Abstract

Surface-enhanced Raman scattering (SERS) has shown great promise for trace detection due to its high sensitivity. The lack of efficient fabrication methods for large-scale SERS substrates with high sensitivity, high reproducibility, and stability has greatly limited the development of practical SERS sensing devices. In this work, we report sub-diffraction, high throughput, and low-cost fabrication of SERS substrates with plasmonic cavity lens (PCL) lithography. The PCL is a photoresist layer sandwiched with two Ag layers, which could greatly improve the lithographic resolution and fidelity. Ag nanohole arrays (AgNHs) over a 5 × 5 mm2 area were fabricated onto the bottom Ag reflective layer, which worked as SERS substrates. The SERS substrates exhibited enhancement factors (EFs) of 107 that are capable of monolayer detection. The reproducibility is less than 9%, which is much better than that of substrates synthesized with traditional chemical methods. The graphene (GE) layer was transferred onto AgNHs to increase the SERS stability, as demonstrated with only a 25.8% decrease of SERS intensity for 90 day exposure to air and a 78.3% decrease for the control case without GE. This work has demonstrated that PCL lithography technique is a promising method for fabrication of SERS substrates with large-area, high sensitivity, high reproducibility, and low-cost.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Graphene/Ag nanoholes composites for quantitative surface-enhanced Raman scattering

Zhang Jie, Yin Zenghe, Gong Tiancheng, Luo Yunfei, Wei Dapeng, and Zhu Yong
Opt. Express 26(17) 22432-22439 (2018)

Wafer scale fabrication of highly dense and uniform array of sub-5 nm nanogaps for surface enhanced Raman scatting substrates

Hongbing Cai, YuKun Wu, Yanmeng Dai, Nan Pan, Yangchao Tian, Yi Luo, and Xiaoping Wang
Opt. Express 24(18) 20808-20815 (2016)

Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS)

Ashwin Gopinath, Svetlana V. Boriskina, Bjorn M. Reinhard, and Luca Dal Negro
Opt. Express 17(5) 3741-3753 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [Crossref]
  2. B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
    [Crossref]
  3. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref]
  4. L. Osinkina, T. Lohmuller, F. Jackel, and J. Feldmann, “Synthesis of gold nanostar arrays as reliable, large-scale, homogeneous substrates for surface-enhanced Raman scattering imaging and spectroscopy,” J. Phys. Chem. C 117(43), 22198–22202 (2013).
    [Crossref]
  5. Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
    [Crossref]
  6. N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
    [Crossref]
  7. S. Park, J. Lee, and H. Ko, “Transparent and flexible surface enhanced Raman scattering (SERS) sensors based on gold nanostar arrays embedded in silicon rubber film,” ACS Appl. Mater. Interfaces 9(50), 44088–44095 (2017).
    [Crossref]
  8. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
    [Crossref]
  9. Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B 106(37), 9463–9483 (2002).
    [Crossref]
  10. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
    [Crossref]
  11. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62(3), 4318–4324 (2000).
    [Crossref]
  12. H. Xu, “Theoretical study of coated spherical metallic nanoparticles for single-molecule surface-enhanced spectroscopy,” Appl. Phys. Lett. 85(24), 5980–5982 (2004).
    [Crossref]
  13. H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
    [Crossref]
  14. X. S. Shen, G. Z. Wang, X. Hong, and W. Zhu, “Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates,” Phys. Chem. Chem. Phys. 11(34), 7450–7454 (2009).
    [Crossref]
  15. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
    [Crossref]
  16. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
    [Crossref]
  17. J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009).
    [Crossref]
  18. V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Krohn, M. F. Marchant, and M. Rothschild, “A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates,” Adv. Mater. 22(38), 4298–4302 (2010).
    [Crossref]
  19. A. Hohenau, H. Ditlbacher, B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Electron beam lithography, a helpful tool for nanooptics,” Microelectron. Eng. 83(4-9), 1464–1467 (2006).
    [Crossref]
  20. W. Yue, Z. Wang, J. Whittaker, F. Lopez-royo, Y. Yang, and A. V. Zayats, “Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers,” J. Mater. Chem. C 5(16), 4075–4084 (2017).
    [Crossref]
  21. C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32(5), 389–399 (2007).
    [Crossref]
  22. K. Sivashanmugan, J. D. Liao, and C. K. Yao, “Elimination of gallium concentration on focused-ion-beam-fabricated Au/Ag nanorod surface to recover its Raman scattering characteristic,” Sens. Actuators B 206, 415–422 (2015).
    [Crossref]
  23. P. Zhang, S. Yang, L. Wang, J. Zhao, Z. Zhu, B. Liu, J. Zhong, and X. Sun, “Large-scale uniform Au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate,” Nanotechnology 25(24), 245301 (2014).
    [Crossref]
  24. N. G. Quilis, M. Lequeux, P. Venugopalan, I. Khan, W. Knoll, S. Boujday, M. L. Chapelle, and J. Dostalek, “Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS,” Nanoscale 10(21), 10268–10276 (2018).
    [Crossref]
  25. Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
    [Crossref]
  26. D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
    [Crossref]
  27. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
    [Crossref]
  28. X. Huang, K. Chen, M. Qi, Y. Li, Y. Hou, Y. Wang, Q. Zhao, X. Luo, and Q. Xu, “Nanostructured grating patterns over a large area fabricated by optically directed assembly,” Nanoscale 8(27), 13342–13351 (2016).
    [Crossref]
  29. K. Kemp and S. Wurm, “EUV lithography,” C. R. Phys. 7(8), 875–886 (2006).
    [Crossref]
  30. A. Lasagni, C. Holzapfel, T. Weirich, and F. Mücklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
    [Crossref]
  31. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
    [Crossref]
  32. P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
    [Crossref]
  33. C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
    [Crossref]
  34. X. G. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China: Phys., Mech. Astron. 58(9), 594201 (2015).
    [Crossref]
  35. Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
    [Crossref]
  36. L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
    [Crossref]
  37. Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Adv. 7(20), 12366–12373 (2017).
    [Crossref]
  38. J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
    [Crossref]
  39. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
    [Crossref]
  40. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
    [Crossref]
  41. W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1–3), 9–22 (1998).
    [Crossref]
  42. U. S. Dinish, F. C. Yaw, A. Agarwal, and M. Olivo, “Development of highly reproducible nanogap SERS substrates: Comparative performance analysis and its application for glucose sensing,” Biosens. Bioelectron. 26(5), 1987–1992 (2011).
    [Crossref]
  43. L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
    [Crossref]
  44. T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
    [Crossref]
  45. J. Zhang, Z. Yin, T. Gong, Y. Luo, D. Wei, and Y. Zhu, “Graphene/Ag nanoholes composites for quantitative surface-enhanced Raman scattering,” Opt. Express 26(17), 22432–22439 (2018).
    [Crossref]
  46. T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, “Facile synthesis of Ag interlayer doped graphene by chemical vapor deposition using polystyrene as solid carbon source,” ACS Appl. Mater. Interfaces 4(4), 2041–2047 (2012).
    [Crossref]
  47. Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-enhanced Raman scattering study on graphene-coated metallic nanostructure substrates,” J. Phys. Chem. C 116(13), 7249–7254 (2012).
    [Crossref]
  48. A. Mcleod, K. C. Vernon, A. E. Rider, and K. Ostrikov, “Optical coupling of gold nanoparticles on vertical graphenes to maximize SERS response,” Opt. Lett. 39(8), 2334–2337 (2014).
    [Crossref]
  49. T. Gong, J. Zhang, Y. Zhu, X. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
    [Crossref]
  50. S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Wang, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
    [Crossref]
  51. M. Pu, Y. Guo, X. Li, X. Ma, and X. Luo, “Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces,” ACS Photonics 5(8), 3198–3204 (2018).
    [Crossref]

2018 (4)

N. G. Quilis, M. Lequeux, P. Venugopalan, I. Khan, W. Knoll, S. Boujday, M. L. Chapelle, and J. Dostalek, “Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS,” Nanoscale 10(21), 10268–10276 (2018).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

J. Zhang, Z. Yin, T. Gong, Y. Luo, D. Wei, and Y. Zhu, “Graphene/Ag nanoholes composites for quantitative surface-enhanced Raman scattering,” Opt. Express 26(17), 22432–22439 (2018).
[Crossref]

M. Pu, Y. Guo, X. Li, X. Ma, and X. Luo, “Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces,” ACS Photonics 5(8), 3198–3204 (2018).
[Crossref]

2017 (4)

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Adv. 7(20), 12366–12373 (2017).
[Crossref]

W. Yue, Z. Wang, J. Whittaker, F. Lopez-royo, Y. Yang, and A. V. Zayats, “Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers,” J. Mater. Chem. C 5(16), 4075–4084 (2017).
[Crossref]

S. Park, J. Lee, and H. Ko, “Transparent and flexible surface enhanced Raman scattering (SERS) sensors based on gold nanostar arrays embedded in silicon rubber film,” ACS Appl. Mater. Interfaces 9(50), 44088–44095 (2017).
[Crossref]

2016 (2)

X. Huang, K. Chen, M. Qi, Y. Li, Y. Hou, Y. Wang, Q. Zhao, X. Luo, and Q. Xu, “Nanostructured grating patterns over a large area fabricated by optically directed assembly,” Nanoscale 8(27), 13342–13351 (2016).
[Crossref]

T. Gong, J. Zhang, Y. Zhu, X. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

2015 (7)

T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref]

X. G. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China: Phys., Mech. Astron. 58(9), 594201 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

K. Sivashanmugan, J. D. Liao, and C. K. Yao, “Elimination of gallium concentration on focused-ion-beam-fabricated Au/Ag nanorod surface to recover its Raman scattering characteristic,” Sens. Actuators B 206, 415–422 (2015).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref]

2014 (3)

P. Zhang, S. Yang, L. Wang, J. Zhao, Z. Zhu, B. Liu, J. Zhong, and X. Sun, “Large-scale uniform Au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate,” Nanotechnology 25(24), 245301 (2014).
[Crossref]

A. Mcleod, K. C. Vernon, A. E. Rider, and K. Ostrikov, “Optical coupling of gold nanoparticles on vertical graphenes to maximize SERS response,” Opt. Lett. 39(8), 2334–2337 (2014).
[Crossref]

S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Wang, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]

2013 (3)

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref]

L. Osinkina, T. Lohmuller, F. Jackel, and J. Feldmann, “Synthesis of gold nanostar arrays as reliable, large-scale, homogeneous substrates for surface-enhanced Raman scattering imaging and spectroscopy,” J. Phys. Chem. C 117(43), 22198–22202 (2013).
[Crossref]

H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
[Crossref]

2012 (3)

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, “Facile synthesis of Ag interlayer doped graphene by chemical vapor deposition using polystyrene as solid carbon source,” ACS Appl. Mater. Interfaces 4(4), 2041–2047 (2012).
[Crossref]

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-enhanced Raman scattering study on graphene-coated metallic nanostructure substrates,” J. Phys. Chem. C 116(13), 7249–7254 (2012).
[Crossref]

2011 (2)

U. S. Dinish, F. C. Yaw, A. Agarwal, and M. Olivo, “Development of highly reproducible nanogap SERS substrates: Comparative performance analysis and its application for glucose sensing,” Biosens. Bioelectron. 26(5), 1987–1992 (2011).
[Crossref]

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref]

2010 (3)

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Krohn, M. F. Marchant, and M. Rothschild, “A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates,” Adv. Mater. 22(38), 4298–4302 (2010).
[Crossref]

2009 (5)

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009).
[Crossref]

X. S. Shen, G. Z. Wang, X. Hong, and W. Zhu, “Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates,” Phys. Chem. Chem. Phys. 11(34), 7450–7454 (2009).
[Crossref]

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[Crossref]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

2007 (4)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32(5), 389–399 (2007).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref]

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mücklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

2006 (2)

K. Kemp and S. Wurm, “EUV lithography,” C. R. Phys. 7(8), 875–886 (2006).
[Crossref]

A. Hohenau, H. Ditlbacher, B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Electron beam lithography, a helpful tool for nanooptics,” Microelectron. Eng. 83(4-9), 1464–1467 (2006).
[Crossref]

2004 (2)

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

H. Xu, “Theoretical study of coated spherical metallic nanoparticles for single-molecule surface-enhanced spectroscopy,” Appl. Phys. Lett. 85(24), 5980–5982 (2004).
[Crossref]

2003 (2)

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[Crossref]

2002 (1)

Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B 106(37), 9463–9483 (2002).
[Crossref]

2000 (1)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62(3), 4318–4324 (2000).
[Crossref]

1998 (1)

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1–3), 9–22 (1998).
[Crossref]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Agarwal, A.

U. S. Dinish, F. C. Yaw, A. Agarwal, and M. Olivo, “Development of highly reproducible nanogap SERS substrates: Comparative performance analysis and its application for glucose sensing,” Biosens. Bioelectron. 26(5), 1987–1992 (2011).
[Crossref]

Aizpurua, J.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62(3), 4318–4324 (2000).
[Crossref]

An, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref]

Apell, P.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62(3), 4318–4324 (2000).
[Crossref]

Aubard, J.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

Aussenegg, F. R.

A. Hohenau, H. Ditlbacher, B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Electron beam lithography, a helpful tool for nanooptics,” Microelectron. Eng. 83(4-9), 1464–1467 (2006).
[Crossref]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

Banerjee, S. K.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref]

Bantz, K. C.

H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
[Crossref]

Bao, J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Bao, K.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Bardhan, R.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Blackie, E.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Bloomstein, T. M.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Krohn, M. F. Marchant, and M. Rothschild, “A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates,” Adv. Mater. 22(38), 4298–4302 (2010).
[Crossref]

Borysiak, M.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

Bossard, J. A.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-enhanced Raman scattering study on graphene-coated metallic nanostructure substrates,” J. Phys. Chem. C 116(13), 7249–7254 (2012).
[Crossref]

Boujday, S.

N. G. Quilis, M. Lequeux, P. Venugopalan, I. Khan, W. Knoll, S. Boujday, M. L. Chapelle, and J. Dostalek, “Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS,” Nanoscale 10(21), 10268–10276 (2018).
[Crossref]

Busnaina, A.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Krohn, M. F. Marchant, and M. Rothschild, “A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates,” Adv. Mater. 22(38), 4298–4302 (2010).
[Crossref]

Cai, W.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

Cai, W. B.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1–3), 9–22 (1998).
[Crossref]

Cai, X. W.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1–3), 9–22 (1998).
[Crossref]

Cann, S. G.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Krohn, M. F. Marchant, and M. Rothschild, “A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates,” Adv. Mater. 22(38), 4298–4302 (2010).
[Crossref]

Capasso, F.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Cerrina, F.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[Crossref]

Chapelle, M. L.

N. G. Quilis, M. Lequeux, P. Venugopalan, I. Khan, W. Knoll, S. Boujday, M. L. Chapelle, and J. Dostalek, “Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS,” Nanoscale 10(21), 10268–10276 (2018).
[Crossref]

Chen, D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

Chen, K.

X. Huang, K. Chen, M. Qi, Y. Li, Y. Hou, Y. Wang, Q. Zhao, X. Luo, and Q. Xu, “Nanostructured grating patterns over a large area fabricated by optically directed assembly,” Nanoscale 8(27), 13342–13351 (2016).
[Crossref]

Cheng, B.

T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, “Facile synthesis of Ag interlayer doped graphene by chemical vapor deposition using polystyrene as solid carbon source,” ACS Appl. Mater. Interfaces 4(4), 2041–2047 (2012).
[Crossref]

Chiang, I. K.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-enhanced Raman scattering study on graphene-coated metallic nanostructure substrates,” J. Phys. Chem. C 116(13), 7249–7254 (2012).
[Crossref]

Cobley, C. M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref]

Colombo, L.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref]

David, C.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[Crossref]

Dinish, U. S.

U. S. Dinish, F. C. Yaw, A. Agarwal, and M. Olivo, “Development of highly reproducible nanogap SERS substrates: Comparative performance analysis and its application for glucose sensing,” Biosens. Bioelectron. 26(5), 1987–1992 (2011).
[Crossref]

Ditlbacher, H.

A. Hohenau, H. Ditlbacher, B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Electron beam lithography, a helpful tool for nanooptics,” Microelectron. Eng. 83(4-9), 1464–1467 (2006).
[Crossref]

Dostalek, J.

N. G. Quilis, M. Lequeux, P. Venugopalan, I. Khan, W. Knoll, S. Boujday, M. L. Chapelle, and J. Dostalek, “Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS,” Nanoscale 10(21), 10268–10276 (2018).
[Crossref]

Dou, J.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref]

Echegoyen, Y.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Krohn, M. F. Marchant, and M. Rothschild, “A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates,” Adv. Mater. 22(38), 4298–4302 (2010).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref]

Eres, G.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

Etchegoin, P. G.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Fan, J. A.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Fang, Y.

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[Crossref]

Feldmann, J.

L. Osinkina, T. Lohmuller, F. Jackel, and J. Feldmann, “Synthesis of gold nanostar arrays as reliable, large-scale, homogeneous substrates for surface-enhanced Raman scattering imaging and spectroscopy,” J. Phys. Chem. C 117(43), 22198–22202 (2013).
[Crossref]

Félidj, N.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Frontiera, R. R.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Fu, Q.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref]

Gaddis, A. L.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

Gao, G.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Gao, H. L.

S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Wang, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]

Gao, P.

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Adv. 7(20), 12366–12373 (2017).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref]

Gobrecht, J.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[Crossref]

Golovkina, V.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[Crossref]

Gong, T.

J. Zhang, Z. Yin, T. Gong, Y. Luo, D. Wei, and Y. Zhu, “Graphene/Ag nanoholes composites for quantitative surface-enhanced Raman scattering,” Opt. Express 26(17), 22432–22439 (2018).
[Crossref]

T. Gong, J. Zhang, Y. Zhu, X. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Grady, N. K.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref]

Gu, B.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

Guo, Y.

M. Pu, Y. Guo, X. Li, X. Ma, and X. Luo, “Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces,” ACS Photonics 5(8), 3198–3204 (2018).
[Crossref]

Halas, N. J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref]

Han, B.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

Hao, Q.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-enhanced Raman scattering study on graphene-coated metallic nanostructure substrates,” J. Phys. Chem. C 116(13), 7249–7254 (2012).
[Crossref]

Hasan, W.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009).
[Crossref]

Hatab, N. A.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

Haynes, C. L.

H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
[Crossref]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Henry, A. I.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Henzie, J.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009).
[Crossref]

Hohenau, A.

A. Hohenau, H. Ditlbacher, B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Electron beam lithography, a helpful tool for nanooptics,” Microelectron. Eng. 83(4-9), 1464–1467 (2006).
[Crossref]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

Holzapfel, C.

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mücklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

Hong, X.

X. S. Shen, G. Z. Wang, X. Hong, and W. Zhu, “Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates,” Phys. Chem. Chem. Phys. 11(34), 7450–7454 (2009).
[Crossref]

Hou, Y.

X. Huang, K. Chen, M. Qi, Y. Li, Y. Hou, Y. Wang, Q. Zhao, X. Luo, and Q. Xu, “Nanostructured grating patterns over a large area fabricated by optically directed assembly,” Nanoscale 8(27), 13342–13351 (2016).
[Crossref]

Hsueh, C. H.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

Huang, T. J.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-enhanced Raman scattering study on graphene-coated metallic nanostructure substrates,” J. Phys. Chem. C 116(13), 7249–7254 (2012).
[Crossref]

Huang, X.

X. Huang, K. Chen, M. Qi, Y. Li, Y. Hou, Y. Wang, Q. Zhao, X. Luo, and Q. Xu, “Nanostructured grating patterns over a large area fabricated by optically directed assembly,” Nanoscale 8(27), 13342–13351 (2016).
[Crossref]

Im, H.

H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
[Crossref]

Ishihara, T.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Jackel, F.

L. Osinkina, T. Lohmuller, F. Jackel, and J. Feldmann, “Synthesis of gold nanostar arrays as reliable, large-scale, homogeneous substrates for surface-enhanced Raman scattering imaging and spectroscopy,” J. Phys. Chem. C 117(43), 22198–22202 (2013).
[Crossref]

Jensen, L.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-enhanced Raman scattering study on graphene-coated metallic nanostructure substrates,” J. Phys. Chem. C 116(13), 7249–7254 (2012).
[Crossref]

Jin, J.

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref]

Johnson, T. W.

H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
[Crossref]

Jung, I.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref]

Käll, M.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62(3), 4318–4324 (2000).
[Crossref]

Kemp, K.

K. Kemp and S. Wurm, “EUV lithography,” C. R. Phys. 7(8), 875–886 (2006).
[Crossref]

Khan, I.

N. G. Quilis, M. Lequeux, P. Venugopalan, I. Khan, W. Knoll, S. Boujday, M. L. Chapelle, and J. Dostalek, “Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS,” Nanoscale 10(21), 10268–10276 (2018).
[Crossref]

Kim, S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref]

Kim, S. O.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[Crossref]

Kiraly, B.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-enhanced Raman scattering study on graphene-coated metallic nanostructure substrates,” J. Phys. Chem. C 116(13), 7249–7254 (2012).
[Crossref]

Knoll, W.

N. G. Quilis, M. Lequeux, P. Venugopalan, I. Khan, W. Knoll, S. Boujday, M. L. Chapelle, and J. Dostalek, “Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS,” Nanoscale 10(21), 10268–10276 (2018).
[Crossref]

Ko, H.

S. Park, J. Lee, and H. Ko, “Transparent and flexible surface enhanced Raman scattering (SERS) sensors based on gold nanostar arrays embedded in silicon rubber film,” ACS Appl. Mater. Interfaces 9(50), 44088–44095 (2017).
[Crossref]

Kong, W.

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Adv. 7(20), 12366–12373 (2017).
[Crossref]

Krenn, J. R.

A. Hohenau, H. Ditlbacher, B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Electron beam lithography, a helpful tool for nanooptics,” Microelectron. Eng. 83(4-9), 1464–1467 (2006).
[Crossref]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

Krohn, K. E.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Krohn, M. F. Marchant, and M. Rothschild, “A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates,” Adv. Mater. 22(38), 4298–4302 (2010).
[Crossref]

Lamprecht, B.

A. Hohenau, H. Ditlbacher, B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Electron beam lithography, a helpful tool for nanooptics,” Microelectron. Eng. 83(4-9), 1464–1467 (2006).
[Crossref]

Lasagni, A.

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mücklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

Le Ru, E. C.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Lee, J.

S. Park, J. Lee, and H. Ko, “Transparent and flexible surface enhanced Raman scattering (SERS) sensors based on gold nanostar arrays embedded in silicon rubber film,” ACS Appl. Mater. Interfaces 9(50), 44088–44095 (2017).
[Crossref]

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009).
[Crossref]

Lee, M. H.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009).
[Crossref]

Lee, S. H.

H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
[Crossref]

Lei, Y.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref]

Leitner, A.

A. Hohenau, H. Ditlbacher, B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Electron beam lithography, a helpful tool for nanooptics,” Microelectron. Eng. 83(4-9), 1464–1467 (2006).
[Crossref]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

Lequeux, M.

N. G. Quilis, M. Lequeux, P. Venugopalan, I. Khan, W. Knoll, S. Boujday, M. L. Chapelle, and J. Dostalek, “Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS,” Nanoscale 10(21), 10268–10276 (2018).
[Crossref]

Lévi, G.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

Levin, C. S.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref]

Li, J. H.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

Li, W.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref]

Li, X.

M. Pu, Y. Guo, X. Li, X. Ma, and X. Luo, “Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces,” ACS Photonics 5(8), 3198–3204 (2018).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

Li, X. Q.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1–3), 9–22 (1998).
[Crossref]

Li, Y.

X. Huang, K. Chen, M. Qi, Y. Li, Y. Hou, Y. Wang, Q. Zhao, X. Luo, and Q. Xu, “Nanostructured grating patterns over a large area fabricated by optically directed assembly,” Nanoscale 8(27), 13342–13351 (2016).
[Crossref]

Liao, J. D.

K. Sivashanmugan, J. D. Liao, and C. K. Yao, “Elimination of gallium concentration on focused-ion-beam-fabricated Au/Ag nanorod surface to recover its Raman scattering characteristic,” Sens. Actuators B 206, 415–422 (2015).
[Crossref]

Liberman, V.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Krohn, M. F. Marchant, and M. Rothschild, “A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates,” Adv. Mater. 22(38), 4298–4302 (2010).
[Crossref]

Ling, X.

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[Crossref]

Liu, B.

P. Zhang, S. Yang, L. Wang, J. Zhao, Z. Zhu, B. Liu, J. Zhong, and X. Sun, “Large-scale uniform Au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate,” Nanotechnology 25(24), 245301 (2014).
[Crossref]

T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, “Facile synthesis of Ag interlayer doped graphene by chemical vapor deposition using polystyrene as solid carbon source,” ACS Appl. Mater. Interfaces 4(4), 2041–2047 (2012).
[Crossref]

Liu, F. M.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1–3), 9–22 (1998).
[Crossref]

Liu, K.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref]

Liu, L.

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Adv. 7(20), 12366–12373 (2017).
[Crossref]

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref]

Liu, X.

S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Wang, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]

Liu, Z.

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[Crossref]

Lohmuller, T.

L. Osinkina, T. Lohmuller, F. Jackel, and J. Feldmann, “Synthesis of gold nanostar arrays as reliable, large-scale, homogeneous substrates for surface-enhanced Raman scattering imaging and spectroscopy,” J. Phys. Chem. C 117(43), 22198–22202 (2013).
[Crossref]

Lopez-royo, F.

W. Yue, Z. Wang, J. Whittaker, F. Lopez-royo, Y. Yang, and A. V. Zayats, “Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers,” J. Mater. Chem. C 5(16), 4075–4084 (2017).
[Crossref]

Luo, J.

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref]

Luo, X.

M. Pu, Y. Guo, X. Li, X. Ma, and X. Luo, “Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces,” ACS Photonics 5(8), 3198–3204 (2018).
[Crossref]

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Adv. 7(20), 12366–12373 (2017).
[Crossref]

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

X. Huang, K. Chen, M. Qi, Y. Li, Y. Hou, Y. Wang, Q. Zhao, X. Luo, and Q. Xu, “Nanostructured grating patterns over a large area fabricated by optically directed assembly,” Nanoscale 8(27), 13342–13351 (2016).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Luo, X. G.

X. G. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China: Phys., Mech. Astron. 58(9), 594201 (2015).
[Crossref]

Luo, Y.

J. Zhang, Z. Yin, T. Gong, Y. Luo, D. Wei, and Y. Zhu, “Graphene/Ag nanoholes composites for quantitative surface-enhanced Raman scattering,” Opt. Express 26(17), 22432–22439 (2018).
[Crossref]

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Adv. 7(20), 12366–12373 (2017).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Ma, X.

M. Pu, Y. Guo, X. Li, X. Ma, and X. Luo, “Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces,” ACS Photonics 5(8), 3198–3204 (2018).
[Crossref]

Manoharan, V. N.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Marchant, M. F.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Krohn, M. F. Marchant, and M. Rothschild, “A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates,” Adv. Mater. 22(38), 4298–4302 (2010).
[Crossref]

Mcleod, A.

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Meyer, M.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Minor, A. M.

C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32(5), 389–399 (2007).
[Crossref]

Moran, C. H.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref]

Mücklich, F.

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mücklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

Nah, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref]

Natelson, D.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref]

Nealey, P. F.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref]

Nordlander, P.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref]

Odom, T. W.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009).
[Crossref]

Oh, S. H.

H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
[Crossref]

Olivo, M.

U. S. Dinish, F. C. Yaw, A. Agarwal, and M. Olivo, “Development of highly reproducible nanogap SERS substrates: Comparative performance analysis and its application for glucose sensing,” Biosens. Bioelectron. 26(5), 1987–1992 (2011).
[Crossref]

Osinkina, L.

L. Osinkina, T. Lohmuller, F. Jackel, and J. Feldmann, “Synthesis of gold nanostar arrays as reliable, large-scale, homogeneous substrates for surface-enhanced Raman scattering imaging and spectroscopy,” J. Phys. Chem. C 117(43), 22198–22202 (2013).
[Crossref]

Ostrikov, K.

Pang, Z.

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Park, S.

S. Park, J. Lee, and H. Ko, “Transparent and flexible surface enhanced Raman scattering (SERS) sensors based on gold nanostar arrays embedded in silicon rubber film,” ACS Appl. Mater. Interfaces 9(50), 44088–44095 (2017).
[Crossref]

Piner, R.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref]

Piner, R. D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

Pu, M.

M. Pu, Y. Guo, X. Li, X. Ma, and X. Luo, “Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces,” ACS Photonics 5(8), 3198–3204 (2018).
[Crossref]

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Adv. 7(20), 12366–12373 (2017).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

Qi, M.

X. Huang, K. Chen, M. Qi, Y. Li, Y. Hou, Y. Wang, Q. Zhao, X. Luo, and Q. Xu, “Nanostructured grating patterns over a large area fabricated by optically directed assembly,” Nanoscale 8(27), 13342–13351 (2016).
[Crossref]

Qi, Y.

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Qin, D.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref]

Quan, J.

T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Quilis, N. G.

N. G. Quilis, M. Lequeux, P. Venugopalan, I. Khan, W. Knoll, S. Boujday, M. L. Chapelle, and J. Dostalek, “Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS,” Nanoscale 10(21), 10268–10276 (2018).
[Crossref]

Ren, B.

Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B 106(37), 9463–9483 (2002).
[Crossref]

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1–3), 9–22 (1998).
[Crossref]

Ren, W.

T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Retterer, S. T.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

Rider, A. E.

Ringe, E.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Rothschild, M.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Krohn, M. F. Marchant, and M. Rothschild, “A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates,” Adv. Mater. 22(38), 4298–4302 (2010).
[Crossref]

Ruoff, R. S.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref]

Rycenga, M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref]

Schider, G.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

Sharma, B.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

She, C. X.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1–3), 9–22 (1998).
[Crossref]

Shen, H.

T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, “Facile synthesis of Ag interlayer doped graphene by chemical vapor deposition using polystyrene as solid carbon source,” ACS Appl. Mater. Interfaces 4(4), 2041–2047 (2012).
[Crossref]

Shen, J.

T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, “Facile synthesis of Ag interlayer doped graphene by chemical vapor deposition using polystyrene as solid carbon source,” ACS Appl. Mater. Interfaces 4(4), 2041–2047 (2012).
[Crossref]

Shen, X. S.

X. S. Shen, G. Z. Wang, X. Hong, and W. Zhu, “Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates,” Phys. Chem. Chem. Phys. 11(34), 7450–7454 (2009).
[Crossref]

Shvets, G.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Sivashanmugan, K.

K. Sivashanmugan, J. D. Liao, and C. K. Yao, “Elimination of gallium concentration on focused-ion-beam-fabricated Au/Ag nanorod surface to recover its Raman scattering characteristic,” Sens. Actuators B 206, 415–422 (2015).
[Crossref]

Solak, H. H.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[Crossref]

Somu, S.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Krohn, M. F. Marchant, and M. Rothschild, “A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates,” Adv. Mater. 22(38), 4298–4302 (2010).
[Crossref]

Sun, L.

T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, “Facile synthesis of Ag interlayer doped graphene by chemical vapor deposition using polystyrene as solid carbon source,” ACS Appl. Mater. Interfaces 4(4), 2041–2047 (2012).
[Crossref]

Sun, X.

P. Zhang, S. Yang, L. Wang, J. Zhao, Z. Zhu, B. Liu, J. Zhong, and X. Sun, “Large-scale uniform Au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate,” Nanotechnology 25(24), 245301 (2014).
[Crossref]

Tian, Z. Q.

Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B 106(37), 9463–9483 (2002).
[Crossref]

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1–3), 9–22 (1998).
[Crossref]

Tong, H.

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Tutuc, E.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref]

Van Duyne, R. P.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Velamakanni, A.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref]

Venugopalan, P.

N. G. Quilis, M. Lequeux, P. Venugopalan, I. Khan, W. Knoll, S. Boujday, M. L. Chapelle, and J. Dostalek, “Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS,” Nanoscale 10(21), 10268–10276 (2018).
[Crossref]

Vernon, K. C.

Volkert, C. A.

C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32(5), 389–399 (2007).
[Crossref]

Wang, B.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-enhanced Raman scattering study on graphene-coated metallic nanostructure substrates,” J. Phys. Chem. C 116(13), 7249–7254 (2012).
[Crossref]

Wang, C.

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Adv. 7(20), 12366–12373 (2017).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref]

Wang, G. Z.

X. S. Shen, G. Z. Wang, X. Hong, and W. Zhu, “Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates,” Phys. Chem. Chem. Phys. 11(34), 7450–7454 (2009).
[Crossref]

Wang, H. L.

S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Wang, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]

Wang, L.

P. Zhang, S. Yang, L. Wang, J. Zhao, Z. Zhu, B. Liu, J. Zhong, and X. Sun, “Large-scale uniform Au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate,” Nanotechnology 25(24), 245301 (2014).
[Crossref]

Wang, N.

T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Wang, X.

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

T. Gong, J. Zhang, Y. Zhu, X. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

Wang, Y.

X. Huang, K. Chen, M. Qi, Y. Li, Y. Hou, Y. Wang, Q. Zhao, X. Luo, and Q. Xu, “Nanostructured grating patterns over a large area fabricated by optically directed assembly,” Nanoscale 8(27), 13342–13351 (2016).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref]

Wang, Z.

W. Yue, Z. Wang, J. Whittaker, F. Lopez-royo, Y. Yang, and A. V. Zayats, “Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers,” J. Mater. Chem. C 5(16), 4075–4084 (2017).
[Crossref]

Ward, D. R.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref]

Wei, D.

Weirich, T.

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mücklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

Werner, D. H.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-enhanced Raman scattering study on graphene-coated metallic nanostructure substrates,” J. Phys. Chem. C 116(13), 7249–7254 (2012).
[Crossref]

Whittaker, J.

W. Yue, Z. Wang, J. Whittaker, F. Lopez-royo, Y. Yang, and A. V. Zayats, “Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers,” J. Mater. Chem. C 5(16), 4075–4084 (2017).
[Crossref]

Wu, C.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Wu, D. Y.

Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B 106(37), 9463–9483 (2002).
[Crossref]

Wu, M.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref]

Wu, T.

T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, “Facile synthesis of Ag interlayer doped graphene by chemical vapor deposition using polystyrene as solid carbon source,” ACS Appl. Mater. Interfaces 4(4), 2041–2047 (2012).
[Crossref]

Wu, X.

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Wu, Y.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref]

Wurm, S.

K. Kemp and S. Wurm, “EUV lithography,” C. R. Phys. 7(8), 875–886 (2006).
[Crossref]

Xia, Y.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref]

Xie, L.

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[Crossref]

Xu, H.

H. Xu, “Theoretical study of coated spherical metallic nanoparticles for single-molecule surface-enhanced spectroscopy,” Appl. Phys. Lett. 85(24), 5980–5982 (2004).
[Crossref]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62(3), 4318–4324 (2000).
[Crossref]

Xu, Q.

X. Huang, K. Chen, M. Qi, Y. Li, Y. Hou, Y. Wang, Q. Zhao, X. Luo, and Q. Xu, “Nanostructured grating patterns over a large area fabricated by optically directed assembly,” Nanoscale 8(27), 13342–13351 (2016).
[Crossref]

Xu, R.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref]

Yang, D.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref]

Yang, H.

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Yang, S.

P. Zhang, S. Yang, L. Wang, J. Zhao, Z. Zhu, B. Liu, J. Zhong, and X. Sun, “Large-scale uniform Au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate,” Nanotechnology 25(24), 245301 (2014).
[Crossref]

Yang, Y.

W. Yue, Z. Wang, J. Whittaker, F. Lopez-royo, Y. Yang, and A. V. Zayats, “Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers,” J. Mater. Chem. C 5(16), 4075–4084 (2017).
[Crossref]

Yao, C. K.

K. Sivashanmugan, J. D. Liao, and C. K. Yao, “Elimination of gallium concentration on focused-ion-beam-fabricated Au/Ag nanorod surface to recover its Raman scattering characteristic,” Sens. Actuators B 206, 415–422 (2015).
[Crossref]

Yao, N.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref]

Yaw, F. C.

U. S. Dinish, F. C. Yaw, A. Agarwal, and M. Olivo, “Development of highly reproducible nanogap SERS substrates: Comparative performance analysis and its application for glucose sensing,” Biosens. Bioelectron. 26(5), 1987–1992 (2011).
[Crossref]

Yilmaz, C.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Krohn, M. F. Marchant, and M. Rothschild, “A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates,” Adv. Mater. 22(38), 4298–4302 (2010).
[Crossref]

Yin, Z.

Yin, Z. G.

S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Wang, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]

Yu, H.

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref]

Yue, W.

W. Yue, Z. Wang, J. Whittaker, F. Lopez-royo, Y. Yang, and A. V. Zayats, “Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers,” J. Mater. Chem. C 5(16), 4075–4084 (2017).
[Crossref]

Zayats, A. V.

W. Yue, Z. Wang, J. Whittaker, F. Lopez-royo, Y. Yang, and A. V. Zayats, “Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers,” J. Mater. Chem. C 5(16), 4075–4084 (2017).
[Crossref]

Zeng, B.

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref]

Zeng, J.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref]

Zeng, Y.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-enhanced Raman scattering study on graphene-coated metallic nanostructure substrates,” J. Phys. Chem. C 116(13), 7249–7254 (2012).
[Crossref]

Zhan, Z.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref]

Zhang, J.

J. Zhang, Z. Yin, T. Gong, Y. Luo, D. Wei, and Y. Zhu, “Graphene/Ag nanoholes composites for quantitative surface-enhanced Raman scattering,” Opt. Express 26(17), 22432–22439 (2018).
[Crossref]

T. Gong, J. Zhang, Y. Zhu, X. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

T. Gong, J. Zhang, Y. Zhu, X. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[Crossref]

Zhang, P.

P. Zhang, S. Yang, L. Wang, J. Zhao, Z. Zhu, B. Liu, J. Zhong, and X. Sun, “Large-scale uniform Au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate,” Nanotechnology 25(24), 245301 (2014).
[Crossref]

Zhang, Q.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref]

Zhang, S. G.

S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Wang, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]

Zhang, W.

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Adv. 7(20), 12366–12373 (2017).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

Zhang, X.

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

T. Gong, J. Zhang, Y. Zhu, X. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

Zhang, X. W.

S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Wang, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]

Zhang, Z.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

Zhao, C.

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Adv. 7(20), 12366–12373 (2017).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Zhao, J.

P. Zhang, S. Yang, L. Wang, J. Zhao, Z. Zhu, B. Liu, J. Zhong, and X. Sun, “Large-scale uniform Au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate,” Nanotechnology 25(24), 245301 (2014).
[Crossref]

Zhao, Q.

X. Huang, K. Chen, M. Qi, Y. Li, Y. Hou, Y. Wang, Q. Zhao, X. Luo, and Q. Xu, “Nanostructured grating patterns over a large area fabricated by optically directed assembly,” Nanoscale 8(27), 13342–13351 (2016).
[Crossref]

Zhao, Y. J.

S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Wang, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]

Zhao, Z.

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Adv. 7(20), 12366–12373 (2017).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref]

C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, and X. Luo, “Deep sub-wavelength imaging lithography by a reflective plasmonic slab,” Opt. Express 21(18), 20683–20691 (2013).
[Crossref]

Zheng, X.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref]

Zhong, J.

P. Zhang, S. Yang, L. Wang, J. Zhao, Z. Zhu, B. Liu, J. Zhong, and X. Sun, “Large-scale uniform Au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate,” Nanotechnology 25(24), 245301 (2014).
[Crossref]

Zhu, J.

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Zhu, W.

X. S. Shen, G. Z. Wang, X. Hong, and W. Zhu, “Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates,” Phys. Chem. Chem. Phys. 11(34), 7450–7454 (2009).
[Crossref]

Zhu, Y.

J. Zhang, Z. Yin, T. Gong, Y. Luo, D. Wei, and Y. Zhu, “Graphene/Ag nanoholes composites for quantitative surface-enhanced Raman scattering,” Opt. Express 26(17), 22432–22439 (2018).
[Crossref]

T. Gong, J. Zhang, Y. Zhu, X. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

Zhu, Z.

P. Zhang, S. Yang, L. Wang, J. Zhao, Z. Zhu, B. Liu, J. Zhong, and X. Sun, “Large-scale uniform Au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate,” Nanotechnology 25(24), 245301 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (3)

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref]

S. Park, J. Lee, and H. Ko, “Transparent and flexible surface enhanced Raman scattering (SERS) sensors based on gold nanostar arrays embedded in silicon rubber film,” ACS Appl. Mater. Interfaces 9(50), 44088–44095 (2017).
[Crossref]

T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, “Facile synthesis of Ag interlayer doped graphene by chemical vapor deposition using polystyrene as solid carbon source,” ACS Appl. Mater. Interfaces 4(4), 2041–2047 (2012).
[Crossref]

ACS Photonics (1)

M. Pu, Y. Guo, X. Li, X. Ma, and X. Luo, “Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces,” ACS Photonics 5(8), 3198–3204 (2018).
[Crossref]

Adv. Mater. (2)

H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
[Crossref]

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Krohn, M. F. Marchant, and M. Rothschild, “A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates,” Adv. Mater. 22(38), 4298–4302 (2010).
[Crossref]

Adv. Opt. Mater. (1)

L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, and X. Luo, “Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography,” Adv. Opt. Mater. 5(21), 1700429 (2017).
[Crossref]

Annu. Rev. Phys. Chem. (1)

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009).
[Crossref]

Appl. Phys. Lett. (5)

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

H. Xu, “Theoretical study of coated spherical metallic nanoparticles for single-molecule surface-enhanced spectroscopy,” Appl. Phys. Lett. 85(24), 5980–5982 (2004).
[Crossref]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003).
[Crossref]

S. G. Zhang, X. W. Zhang, X. Liu, Z. G. Yin, H. L. Wang, H. L. Gao, and Y. J. Zhao, “Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles,” Appl. Phys. Lett. 104(12), 121109 (2014).
[Crossref]

Appl. Surf. Sci. (1)

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mücklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

Biosens. Bioelectron. (1)

U. S. Dinish, F. C. Yaw, A. Agarwal, and M. Olivo, “Development of highly reproducible nanogap SERS substrates: Comparative performance analysis and its application for glucose sensing,” Biosens. Bioelectron. 26(5), 1987–1992 (2011).
[Crossref]

C. R. Phys. (1)

K. Kemp and S. Wurm, “EUV lithography,” C. R. Phys. 7(8), 875–886 (2006).
[Crossref]

Carbon (2)

T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

T. Gong, J. Zhang, Y. Zhu, X. Wang, X. Zhang, and J. Zhang, “Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene,” Carbon 102, 245–254 (2016).
[Crossref]

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Chem. Rev. (1)

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[Crossref]

J. Mater. Chem. C (1)

W. Yue, Z. Wang, J. Whittaker, F. Lopez-royo, Y. Yang, and A. V. Zayats, “Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers,” J. Mater. Chem. C 5(16), 4075–4084 (2017).
[Crossref]

J. Phys. Chem. B (1)

Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B 106(37), 9463–9483 (2002).
[Crossref]

J. Phys. Chem. C (3)

L. Osinkina, T. Lohmuller, F. Jackel, and J. Feldmann, “Synthesis of gold nanostar arrays as reliable, large-scale, homogeneous substrates for surface-enhanced Raman scattering imaging and spectroscopy,” J. Phys. Chem. C 117(43), 22198–22202 (2013).
[Crossref]

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-enhanced Raman scattering study on graphene-coated metallic nanostructure substrates,” J. Phys. Chem. C 116(13), 7249–7254 (2012).
[Crossref]

Mater. Today (1)

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Microelectron. Eng. (2)

A. Hohenau, H. Ditlbacher, B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Electron beam lithography, a helpful tool for nanooptics,” Microelectron. Eng. 83(4-9), 1464–1467 (2006).
[Crossref]

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003).
[Crossref]

MRS Bull. (1)

C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32(5), 389–399 (2007).
[Crossref]

Nano Lett. (3)

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

Nanoscale (3)

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale 7(44), 18805–18812 (2015).
[Crossref]

X. Huang, K. Chen, M. Qi, Y. Li, Y. Hou, Y. Wang, Q. Zhao, X. Luo, and Q. Xu, “Nanostructured grating patterns over a large area fabricated by optically directed assembly,” Nanoscale 8(27), 13342–13351 (2016).
[Crossref]

N. G. Quilis, M. Lequeux, P. Venugopalan, I. Khan, W. Knoll, S. Boujday, M. L. Chapelle, and J. Dostalek, “Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS,” Nanoscale 10(21), 10268–10276 (2018).
[Crossref]

Nanotechnology (1)

P. Zhang, S. Yang, L. Wang, J. Zhao, Z. Zhu, B. Liu, J. Zhong, and X. Sun, “Large-scale uniform Au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate,” Nanotechnology 25(24), 245301 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Phys. Chem. Chem. Phys. (1)

X. S. Shen, G. Z. Wang, X. Hong, and W. Zhu, “Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates,” Phys. Chem. Chem. Phys. 11(34), 7450–7454 (2009).
[Crossref]

Phys. Rev. E (1)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62(3), 4318–4324 (2000).
[Crossref]

RSC Adv. (1)

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Adv. 7(20), 12366–12373 (2017).
[Crossref]

Sci. China: Phys., Mech. Astron. (1)

X. G. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China: Phys., Mech. Astron. 58(9), 594201 (2015).
[Crossref]

Sci. Rep. (1)

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

Science (3)

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref]

Sens. Actuators B (1)

K. Sivashanmugan, J. D. Liao, and C. K. Yao, “Elimination of gallium concentration on focused-ion-beam-fabricated Au/Ag nanorod surface to recover its Raman scattering characteristic,” Sens. Actuators B 206, 415–422 (2015).
[Crossref]

Surf. Sci. (1)

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1–3), 9–22 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) The schematic of PCL lithography system. The simulated light field distributions with PCL (b1) in the X-Y plane through the middle plane of photoresist layer and (b2) in the X-Z plane through the center of nanohole arrays. The simulated light field distributions without PCL (c1) in the X-Y plane through the middle plane of photoresist layer and (c2) in the X-Z plane through the center of nanohole arrays. (d) The field distributions under the contour lines (green dotted line) in the enlarged views in Fig. 1(b1) and (c1).
Fig. 2.
Fig. 2. The steps of sample preparation.
Fig. 3.
Fig. 3. Physical map of (a) AgNHs and (d) GE-AgNHs. SEM image of (b) AgNHs and (e) GE-AgNHs. AFM images of (c) AgNHs and (f) GE-AgNHs. (g) AFM section analysis of the height of AgNHs and GE-AgNHs under the white dotted lines in (c) and (f), respectively.
Fig. 4.
Fig. 4. (a) Typical enhanced Raman spectra of R6G with different concentrations on AgNHs (left side) and the enlarged spectra of R6G with the concentrations of 10−10, 10−11 and 10−12 mol/L (right side). (b) The Raman intensity (with natural logarithm) of R6G with different concentrations at 1363 and 1509 cm−1.
Fig. 5.
Fig. 5. (a) Optical microscope image of AgNHs within the area of Raman mapping test. Raman mapping of R6G adsorbed on AgNHs at the peak of (b) 1363 cm−1 and (c) 1509 cm−1. (d) Raman contour plots conveying both the intensity and uniformity of the mapping data sets of AgNHs. (e) Averaged Raman spectrum over the mapping area (black line) and the corresponding RSD values (red line with square dots).
Fig. 6.
Fig. 6. (a) UV-vis transmission spectrum of GE (inset shows the optical microscope image of GE on SiO2/Si substrate). (b) Raman contour plots conveying both the intensity and uniformity of GE-AgNHs. (c) Averaged Raman spectrum of GE-AgNHs over the mapping area (black line) and the Raman spectrum of GE on SiO2/Si substrate (red dashed line).
Fig. 7.
Fig. 7. (a) Optical microscope image of AgNHs and GE-AgNHs (cut-off by the edge of GE) within the area of Raman mapping test. Raman mapping results (at 1363 cm−1) of R6G after (b) 0-day, (c) 30-day, (d) 60-day and (e) 90-day of exposure to air. (f) Histograms of the percentage variation of average Raman intensities of R6G at 1363 cm−1 on the left (AgNHs) and right (GE-AgNHs) side.
Fig. 8.
Fig. 8. The electric field distributions of AgNHs and GE-AgNHs in the X-Y plane through the surface of (a) AgNHs (z = 100 nm) and (b) GE layer (z = 101.5 nm). (c) The field distributions of AgNHs and GE-AgNHs in X-Z plane through the center of nanoholes (y = 0). (d) The field distributions under the corresponding contour lines (white line) in (a) and (b).

Tables (1)

Tables Icon

Table 1. EF and RSD values on both sides of the sample as well as IAgNHs / IGE-AgNHs at 1363 cm−1 in different time point.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E F = I S E R S N b u l k I b u l k N S E R S

Metrics