rajput, A.

A. Rajput and K. V. Srivastava, “Arbitrary Shaped Reciprocal External Cloak with Nonsingular and Homogeneous Material Parameters Using Expanding Coordinate Transformation,” Plasmonics 12(3), 771–781 (2017).
[Crossref]

A. Rajput and K. V. Srivastava, “Approximated complementary cloak with diagonally homogeneous material parameters using shifted parabolic coordinate system,” IEEE Trans. Antennas Propag. 65(3), 1458–1463 (2017).
[Crossref]

P. Vura, A. Rajput, and K. V. Srivastava, “Composite-shaped external cloaks with homogeneous material properties,” IEEE Antennas Wireless Propag. Lett. 15, 282–285 (2016).
[Crossref]

P. Vura, A. Rajput, K. Saurav, and K. V. Srivastava, “Hexagonal shaped reciprocal external cloak with homogeneous material properties,” In Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE International Symposium, 526–527 (2015).

Ren, P. S.

C. F. Yang, M. Huang, J. J. Yang, F. C. Mao, T. H. Li, P. Li, and P. S. Ren, “Homogeneous transparent device and its layered realization,” Chin. Phys. B 27(12), 124101 (2018).
[Crossref]

Saurav, K.

P. Vura, A. Rajput, K. Saurav, and K. V. Srivastava, “Hexagonal shaped reciprocal external cloak with homogeneous material properties,” In Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE International Symposium, 526–527 (2015).

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Schurig, D.

J. B. Pendry, D. R. Smith, and D. Schurig, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Sedighy, S. H.

M. Fazeli, S. H. Sedighy, and H. R. Hassani, “Homogeneous near-perfect invisible ground and free space cloak,” Int. J. Mod. Phys. B 31(09), 1750059 (2017).
[Crossref]

Smith, D. R.

J. B. Pendry, D. R. Smith, and D. Schurig, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Srivastava, K. V.

A. Rajput and K. V. Srivastava, “Arbitrary Shaped Reciprocal External Cloak with Nonsingular and Homogeneous Material Parameters Using Expanding Coordinate Transformation,” Plasmonics 12(3), 771–781 (2017).
[Crossref]

A. Rajput and K. V. Srivastava, “Approximated complementary cloak with diagonally homogeneous material parameters using shifted parabolic coordinate system,” IEEE Trans. Antennas Propag. 65(3), 1458–1463 (2017).
[Crossref]

P. Vura, A. Rajput, and K. V. Srivastava, “Composite-shaped external cloaks with homogeneous material properties,” IEEE Antennas Wireless Propag. Lett. 15, 282–285 (2016).
[Crossref]

P. Vura, A. Rajput, K. Saurav, and K. V. Srivastava, “Hexagonal shaped reciprocal external cloak with homogeneous material properties,” In Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE International Symposium, 526–527 (2015).

Tang, X.

T. Han, C. Qiu, and X. Tang, “An arbitrarily shaped cloak with nonsingular and homogeneous parameters designed using a twofold transformation,” J. Opt. 12(9), 095103 (2010).
[Crossref]

T. Han, C. W. Qiu, and X. Tang, “Distributed external cloak without embedded antiobjects,” Opt. Lett. 35(15), 2642–2644 (2010).
[Crossref]

T. Han, X. Tang, and F. Xiao, “External cloak with homogeneous material,” J. Phys. D: Appl. Phys. 42(23), 235403 (2009).
[Crossref]

Tatsuo, T.

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref]

Veltri, A.

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Vura, P.

P. Vura, A. Rajput, and K. V. Srivastava, “Composite-shaped external cloaks with homogeneous material properties,” IEEE Antennas Wireless Propag. Lett. 15, 282–285 (2016).
[Crossref]

P. Vura, A. Rajput, K. Saurav, and K. V. Srivastava, “Hexagonal shaped reciprocal external cloak with homogeneous material properties,” In Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE International Symposium, 526–527 (2015).

Wang, H.

H. A. Madni, B. Zheng, Y. Yang, H. Wang, X. Zhang, W. Yin, and H. Chen, “Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method,” Sci. Rep. 6(1), 36846 (2016).
[Crossref]

Wang, J.

H. Ma, S. B. Qu, Z. Xu, and J. Wang, “The open cloak,” Appl. Phys. Lett. 94(10), 103501 (2009).
[Crossref]

Wang, X.

J. Zhu, T. N. Chen, Q. X. Liang, X. Wang, J. Xiong, and P. Jiang, “A unidirectional acoustic cloak for multilayered background media with homogeneous metamaterials,” J. Phys. D: Appl. Phys. 48(30), 305502 (2015).
[Crossref]

Wu, B. L.

S. Xi, H. S. Chen, B. L. Wu, and J. A. Kong, “One directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

Wu, J.

B. L. Li, T. H. Li, J. Wu, M. Hui, G. Yuan, and Y. Zhu, “An arbitrary-shaped acoustic cloak with merits beyond the internal and external cloaks,” Acoust. Phys. 63(1), 45–53 (2017).
[Crossref]

Wu, L. Z.

X. He and L. Z. Wu, “Design of two-dimensional open cloaks with finite material parameters for thermodynamics,” Appl. Phys. Lett. 102(21), 211912 (2013).
[Crossref]

Xi, S.

S. Xi, H. S. Chen, B. L. Wu, and J. A. Kong, “One directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

Xiao, F.

T. Han, X. Tang, and F. Xiao, “External cloak with homogeneous material,” J. Phys. D: Appl. Phys. 42(23), 235403 (2009).
[Crossref]

Xiao, Z.

C. F. Yang, M. Huang, J. J. Yang, Z. Xiao, and J. H. Peng, “An External Cylindrical Cloak with N-Sided Regular Polygonal Cross-Section Based on Complementary Medium,” Mod. Phys. Lett. B 24(22), 2357–2364 (2010).
[Crossref]

Xiong, J.

J. Zhu, T. N. Chen, Q. X. Liang, X. Wang, J. Xiong, and P. Jiang, “A unidirectional acoustic cloak for multilayered background media with homogeneous metamaterials,” J. Phys. D: Appl. Phys. 48(30), 305502 (2015).
[Crossref]

Xu, J. Y.

Y. Cheng, F. Yang, J. Y. Xu, and X. J. Liu, “A multilayer structured acoustic cloak with homogeneous isotropic materials,” Appl. Phys. Lett. 92(15), 151913 (2008).
[Crossref]

Xu, Z.

H. Ma, S. B. Qu, Z. Xu, and J. Wang, “The open cloak,” Appl. Phys. Lett. 94(10), 103501 (2009).
[Crossref]

Yang, C. F.

C. F. Yang, M. Huang, J. J. Yang, T. H. Li, F. C. Mao, and P. Li, “Arbitrarily shaped homogeneous concentrator and its layered realization,” Opt. Commun. 435, 150–158 (2019).
[Crossref]

C. F. Yang, M. Huang, J. J. Yang, F. C. Mao, T. H. Li, P. Li, and P. S. Ren, “Homogeneous transparent device and its layered realization,” Chin. Phys. B 27(12), 124101 (2018).
[Crossref]

C. F. Yang, M. Huang, J. J. Yang, and F. C. Mao, “Homogeneous Multifunction Devices Designing and Layered Implementing Based on Rotary Medium,” Sci. Rep. 8(1), 17339 (2018).
[Crossref]

C. F. Yang, M. Huang, J. H. Yang, F. C. Mao, and T. H. Li, “Target illusion by shifting a distance,” Opt. Express 26(19), 24280–24293 (2018).
[Crossref]

J. J. Yang, M. Huang, C. F. Yang, and J. Yu, “Reciprocal invisibility cloak based on complementary media,” Eur. Phys. J. D 61(3), 731–736 (2011).
[Crossref]

C. F. Yang, M. Huang, J. J. Yang, Z. Xiao, and J. H. Peng, “An External Cylindrical Cloak with N-Sided Regular Polygonal Cross-Section Based on Complementary Medium,” Mod. Phys. Lett. B 24(22), 2357–2364 (2010).
[Crossref]

Yang, F.

Y. Cheng, F. Yang, J. Y. Xu, and X. J. Liu, “A multilayer structured acoustic cloak with homogeneous isotropic materials,” Appl. Phys. Lett. 92(15), 151913 (2008).
[Crossref]

Yang, J. H.

Yang, J. J.

C. F. Yang, M. Huang, J. J. Yang, T. H. Li, F. C. Mao, and P. Li, “Arbitrarily shaped homogeneous concentrator and its layered realization,” Opt. Commun. 435, 150–158 (2019).
[Crossref]

C. F. Yang, M. Huang, J. J. Yang, and F. C. Mao, “Homogeneous Multifunction Devices Designing and Layered Implementing Based on Rotary Medium,” Sci. Rep. 8(1), 17339 (2018).
[Crossref]

C. F. Yang, M. Huang, J. J. Yang, F. C. Mao, T. H. Li, P. Li, and P. S. Ren, “Homogeneous transparent device and its layered realization,” Chin. Phys. B 27(12), 124101 (2018).
[Crossref]

J. J. Yang, M. Huang, and Y. L. Li, “Reciprocal invisible cloak with homogeneous metamaterials,” Prog. Electromagn. Res. 21, 105–115 (2011).
[Crossref]

J. J. Yang, M. Huang, C. F. Yang, and J. Yu, “Reciprocal invisibility cloak based on complementary media,” Eur. Phys. J. D 61(3), 731–736 (2011).
[Crossref]

C. F. Yang, M. Huang, J. J. Yang, Z. Xiao, and J. H. Peng, “An External Cylindrical Cloak with N-Sided Regular Polygonal Cross-Section Based on Complementary Medium,” Mod. Phys. Lett. B 24(22), 2357–2364 (2010).
[Crossref]

Yang, Y.

H. A. Madni, B. Zheng, Y. Yang, H. Wang, X. Zhang, W. Yin, and H. Chen, “Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method,” Sci. Rep. 6(1), 36846 (2016).
[Crossref]

Yin, W.

H. A. Madni, B. Zheng, Y. Yang, H. Wang, X. Zhang, W. Yin, and H. Chen, “Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method,” Sci. Rep. 6(1), 36846 (2016).
[Crossref]

Yu, J.

J. J. Yang, M. Huang, C. F. Yang, and J. Yu, “Reciprocal invisibility cloak based on complementary media,” Eur. Phys. J. D 61(3), 731–736 (2011).
[Crossref]

Yuan, G.

B. L. Li, T. H. Li, J. Wu, M. Hui, G. Yuan, and Y. Zhu, “An arbitrary-shaped acoustic cloak with merits beyond the internal and external cloaks,” Acoust. Phys. 63(1), 45–53 (2017).
[Crossref]

Yuan, N. C.

Yuan, T.

T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3(1), 1593 (2013).
[Crossref]

Zang, X.

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref]

Zhang, X.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light: Sci. Appl. 5(12), e16177 (2016).
[Crossref]

H. A. Madni, B. Zheng, Y. Yang, H. Wang, X. Zhang, W. Yin, and H. Chen, “Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method,” Sci. Rep. 6(1), 36846 (2016).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref]

Zhang, Z. Q.

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref]

Zheng, B.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light: Sci. Appl. 5(12), e16177 (2016).
[Crossref]

H. A. Madni, B. Zheng, Y. Yang, H. Wang, X. Zhang, W. Yin, and H. Chen, “Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method,” Sci. Rep. 6(1), 36846 (2016).
[Crossref]

B. Zheng, H. A. Madni, and H. S. Chen, “Open cloak designed with transformation optics,” In Electromagnetic Theory (EMTS). URSI International Symposium, IEEE, 607–608 (2016).

Zhu, J.

J. Zhu, T. N. Chen, Q. X. Liang, X. Wang, J. Xiong, and P. Jiang, “A unidirectional acoustic cloak for multilayered background media with homogeneous metamaterials,” J. Phys. D: Appl. Phys. 48(30), 305502 (2015).
[Crossref]

Zhu, Y.

B. L. Li, T. H. Li, J. Wu, M. Hui, G. Yuan, and Y. Zhu, “An arbitrary-shaped acoustic cloak with merits beyond the internal and external cloaks,” Acoust. Phys. 63(1), 45–53 (2017).
[Crossref]

X. Zang, B. Cai, and Y. Zhu, “Shifting media for carpet cloaks, antiobject independent illusion optics, and a restoring device,” Appl. Opt. 52(9), 1832–1837 (2013).
[Crossref]

Acoust. Phys. (1)

B. L. Li, T. H. Li, J. Wu, M. Hui, G. Yuan, and Y. Zhu, “An arbitrary-shaped acoustic cloak with merits beyond the internal and external cloaks,” Acoust. Phys. 63(1), 45–53 (2017).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

H. Ma, S. B. Qu, Z. Xu, and J. Wang, “The open cloak,” Appl. Phys. Lett. 94(10), 103501 (2009).
[Crossref]

X. He and L. Z. Wu, “Design of two-dimensional open cloaks with finite material parameters for thermodynamics,” Appl. Phys. Lett. 102(21), 211912 (2013).
[Crossref]

Y. Cheng, F. Yang, J. Y. Xu, and X. J. Liu, “A multilayer structured acoustic cloak with homogeneous isotropic materials,” Appl. Phys. Lett. 92(15), 151913 (2008).
[Crossref]

Chin. Phys. B (1)

C. F. Yang, M. Huang, J. J. Yang, F. C. Mao, T. H. Li, P. Li, and P. S. Ren, “Homogeneous transparent device and its layered realization,” Chin. Phys. B 27(12), 124101 (2018).
[Crossref]

Eur. Phys. J. D (1)

J. J. Yang, M. Huang, C. F. Yang, and J. Yu, “Reciprocal invisibility cloak based on complementary media,” Eur. Phys. J. D 61(3), 731–736 (2011).
[Crossref]

IEEE Antennas Wireless Propag. Lett. (1)

P. Vura, A. Rajput, and K. V. Srivastava, “Composite-shaped external cloaks with homogeneous material properties,” IEEE Antennas Wireless Propag. Lett. 15, 282–285 (2016).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

S. Xi, H. S. Chen, B. L. Wu, and J. A. Kong, “One directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

IEEE Trans. Antennas Propag. (1)

A. Rajput and K. V. Srivastava, “Approximated complementary cloak with diagonally homogeneous material parameters using shifted parabolic coordinate system,” IEEE Trans. Antennas Propag. 65(3), 1458–1463 (2017).
[Crossref]

Int. J. Mod. Phys. B (1)

M. Fazeli, S. H. Sedighy, and H. R. Hassani, “Homogeneous near-perfect invisible ground and free space cloak,” Int. J. Mod. Phys. B 31(09), 1750059 (2017).
[Crossref]

J. Opt. (1)

T. Han, C. Qiu, and X. Tang, “An arbitrarily shaped cloak with nonsingular and homogeneous parameters designed using a twofold transformation,” J. Opt. 12(9), 095103 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (2)

J. Zhu, T. N. Chen, Q. X. Liang, X. Wang, J. Xiong, and P. Jiang, “A unidirectional acoustic cloak for multilayered background media with homogeneous metamaterials,” J. Phys. D: Appl. Phys. 48(30), 305502 (2015).
[Crossref]

T. Han, X. Tang, and F. Xiao, “External cloak with homogeneous material,” J. Phys. D: Appl. Phys. 42(23), 235403 (2009).
[Crossref]

Light: Sci. Appl. (1)

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light: Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Mod. Phys. Lett. B (1)

C. F. Yang, M. Huang, J. J. Yang, Z. Xiao, and J. H. Peng, “An External Cylindrical Cloak with N-Sided Regular Polygonal Cross-Section Based on Complementary Medium,” Mod. Phys. Lett. B 24(22), 2357–2364 (2010).
[Crossref]

Nat. Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref]

Opt. Commun. (1)

C. F. Yang, M. Huang, J. J. Yang, T. H. Li, F. C. Mao, and P. Li, “Arbitrarily shaped homogeneous concentrator and its layered realization,” Opt. Commun. 435, 150–158 (2019).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref]

Plasmonics (1)

A. Rajput and K. V. Srivastava, “Arbitrary Shaped Reciprocal External Cloak with Nonsingular and Homogeneous Material Parameters Using Expanding Coordinate Transformation,” Plasmonics 12(3), 771–781 (2017).
[Crossref]

Prog. Electromagn. Res. (1)

J. J. Yang, M. Huang, and Y. L. Li, “Reciprocal invisible cloak with homogeneous metamaterials,” Prog. Electromagn. Res. 21, 105–115 (2011).
[Crossref]

Sci. Rep. (4)

H. A. Madni, B. Zheng, Y. Yang, H. Wang, X. Zhang, W. Yin, and H. Chen, “Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method,” Sci. Rep. 6(1), 36846 (2016).
[Crossref]

H. A. Madni, K. Hussain, W. X. Jiang, S. Liu, A. Aziz, S. Iqbal, and T. J. Cui, “A novel EM concentrator with open-concentrator region based on multi-folded transformation optics,” Sci. Rep. 8(1), 9641 (2018).
[Crossref]

T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3(1), 1593 (2013).
[Crossref]

C. F. Yang, M. Huang, J. J. Yang, and F. C. Mao, “Homogeneous Multifunction Devices Designing and Layered Implementing Based on Rotary Medium,” Sci. Rep. 8(1), 17339 (2018).
[Crossref]

Science (1)

J. B. Pendry, D. R. Smith, and D. Schurig, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Other (2)

B. Zheng, H. A. Madni, and H. S. Chen, “Open cloak designed with transformation optics,” In Electromagnetic Theory (EMTS). URSI International Symposium, IEEE, 607–608 (2016).

P. Vura, A. Rajput, K. Saurav, and K. V. Srivastava, “Hexagonal shaped reciprocal external cloak with homogeneous material properties,” In Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE International Symposium, 526–527 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic of the N-sided polygonal external cloak. (a) The N-sided polygon is divided into N triangles in original space. (b) Each triangular region is further divided into three contoured region: cloaked region [white colored region], complementary region [red colored region], and core region [yellow colored region] in physical space respectively.
Fig. 2.
Fig. 2. Schematic of the folded transformation procedure. (a) Free trapezium region ${a_i}{a_{i + 1}}{b_{i + 1}}{b_i}$ in original space. (b) Green colored region ${a_i}{b_{i + 1}}{b_i}$ in (a) is folded into blue colored region ${c_i}{b_{i + 1}}{b_i}$. (c) Green colored region ${a_i}{a_{i + 1}}{b_{i + 1}}$ is folded into yellow colored region ${c_i}{c_{i + 1}}{b_{i + 1}}$.
Fig. 3.
Fig. 3. Schematic of the procedure of the compressing transformation. (a) Green colored triangular region ${a_i}{a_{i + 1}}o$ in the original space. (b)The triangle ${a_i}{a_{i + 1}}o$ is compressed into an intermediate triangle ${c_i}{a_{i + 1}}o$ (the blue colored region).(c) The intermediate triangle ${c_i}{a_{i + 1}}o$ is further compressed into triangle ${c_i}{c_{i + 1}}o$.
Fig. 4.
Fig. 4. The electric field (Ez) distribution in the vicinity of the core material region($r \le c$) and the complementary region ($c \le r \le b$) with 3-sided, 4-sided, 5-sided and six-sided regularly polygonal inner and outer boundaries.
Fig. 5.
Fig. 5. Material parameters distribution of (a) -(d) traditional 4-sided regular polygonal external cloak and new novel polygonal external cloak designed here. (a) and (e) ${\mu _{xx}}$; (b) and (f) ${\mu _{xy}}$; (c) and (g) ${\mu _{yy}}$; (d) and (h) ${\varepsilon _{zz}}$.
Fig. 6.
Fig. 6. Electric field distributions under TE plane wave incident from left to right. (a) The circular dielectric shell is fitted into the region bounded between $0.055m \le r \le 0.065m$. (b) The dielectric ball with radius of 0.0094 m is located at (-0.0506 m,0), (c) two dielectric quadrangles are fitted into the region bounded between $0.055m \le r \le 0.065m$. (d) the shell in (a) is hidden by 4-sided external cloak, (e)the ball in (b) is hidden by 5-sided external cloak, (f) the two dielectric quadrangles in (c) are hidden by the 6-sided external cloak.
Fig. 7.
Fig. 7. Normalized far field of (a) annular dielectric object, (b) dielectric ball,(c)two dielectric quadrangles with or without cloaking devices. Blue colored line and red colored line indicate far field without or with cloak respectively.
Fig. 8.
Fig. 8. Normalized far field distributions of the cloaking device when the concealed dielectric ball is located at different position. (a) The ball is shifting along the x axis when fixing y coordinate at y = 0; (b) The ball is shifting along the y direction when keeping x = 0.0506 m.
Fig. 9.
Fig. 9. Electric field distributions under TE plane wave incident from left to right. (a)and (b) annular dielectric segment is fitted into the cloaked region boundary between $0.055m \le r \le 0.065m$, (c) 20-sided polygonal external cloak is used to hidden the object in (a), (d)arbitrarily shaped polygonal cloak is used to hidden the object in (b).
Fig. 10.
Fig. 10. Normalized far field distribution of annular dielectric segment with and without cloaking devices. (a) 20-sided polygonal cloak, (b) arbitrary shaped polygonal cloak. Blue colored line and red colored line indicates the far field without and with cloak respectively. The corresponding near field is shown in Fig. 9.

Tables (1)

Tables Icon

Table 1. Material parameters of 4-sided polygonal cloak

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

ε = Λ ε Λ T / det Λ , μ = Λ μ Λ T / det Λ .
x a i = a cos [ ( i 1 ) 2 π / N ] , y a i = a sin [ ( i 1 ) 2 π / N ] , x b i = b cos [ ( i 1 ) 2 π / N ] , y b i = b sin [ ( i 1 ) 2 π / N ] , x c i = c cos [ ( i 1 ) 2 π / N ] , y c i = c sin [ ( i 1 ) 2 π / N ] .
x = m 1 x + m 2 y + m 3 , y = n 1 x + n 2 y + n 3 , z = z .
x c i = m 1 x a i + m 2 y a i + m 3 , y c i = n 1 x a i + n 2 y a i + n 3 , x b i = m 1 x b i + m 2 y b i + m 3 , y b i = n 1 x b i + n 2 y b i + n 3 , x b i + 1 = m 1 x b i + 1 + m 2 y b i + 1 + m 3 , y b i + 1 = n 1 x b i + 1 + n 2 y b i + 1 + n 3 .
[ x c i y c i x b i y b i x b i + 1 y b i + 1 ] = [ x a i y a i 1 x b i y b i 1 x b i + 1 y b i + 1 1 ] [ m 1 n 1 m 2 n 2 m 3 n 3 ] .
[ m 1 n 1 m 2 n 2 m 3 n 3 ] = A 1 [ x c i y c i x b i y b i x b i + 1 y b i + 1 ] ,
Λ = [ m 1 m 2 0 n 1 n 2 0 0 0 1 ] .
μ o u t e r = μ [ ( m 1 2 + m 2 2 ) / ( m 1 n 2 m 2 n 1 ) ( m 1 n 1 + m 2 n 2 ) / ( m 1 n 2 m 2 n 1 ) ( m 1 n 1 + m 2 n 2 ) / ( m 1 n 2 m 2 n 1 ) ( n 1 2 + n 2 2 ) / ( m 1 n 2 m 2 n 1 ) ] , ε o u t e r = ε / ( m 1 n 2 m 2 n 1 ) .
x = p 1 x + p 2 y + p 3 , y = q 1 x + q 2 y + q 3 , z = z .
[ p 1 q 1 p 2 q 2 p 3 q 3 ] = B 1 [ x c i y c i x c i + 1 y c i + 1 x b i + 1 y b i + 1 ] ,
Λ = [ p 1 p 2 0 q 1 q 2 0 0 0 1 ] , det Λ = p 1 q 2 p 2 q 1 .
μ i n n e r = μ [ ( p 1 2 + p 2 2 ) / ( p 1 q 2 p 2 q 1 ) ( p 1 q 1 + p 2 q 2 ) / ( p 1 q 2 p 2 q 1 ) ( p 1 q 1 + p 2 q 2 ) / ( p 1 q 2 p 2 q 1 ) ( q 1 2 + q 2 2 ) / ( p 1 q 2 p 2 q 1 ) ] , ε i n n e r = ε / ( p 1 q 2 p 2 q 1 ) .
x = e 1 x + e 2 y + e 3 , y = f 1 x + f 2 y + f 3 , z = z .
[ e 1 f 1 e 2 f 2 e 3 f 3 ] = C 1 [ x c i y c i x a i + 1 y a i + 1 0 0 ] ,
Λ 1 = [ e 1 e 2 0 f 1 f 2 0 0 0 1 ] .
x = r 1 x + r 2 y + r 3 , y = s 1 x + s 2 y + s 3 , z = z .
[ r 1 s 1 r 2 s 2 r 3 s 3 ] = D 1 [ x c i y c i x c i + 1 y c i + 1 0 0 ] ,
Λ 1 = [ r 1 r 2 0 s 1 s 2 0 0 0 1 ] .
ε = ( Λ 2 Λ 1 ) ε ( Λ 2 Λ 1 ) T / det ( Λ 2 Λ 1 ) , μ = ( Λ 2 Λ 1 ) μ ( Λ 2 Λ 1 ) T / det ( Λ 2 Λ 1 ) .
μ c o r e = μ [ ( M 1 2 + M 2 2 ) / ( M 1 N 2 M 2 N 1 ) ( M 1 N 1 + M 2 N 2 ) / ( M 1 N 2 M 2 N 1 ) ( M 1 N 1 + M 2 N 2 ) / ( M 1 N 2 M 2 N 1 ) ( N 1 2 + N 2 2 ) / ( M 1 N 2 M 2 N 1 ) ] , ε c o r e = ε / ( M 1 N 2 M 2 N 1 ) .

Metrics