Abstract

We report on the design, fabrication, and evaluation of grating devices, specifically (1) low back-reflection grating couplers and (2) focused Bragg grating mirrors, fabricated on silicon nitride technology platforms for applications in the visible wavelength range. Experiments show that the designed grating couplers exhibit 8 dB-reduced back reflections and a coupling penalty of less than 0.8 dB compared to a conventional grating coupler design. Taking advantage of the 193 nm immersion lithography, focused Bragg gratings are fabricated for the visible wavelengths of 638 nm and 532 nm and over 80% reflectivity is achieved.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths

Sebastian Romero-García, Florian Merget, Frank Zhong, Hod Finkelstein, and Jeremy Witzens
Opt. Express 21(12) 14036-14046 (2013)

Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers

Wesley D. Sacher, Xianshu Luo, Yisu Yang, Fu-Der Chen, Thomas Lordello, Jason C. C. Mak, Xinyu Liu, Ting Hu, Tianyuan Xue, Patrick Guo-Qiang Lo, Michael L. Roukes, and Joyce K. S. Poon
Opt. Express 27(26) 37400-37418 (2019)

SiNx bilayer grating coupler for photonic systems

Eng Wen Ong, Nicholas M. Fahrenkopf, and Douglas D. Coolbaugh
OSA Continuum 1(1) 13-25 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Munoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirera, R. Mas, and C. Dominguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-Infrared applications,” Sensors 17(9), 2088 (2017).
    [Crossref]
  2. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
    [Crossref]
  3. A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
    [Crossref]
  4. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
    [Crossref]
  5. S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
    [Crossref]
  6. K. Lodewijks, S. Jayachandran, T. D. Kongnyuy, S. Lenci, S. Das, P. V. Dorpe, A. Humbert, R. Jansen, S. Severi, and X. Rottenberg, “Low loss high refractive index niobium oxide waveguide platform for visible light applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper ITh2B.3.
  7. J. H. Song and X. Rottenberg, “Low-back-reflection grating couplers using asymmetric grating trenches,” IEEE Photon. Technol. Lett. 29(4), 389–392 (2017).
    [Crossref]
  8. J. H. Song, B. Snyder, K. Lodewijks, R. Jansen, and X. Rottenberg, “Grating coupler design for reduced back-reflections,” IEEE Photon. Technol. Lett. 30(2), 217–220 (2018).
    [Crossref]
  9. C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
    [Crossref]
  10. L. A. Wang and C. D. Su, “Tolerance analysis of aligning an astigmatic laser diode with a single-mode optical fiber,” J. Lightwave Technol. 14(12), 2757–2762 (1996).
    [Crossref]
  11. B. Snyder and P. O’Brien, “Packaging process for grating-coupled silicon photonic waveguides using angle-polished fibers,” IEEE Trans. Compon., Packag., Manuf. Technol. 3(6), 954–959 (2013).
    [Crossref]
  12. T.-H. Chang, T.-E. Lee, N.-K. Hsueh, C. H. Lin, and C.-F. Yang, “Investigation of TiO2–Al2O3 bi-layer films as Bragg reflector of blue light by using electron beam evaporation,” Microsyst. Technol. 24(10), 3941–3948 (2018).
    [Crossref]
  13. J. M. Fastenau and G. Y. Robinson, “Low-resistance visible wavelength distributed Bragg reflectors using small energy band offset heterojunctions,” Appl. Phys. Lett. 74(25), 3758–3760 (1999).
    [Crossref]
  14. J. W. Leem, X.-Y. Guan, and J. S. Yu, “Tunable distributed Bragg reflectors with wide-angle and broadband high-reflectivity using nanoporous/dense titanium dioxide film stacks for visible wavelength applications,” Opt. Express 22(15), 18519–18526 (2014).
    [Crossref]
  15. C.-J. Chae, E. Skafidas, and D.-Y. Choi, “Compact Bragg grating reflectors in silicon waveguides and their application to resonator filters,” Th2A.20, OFC 2014.
  16. C. J. Chae and E. Skafidas “Circular Bragg grating reflector suitable for integration with Narrow silicon nanowires,” Optical Society of America, In Integrated Photonics Research, Silicon and Nanophotonics, IT2A-3 (2013).

2018 (2)

J. H. Song, B. Snyder, K. Lodewijks, R. Jansen, and X. Rottenberg, “Grating coupler design for reduced back-reflections,” IEEE Photon. Technol. Lett. 30(2), 217–220 (2018).
[Crossref]

T.-H. Chang, T.-E. Lee, N.-K. Hsueh, C. H. Lin, and C.-F. Yang, “Investigation of TiO2–Al2O3 bi-layer films as Bragg reflector of blue light by using electron beam evaporation,” Microsyst. Technol. 24(10), 3941–3948 (2018).
[Crossref]

2017 (2)

J. H. Song and X. Rottenberg, “Low-back-reflection grating couplers using asymmetric grating trenches,” IEEE Photon. Technol. Lett. 29(4), 389–392 (2017).
[Crossref]

P. Munoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirera, R. Mas, and C. Dominguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-Infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

2014 (2)

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

J. W. Leem, X.-Y. Guan, and J. S. Yu, “Tunable distributed Bragg reflectors with wide-angle and broadband high-reflectivity using nanoporous/dense titanium dioxide film stacks for visible wavelength applications,” Opt. Express 22(15), 18519–18526 (2014).
[Crossref]

2013 (3)

B. Snyder and P. O’Brien, “Packaging process for grating-coupled silicon photonic waveguides using angle-polished fibers,” IEEE Trans. Compon., Packag., Manuf. Technol. 3(6), 954–959 (2013).
[Crossref]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

2011 (1)

2010 (1)

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
[Crossref]

1999 (1)

J. M. Fastenau and G. Y. Robinson, “Low-resistance visible wavelength distributed Bragg reflectors using small energy band offset heterojunctions,” Appl. Phys. Lett. 74(25), 3758–3760 (1999).
[Crossref]

1996 (1)

L. A. Wang and C. D. Su, “Tolerance analysis of aligning an astigmatic laser diode with a single-mode optical fiber,” J. Lightwave Technol. 14(12), 2757–2762 (1996).
[Crossref]

Absil, P.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Alemany, R.

P. Munoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirera, R. Mas, and C. Dominguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-Infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Baets, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Banos, R.

P. Munoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirera, R. Mas, and C. Dominguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-Infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Barton, J. S.

Bauters, J. F.

Blumenthal, D. J.

Bogaerts, W.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Bowers, J. E.

Bru, L. A.

P. Munoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirera, R. Mas, and C. Dominguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-Infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Bruinink, C. M.

Buhl, L. L.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
[Crossref]

Campenhout, J. V.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Chae, C. J.

C. J. Chae and E. Skafidas “Circular Bragg grating reflector suitable for integration with Narrow silicon nanowires,” Optical Society of America, In Integrated Photonics Research, Silicon and Nanophotonics, IT2A-3 (2013).

Chae, C.-J.

C.-J. Chae, E. Skafidas, and D.-Y. Choi, “Compact Bragg grating reflectors in silicon waveguides and their application to resonator filters,” Th2A.20, OFC 2014.

Chang, T.-H.

T.-H. Chang, T.-E. Lee, N.-K. Hsueh, C. H. Lin, and C.-F. Yang, “Investigation of TiO2–Al2O3 bi-layer films as Bragg reflector of blue light by using electron beam evaporation,” Microsyst. Technol. 24(10), 3941–3948 (2018).
[Crossref]

Chen, L.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
[Crossref]

Chen, Y.-K.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
[Crossref]

Choi, D.-Y.

C.-J. Chae, E. Skafidas, and D.-Y. Choi, “Compact Bragg grating reflectors in silicon waveguides and their application to resonator filters,” Th2A.20, OFC 2014.

Cirera, J. M.

P. Munoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirera, R. Mas, and C. Dominguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-Infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Claes, T.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Das, S.

K. Lodewijks, S. Jayachandran, T. D. Kongnyuy, S. Lenci, S. Das, P. V. Dorpe, A. Humbert, R. Jansen, S. Severi, and X. Rottenberg, “Low loss high refractive index niobium oxide waveguide platform for visible light applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper ITh2B.3.

Delvaux, C.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Deshpande, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Dhakal, A.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Doerr, C. R.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
[Crossref]

Doménech, J. D.

P. Munoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirera, R. Mas, and C. Dominguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-Infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Dominguez, C.

P. Munoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirera, R. Mas, and C. Dominguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-Infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Dorpe, P. V.

K. Lodewijks, S. Jayachandran, T. D. Kongnyuy, S. Lenci, S. Das, P. V. Dorpe, A. Humbert, R. Jansen, S. Severi, and X. Rottenberg, “Low loss high refractive index niobium oxide waveguide platform for visible light applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper ITh2B.3.

Du Bois, B.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Fastenau, J. M.

J. M. Fastenau and G. Y. Robinson, “Low-resistance visible wavelength distributed Bragg reflectors using small energy band offset heterojunctions,” Appl. Phys. Lett. 74(25), 3758–3760 (1999).
[Crossref]

Fernández, J.

P. Munoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirera, R. Mas, and C. Dominguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-Infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Finkelstein, H.

Gargallo, B.

P. Munoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirera, R. Mas, and C. Dominguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-Infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Guan, X.-Y.

Heck, M. J. R.

Heideman, R. G.

Helin, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Hsueh, N.-K.

T.-H. Chang, T.-E. Lee, N.-K. Hsueh, C. H. Lin, and C.-F. Yang, “Investigation of TiO2–Al2O3 bi-layer films as Bragg reflector of blue light by using electron beam evaporation,” Microsyst. Technol. 24(10), 3941–3948 (2018).
[Crossref]

Humbert, A.

K. Lodewijks, S. Jayachandran, T. D. Kongnyuy, S. Lenci, S. Das, P. V. Dorpe, A. Humbert, R. Jansen, S. Severi, and X. Rottenberg, “Low loss high refractive index niobium oxide waveguide platform for visible light applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper ITh2B.3.

Jansen, R.

J. H. Song, B. Snyder, K. Lodewijks, R. Jansen, and X. Rottenberg, “Grating coupler design for reduced back-reflections,” IEEE Photon. Technol. Lett. 30(2), 217–220 (2018).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

K. Lodewijks, S. Jayachandran, T. D. Kongnyuy, S. Lenci, S. Das, P. V. Dorpe, A. Humbert, R. Jansen, S. Severi, and X. Rottenberg, “Low loss high refractive index niobium oxide waveguide platform for visible light applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper ITh2B.3.

Jayachandran, S.

K. Lodewijks, S. Jayachandran, T. D. Kongnyuy, S. Lenci, S. Das, P. V. Dorpe, A. Humbert, R. Jansen, S. Severi, and X. Rottenberg, “Low loss high refractive index niobium oxide waveguide platform for visible light applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper ITh2B.3.

John, D. D.

Kongnyuy, T. D.

K. Lodewijks, S. Jayachandran, T. D. Kongnyuy, S. Lenci, S. Das, P. V. Dorpe, A. Humbert, R. Jansen, S. Severi, and X. Rottenberg, “Low loss high refractive index niobium oxide waveguide platform for visible light applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper ITh2B.3.

Lee, T.-E.

T.-H. Chang, T.-E. Lee, N.-K. Hsueh, C. H. Lin, and C.-F. Yang, “Investigation of TiO2–Al2O3 bi-layer films as Bragg reflector of blue light by using electron beam evaporation,” Microsyst. Technol. 24(10), 3941–3948 (2018).
[Crossref]

Leem, J. W.

Leinse, A.

Lenci, S.

K. Lodewijks, S. Jayachandran, T. D. Kongnyuy, S. Lenci, S. Das, P. V. Dorpe, A. Humbert, R. Jansen, S. Severi, and X. Rottenberg, “Low loss high refractive index niobium oxide waveguide platform for visible light applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper ITh2B.3.

Lepage, G.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Leyssens, K.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Lin, C. H.

T.-H. Chang, T.-E. Lee, N.-K. Hsueh, C. H. Lin, and C.-F. Yang, “Investigation of TiO2–Al2O3 bi-layer films as Bragg reflector of blue light by using electron beam evaporation,” Microsyst. Technol. 24(10), 3941–3948 (2018).
[Crossref]

Locorotondo, S.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Lodewijks, K.

J. H. Song, B. Snyder, K. Lodewijks, R. Jansen, and X. Rottenberg, “Grating coupler design for reduced back-reflections,” IEEE Photon. Technol. Lett. 30(2), 217–220 (2018).
[Crossref]

K. Lodewijks, S. Jayachandran, T. D. Kongnyuy, S. Lenci, S. Das, P. V. Dorpe, A. Humbert, R. Jansen, S. Severi, and X. Rottenberg, “Low loss high refractive index niobium oxide waveguide platform for visible light applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper ITh2B.3.

Mas, R.

P. Munoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirera, R. Mas, and C. Dominguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-Infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Merget, F.

Micó, G.

P. Munoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirera, R. Mas, and C. Dominguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-Infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Milenin, A.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Munoz, P.

P. Munoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirera, R. Mas, and C. Dominguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-Infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Murdoch, G.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Neutens, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

O’Brien, P.

B. Snyder and P. O’Brien, “Packaging process for grating-coupled silicon photonic waveguides using angle-polished fibers,” IEEE Trans. Compon., Packag., Manuf. Technol. 3(6), 954–959 (2013).
[Crossref]

Ong, P.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Pastor, D.

P. Munoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirera, R. Mas, and C. Dominguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-Infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Pathak, S.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Pérez, D.

P. Munoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirera, R. Mas, and C. Dominguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-Infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Peyskens, F.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Robinson, G. Y.

J. M. Fastenau and G. Y. Robinson, “Low-resistance visible wavelength distributed Bragg reflectors using small energy band offset heterojunctions,” Appl. Phys. Lett. 74(25), 3758–3760 (1999).
[Crossref]

Romero-García, S.

Rottenberg, X.

J. H. Song, B. Snyder, K. Lodewijks, R. Jansen, and X. Rottenberg, “Grating coupler design for reduced back-reflections,” IEEE Photon. Technol. Lett. 30(2), 217–220 (2018).
[Crossref]

J. H. Song and X. Rottenberg, “Low-back-reflection grating couplers using asymmetric grating trenches,” IEEE Photon. Technol. Lett. 29(4), 389–392 (2017).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

K. Lodewijks, S. Jayachandran, T. D. Kongnyuy, S. Lenci, S. Das, P. V. Dorpe, A. Humbert, R. Jansen, S. Severi, and X. Rottenberg, “Low loss high refractive index niobium oxide waveguide platform for visible light applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper ITh2B.3.

Sanchez, A. M.

P. Munoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirera, R. Mas, and C. Dominguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-Infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Selvaraja, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Selvaraja, S. K.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Severi, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

K. Lodewijks, S. Jayachandran, T. D. Kongnyuy, S. Lenci, S. Das, P. V. Dorpe, A. Humbert, R. Jansen, S. Severi, and X. Rottenberg, “Low loss high refractive index niobium oxide waveguide platform for visible light applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper ITh2B.3.

Skafidas, E.

C.-J. Chae, E. Skafidas, and D.-Y. Choi, “Compact Bragg grating reflectors in silicon waveguides and their application to resonator filters,” Th2A.20, OFC 2014.

C. J. Chae and E. Skafidas “Circular Bragg grating reflector suitable for integration with Narrow silicon nanowires,” Optical Society of America, In Integrated Photonics Research, Silicon and Nanophotonics, IT2A-3 (2013).

Snyder, B.

J. H. Song, B. Snyder, K. Lodewijks, R. Jansen, and X. Rottenberg, “Grating coupler design for reduced back-reflections,” IEEE Photon. Technol. Lett. 30(2), 217–220 (2018).
[Crossref]

B. Snyder and P. O’Brien, “Packaging process for grating-coupled silicon photonic waveguides using angle-polished fibers,” IEEE Trans. Compon., Packag., Manuf. Technol. 3(6), 954–959 (2013).
[Crossref]

Song, J. H.

J. H. Song, B. Snyder, K. Lodewijks, R. Jansen, and X. Rottenberg, “Grating coupler design for reduced back-reflections,” IEEE Photon. Technol. Lett. 30(2), 217–220 (2018).
[Crossref]

J. H. Song and X. Rottenberg, “Low-back-reflection grating couplers using asymmetric grating trenches,” IEEE Photon. Technol. Lett. 29(4), 389–392 (2017).
[Crossref]

Sterckx, G.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Su, C. D.

L. A. Wang and C. D. Su, “Tolerance analysis of aligning an astigmatic laser diode with a single-mode optical fiber,” J. Lightwave Technol. 14(12), 2757–2762 (1996).
[Crossref]

Subramanian, A. Z.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Thourhout, D. V.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Van Dorpe, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Wang, L. A.

L. A. Wang and C. D. Su, “Tolerance analysis of aligning an astigmatic laser diode with a single-mode optical fiber,” J. Lightwave Technol. 14(12), 2757–2762 (1996).
[Crossref]

Winroth, G.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Witzens, J.

Xie, W.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Yang, C.-F.

T.-H. Chang, T.-E. Lee, N.-K. Hsueh, C. H. Lin, and C.-F. Yang, “Investigation of TiO2–Al2O3 bi-layer films as Bragg reflector of blue light by using electron beam evaporation,” Microsyst. Technol. 24(10), 3941–3948 (2018).
[Crossref]

Yu, J. S.

Zhong, F.

Appl. Phys. Lett. (1)

J. M. Fastenau and G. Y. Robinson, “Low-resistance visible wavelength distributed Bragg reflectors using small energy band offset heterojunctions,” Appl. Phys. Lett. 74(25), 3758–3760 (1999).
[Crossref]

IEEE Photon. J. (1)

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. H. Song and X. Rottenberg, “Low-back-reflection grating couplers using asymmetric grating trenches,” IEEE Photon. Technol. Lett. 29(4), 389–392 (2017).
[Crossref]

J. H. Song, B. Snyder, K. Lodewijks, R. Jansen, and X. Rottenberg, “Grating coupler design for reduced back-reflections,” IEEE Photon. Technol. Lett. 30(2), 217–220 (2018).
[Crossref]

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461–1463 (2010).
[Crossref]

IEEE Trans. Compon., Packag., Manuf. Technol. (1)

B. Snyder and P. O’Brien, “Packaging process for grating-coupled silicon photonic waveguides using angle-polished fibers,” IEEE Trans. Compon., Packag., Manuf. Technol. 3(6), 954–959 (2013).
[Crossref]

J. Lightwave Technol. (1)

L. A. Wang and C. D. Su, “Tolerance analysis of aligning an astigmatic laser diode with a single-mode optical fiber,” J. Lightwave Technol. 14(12), 2757–2762 (1996).
[Crossref]

Microsyst. Technol. (1)

T.-H. Chang, T.-E. Lee, N.-K. Hsueh, C. H. Lin, and C.-F. Yang, “Investigation of TiO2–Al2O3 bi-layer films as Bragg reflector of blue light by using electron beam evaporation,” Microsyst. Technol. 24(10), 3941–3948 (2018).
[Crossref]

Opt. Express (3)

Proc. SPIE (1)

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Sensors (1)

P. Munoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Banos, B. Gargallo, R. Alemany, A. M. Sanchez, J. M. Cirera, R. Mas, and C. Dominguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-Infrared applications,” Sensors 17(9), 2088 (2017).
[Crossref]

Other (3)

C.-J. Chae, E. Skafidas, and D.-Y. Choi, “Compact Bragg grating reflectors in silicon waveguides and their application to resonator filters,” Th2A.20, OFC 2014.

C. J. Chae and E. Skafidas “Circular Bragg grating reflector suitable for integration with Narrow silicon nanowires,” Optical Society of America, In Integrated Photonics Research, Silicon and Nanophotonics, IT2A-3 (2013).

K. Lodewijks, S. Jayachandran, T. D. Kongnyuy, S. Lenci, S. Das, P. V. Dorpe, A. Humbert, R. Jansen, S. Severi, and X. Rottenberg, “Low loss high refractive index niobium oxide waveguide platform for visible light applications,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), paper ITh2B.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. SiN waveguide platform. The PECVD SiN waveguide thicknesses are 220 nm and 180 nm for wavelengths of 638 nm and 532 nm, respectively.
Fig. 2.
Fig. 2. Simulations showing the effect of a 70nm-ARC layer in the SiN platform: (a) without ARC layer (b) with ARC layer when varying the thickness of the under-cladding. Here, hundercladding: the height of a under cladding.
Fig. 3.
Fig. 3. Comparison of simulations between normal grating couplers with and without ARC and substrate at wavelengths of (a) 532 nm and (b) 638 nm.
Fig. 4.
Fig. 4. (a) Low back-reflection, (b) normal and (c) apodized grating couplers. (d) Test structure for back reflection measurement. The inset of (a) shows the out coupling far field angle of the low back-reflection grating coupler.
Fig. 5.
Fig. 5. Coupling efficiency and back-reflection of (a) low back-reflection, (b) normal, and (c) apodized grating couplers. Solid lines are simulations, while circles and triangles are experiments.
Fig. 6.
Fig. 6. Drawing of focused Bragg grating (N = 10) and its design parameters.
Fig. 7.
Fig. 7. Comparison of Bragg gratings when N = 10: focused (solid lines) vs. conventional (dotted lines).
Fig. 8.
Fig. 8. Focused Bragg grating simulations when having different lengths: (a) reflection, and (b) transmission.
Fig. 9.
Fig. 9. Characteristics of Bragg gratings when (a) N = 15 and (b) N = 30 (solid lines: simulations, circles and squares: experiments).
Fig. 10.
Fig. 10. Experimental characteristics of low back-reflection grating coupler at λ of 532nm: (a)transmission and reflection, (b) simulation comprison between normal and low back-reflection grating couplers, and (c) far field angle of designed grating coupler and SEM photo.
Fig. 11.
Fig. 11. SEM picture of fabricated Bragg gratings for 532 nm.
Fig. 12.
Fig. 12. Bragg grating characteristics with (a) N = 15 and (b) N = 30 (solid lines are simulations, while circles and squares are experiments).

Tables (1)

Tables Icon

Table 1. Propagation losses in the SiN waveguide platforms

Metrics