Abstract

Ionic copper-doped silica glasses are attractive materials for radiation detection and dosimetry based on radioluminescence (RL) and optically stimulated luminescence (OSL). We characterized the optical responses, under X-rays, of a Cu+-doped silica glass rod prepared via the sol-gel technique and spliced to transport pure silica optical fibers. Both the low-dose and the low-dose rate regimes were specially investigated at room temperature. RL and photoluminescence (PL) measurements confirmed that the Cu+ ions are the luminescent centers of interest for the targeted applications. RL dose rate response dependence shows a linear behavior from 260 μGy(SiO2)/s up to 23 mGy(SiO2)/s, allowing the monitoring of the dose rate evolutions during an irradiation run. The OSL response also linearly depends on the dose from 42 mGy(SiO2) to 200 Gy(SiO2), enabling a precise dose measurement shortly after the irradiation. The presented results confirm the potentialities of this material to monitor ionizing radiations in harsh environments.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced radiation dosimetry of fluoride phosphate glass optical fibres by terbium (III) doping

Christopher A. G. Kalnins, Heike Ebendorff-Heidepriem, Nigel A. Spooner, and Tanya M. Monro
Opt. Mater. Express 6(12) 3692-3703 (2016)

Gd3+-doped sol-gel silica glass for remote ionizing radiation dosimetry

Hicham El hamzaoui, Géraud Bouwmans, Bruno Capoen, Andy Cassez, Rémi Habert, Youcef Ouerdane, Sylvain Girard, Diego Di francesca, Nourdine Kerboub, Adriana Morana, Daniel Söderström, Aziz Boukenter, and Mohamed Bouazaoui
OSA Continuum 2(3) 715-721 (2019)

Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter

Hicham El Hamzaoui, Youcef Ouerdane, Laurent Bigot, Géraud Bouwmans, Bruno Capoen, Aziz Boukenter, Sylvain Girard, and Mohamed Bouazaoui
Opt. Express 20(28) 29751-29760 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Barve, R. R. Patil, N. P. Gaikwad, M. S. Kulkarni, D. R. Mishra, A. Soni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence and thermoluminescence in some Cu+ doped alkali fluoro-silicates,” Radiat. Meas. 59, 73–80 (2013).
    [Crossref]
  2. R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Synthesis and TL–OSL studies in Cu activated lithium silicate,” Radiat. Meas. 77, 18–25 (2015).
    [Crossref]
  3. R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Optically stimulated luminescence in Cu+ doped lithium orthophosphate,” Phys. B Condens. Matter. 458, 117–123 (2015).
    [Crossref]
  4. A. Saidu, H. Wagiran, M. A. Saeed, Y. S. M. Alajerami, and A. B. A. Kadir, “Effect of co-doping of sodium on the thermoluminescence dosimetry properties of copper-doped zinc lithium borate glass system,” Appl. Radiat. Isot. 118, 375–381 (2016).
    [Crossref]
  5. S. U. Gaikwad, R. R. Patil, M. S. Kulkarni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence in doped NaF,” Appl. Radiat. Isot. 111, 75–79 (2016).
    [Crossref]
  6. B. L. Justus, K. J. Pawlovich, C. D. Merritt, and A. L. Huston, “Optically and Thermally Stimulated Luminescence Characteristics of Cu1+-Doped Fused Quartz,” Radiat. Prot. Dosim. 81(1), 5–10 (1999).
    [Crossref]
  7. A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically Stimulated Luminescent Glass Optical Fibre Dosemeter,” Radiat. Prot. Dosim. 101(1), 23–26 (2002).
    [Crossref]
  8. B. L. Justus, P. Falkenstein, A. L. Huston, M. C. Plazas, H. Ning, and R. W. Miller, “Gated fiber-optic-coupled detector for in vivo real-time radiation dosimetry,” Appl. Opt. 43(8), 1663–1668 (2004).
    [Crossref]
  9. R. A. Barve, R. R. Patil, N. S. Rawat, N. P. Gaikwad, R. Pradeep, B. C. Bhatt, S. V. Moharil, and M. S. Kulkarni, “Blue and infra-red stimulated luminescence in Cu+ doped fused quartz for application in radiation dosimetry,” Nucl. Instrum. Methods Phys. Res., Sect. B 289, 100–105 (2012).
    [Crossref]
  10. R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Phase dependent TL–OSL studies in various phases of chemically synthesized Cu doped crystalline SiO2,” J. Lumin. 171, 72–78 (2016).
    [Crossref]
  11. H. El Hamzaoui, G. Bouwmans, B. Capoen, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Effects of densification atmosphere on optical properties of ionic copper-activated sol–gel silica glass: towards an efficient radiation dosimeter,” Mater. Res. Express 1(2), 026203 (2014).
    [Crossref]
  12. H. El Hamzaoui, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Boukenter, S. Girard, and M. Bouazaoui, “Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter,” Opt. Express 20(28), 29751–29760 (2012).
    [Crossref]
  13. B. Capoen, H. El Hamzaoui, G. Bouwmans, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Sol–gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry,” Opt. Mater. 51, 104–109 (2016).
    [Crossref]
  14. Y. Hibino and H. Hanafusa, “Defect structure and formation mechanism of drawing-induced absorption at 630 nm in silica optical fibers,” J. Appl. Phys. 60(5), 1797–1801 (1986).
    [Crossref]
  15. E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28(9), 516–518 (1976).
    [Crossref]

2016 (4)

A. Saidu, H. Wagiran, M. A. Saeed, Y. S. M. Alajerami, and A. B. A. Kadir, “Effect of co-doping of sodium on the thermoluminescence dosimetry properties of copper-doped zinc lithium borate glass system,” Appl. Radiat. Isot. 118, 375–381 (2016).
[Crossref]

S. U. Gaikwad, R. R. Patil, M. S. Kulkarni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence in doped NaF,” Appl. Radiat. Isot. 111, 75–79 (2016).
[Crossref]

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Phase dependent TL–OSL studies in various phases of chemically synthesized Cu doped crystalline SiO2,” J. Lumin. 171, 72–78 (2016).
[Crossref]

B. Capoen, H. El Hamzaoui, G. Bouwmans, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Sol–gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry,” Opt. Mater. 51, 104–109 (2016).
[Crossref]

2015 (2)

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Synthesis and TL–OSL studies in Cu activated lithium silicate,” Radiat. Meas. 77, 18–25 (2015).
[Crossref]

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Optically stimulated luminescence in Cu+ doped lithium orthophosphate,” Phys. B Condens. Matter. 458, 117–123 (2015).
[Crossref]

2014 (1)

H. El Hamzaoui, G. Bouwmans, B. Capoen, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Effects of densification atmosphere on optical properties of ionic copper-activated sol–gel silica glass: towards an efficient radiation dosimeter,” Mater. Res. Express 1(2), 026203 (2014).
[Crossref]

2013 (1)

R. A. Barve, R. R. Patil, N. P. Gaikwad, M. S. Kulkarni, D. R. Mishra, A. Soni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence and thermoluminescence in some Cu+ doped alkali fluoro-silicates,” Radiat. Meas. 59, 73–80 (2013).
[Crossref]

2012 (2)

R. A. Barve, R. R. Patil, N. S. Rawat, N. P. Gaikwad, R. Pradeep, B. C. Bhatt, S. V. Moharil, and M. S. Kulkarni, “Blue and infra-red stimulated luminescence in Cu+ doped fused quartz for application in radiation dosimetry,” Nucl. Instrum. Methods Phys. Res., Sect. B 289, 100–105 (2012).
[Crossref]

H. El Hamzaoui, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Boukenter, S. Girard, and M. Bouazaoui, “Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter,” Opt. Express 20(28), 29751–29760 (2012).
[Crossref]

2004 (1)

2002 (1)

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically Stimulated Luminescent Glass Optical Fibre Dosemeter,” Radiat. Prot. Dosim. 101(1), 23–26 (2002).
[Crossref]

1999 (1)

B. L. Justus, K. J. Pawlovich, C. D. Merritt, and A. L. Huston, “Optically and Thermally Stimulated Luminescence Characteristics of Cu1+-Doped Fused Quartz,” Radiat. Prot. Dosim. 81(1), 5–10 (1999).
[Crossref]

1986 (1)

Y. Hibino and H. Hanafusa, “Defect structure and formation mechanism of drawing-induced absorption at 630 nm in silica optical fibers,” J. Appl. Phys. 60(5), 1797–1801 (1986).
[Crossref]

1976 (1)

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28(9), 516–518 (1976).
[Crossref]

Alajerami, Y. S. M.

A. Saidu, H. Wagiran, M. A. Saeed, Y. S. M. Alajerami, and A. B. A. Kadir, “Effect of co-doping of sodium on the thermoluminescence dosimetry properties of copper-doped zinc lithium borate glass system,” Appl. Radiat. Isot. 118, 375–381 (2016).
[Crossref]

Altemus, R.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically Stimulated Luminescent Glass Optical Fibre Dosemeter,” Radiat. Prot. Dosim. 101(1), 23–26 (2002).
[Crossref]

Barve, R. A.

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Phase dependent TL–OSL studies in various phases of chemically synthesized Cu doped crystalline SiO2,” J. Lumin. 171, 72–78 (2016).
[Crossref]

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Synthesis and TL–OSL studies in Cu activated lithium silicate,” Radiat. Meas. 77, 18–25 (2015).
[Crossref]

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Optically stimulated luminescence in Cu+ doped lithium orthophosphate,” Phys. B Condens. Matter. 458, 117–123 (2015).
[Crossref]

R. A. Barve, R. R. Patil, N. P. Gaikwad, M. S. Kulkarni, D. R. Mishra, A. Soni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence and thermoluminescence in some Cu+ doped alkali fluoro-silicates,” Radiat. Meas. 59, 73–80 (2013).
[Crossref]

R. A. Barve, R. R. Patil, N. S. Rawat, N. P. Gaikwad, R. Pradeep, B. C. Bhatt, S. V. Moharil, and M. S. Kulkarni, “Blue and infra-red stimulated luminescence in Cu+ doped fused quartz for application in radiation dosimetry,” Nucl. Instrum. Methods Phys. Res., Sect. B 289, 100–105 (2012).
[Crossref]

Bhatt, B. C.

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Phase dependent TL–OSL studies in various phases of chemically synthesized Cu doped crystalline SiO2,” J. Lumin. 171, 72–78 (2016).
[Crossref]

S. U. Gaikwad, R. R. Patil, M. S. Kulkarni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence in doped NaF,” Appl. Radiat. Isot. 111, 75–79 (2016).
[Crossref]

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Optically stimulated luminescence in Cu+ doped lithium orthophosphate,” Phys. B Condens. Matter. 458, 117–123 (2015).
[Crossref]

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Synthesis and TL–OSL studies in Cu activated lithium silicate,” Radiat. Meas. 77, 18–25 (2015).
[Crossref]

R. A. Barve, R. R. Patil, N. P. Gaikwad, M. S. Kulkarni, D. R. Mishra, A. Soni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence and thermoluminescence in some Cu+ doped alkali fluoro-silicates,” Radiat. Meas. 59, 73–80 (2013).
[Crossref]

R. A. Barve, R. R. Patil, N. S. Rawat, N. P. Gaikwad, R. Pradeep, B. C. Bhatt, S. V. Moharil, and M. S. Kulkarni, “Blue and infra-red stimulated luminescence in Cu+ doped fused quartz for application in radiation dosimetry,” Nucl. Instrum. Methods Phys. Res., Sect. B 289, 100–105 (2012).
[Crossref]

Bigot, L.

Bouazaoui, M.

B. Capoen, H. El Hamzaoui, G. Bouwmans, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Sol–gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry,” Opt. Mater. 51, 104–109 (2016).
[Crossref]

H. El Hamzaoui, G. Bouwmans, B. Capoen, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Effects of densification atmosphere on optical properties of ionic copper-activated sol–gel silica glass: towards an efficient radiation dosimeter,” Mater. Res. Express 1(2), 026203 (2014).
[Crossref]

H. El Hamzaoui, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Boukenter, S. Girard, and M. Bouazaoui, “Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter,” Opt. Express 20(28), 29751–29760 (2012).
[Crossref]

Boukenter, A.

B. Capoen, H. El Hamzaoui, G. Bouwmans, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Sol–gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry,” Opt. Mater. 51, 104–109 (2016).
[Crossref]

H. El Hamzaoui, G. Bouwmans, B. Capoen, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Effects of densification atmosphere on optical properties of ionic copper-activated sol–gel silica glass: towards an efficient radiation dosimeter,” Mater. Res. Express 1(2), 026203 (2014).
[Crossref]

H. El Hamzaoui, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Boukenter, S. Girard, and M. Bouazaoui, “Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter,” Opt. Express 20(28), 29751–29760 (2012).
[Crossref]

Bouwmans, G.

B. Capoen, H. El Hamzaoui, G. Bouwmans, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Sol–gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry,” Opt. Mater. 51, 104–109 (2016).
[Crossref]

H. El Hamzaoui, G. Bouwmans, B. Capoen, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Effects of densification atmosphere on optical properties of ionic copper-activated sol–gel silica glass: towards an efficient radiation dosimeter,” Mater. Res. Express 1(2), 026203 (2014).
[Crossref]

H. El Hamzaoui, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Boukenter, S. Girard, and M. Bouazaoui, “Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter,” Opt. Express 20(28), 29751–29760 (2012).
[Crossref]

Capoen, B.

B. Capoen, H. El Hamzaoui, G. Bouwmans, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Sol–gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry,” Opt. Mater. 51, 104–109 (2016).
[Crossref]

H. El Hamzaoui, G. Bouwmans, B. Capoen, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Effects of densification atmosphere on optical properties of ionic copper-activated sol–gel silica glass: towards an efficient radiation dosimeter,” Mater. Res. Express 1(2), 026203 (2014).
[Crossref]

H. El Hamzaoui, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Boukenter, S. Girard, and M. Bouazaoui, “Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter,” Opt. Express 20(28), 29751–29760 (2012).
[Crossref]

Chadeyron, G.

B. Capoen, H. El Hamzaoui, G. Bouwmans, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Sol–gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry,” Opt. Mater. 51, 104–109 (2016).
[Crossref]

H. El Hamzaoui, G. Bouwmans, B. Capoen, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Effects of densification atmosphere on optical properties of ionic copper-activated sol–gel silica glass: towards an efficient radiation dosimeter,” Mater. Res. Express 1(2), 026203 (2014).
[Crossref]

El Hamzaoui, H.

B. Capoen, H. El Hamzaoui, G. Bouwmans, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Sol–gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry,” Opt. Mater. 51, 104–109 (2016).
[Crossref]

H. El Hamzaoui, G. Bouwmans, B. Capoen, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Effects of densification atmosphere on optical properties of ionic copper-activated sol–gel silica glass: towards an efficient radiation dosimeter,” Mater. Res. Express 1(2), 026203 (2014).
[Crossref]

H. El Hamzaoui, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Boukenter, S. Girard, and M. Bouazaoui, “Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter,” Opt. Express 20(28), 29751–29760 (2012).
[Crossref]

Falkenstein, P.

Falkenstein, P. L.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically Stimulated Luminescent Glass Optical Fibre Dosemeter,” Radiat. Prot. Dosim. 101(1), 23–26 (2002).
[Crossref]

Friebele, E. J.

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28(9), 516–518 (1976).
[Crossref]

Gaikwad, N. P.

R. A. Barve, R. R. Patil, N. P. Gaikwad, M. S. Kulkarni, D. R. Mishra, A. Soni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence and thermoluminescence in some Cu+ doped alkali fluoro-silicates,” Radiat. Meas. 59, 73–80 (2013).
[Crossref]

R. A. Barve, R. R. Patil, N. S. Rawat, N. P. Gaikwad, R. Pradeep, B. C. Bhatt, S. V. Moharil, and M. S. Kulkarni, “Blue and infra-red stimulated luminescence in Cu+ doped fused quartz for application in radiation dosimetry,” Nucl. Instrum. Methods Phys. Res., Sect. B 289, 100–105 (2012).
[Crossref]

Gaikwad, S. U.

S. U. Gaikwad, R. R. Patil, M. S. Kulkarni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence in doped NaF,” Appl. Radiat. Isot. 111, 75–79 (2016).
[Crossref]

Girard, S.

B. Capoen, H. El Hamzaoui, G. Bouwmans, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Sol–gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry,” Opt. Mater. 51, 104–109 (2016).
[Crossref]

H. El Hamzaoui, G. Bouwmans, B. Capoen, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Effects of densification atmosphere on optical properties of ionic copper-activated sol–gel silica glass: towards an efficient radiation dosimeter,” Mater. Res. Express 1(2), 026203 (2014).
[Crossref]

H. El Hamzaoui, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Boukenter, S. Girard, and M. Bouazaoui, “Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter,” Opt. Express 20(28), 29751–29760 (2012).
[Crossref]

Griscom, D. L.

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28(9), 516–518 (1976).
[Crossref]

Hanafusa, H.

Y. Hibino and H. Hanafusa, “Defect structure and formation mechanism of drawing-induced absorption at 630 nm in silica optical fibers,” J. Appl. Phys. 60(5), 1797–1801 (1986).
[Crossref]

Hibino, Y.

Y. Hibino and H. Hanafusa, “Defect structure and formation mechanism of drawing-induced absorption at 630 nm in silica optical fibers,” J. Appl. Phys. 60(5), 1797–1801 (1986).
[Crossref]

Huston, A. L.

B. L. Justus, P. Falkenstein, A. L. Huston, M. C. Plazas, H. Ning, and R. W. Miller, “Gated fiber-optic-coupled detector for in vivo real-time radiation dosimetry,” Appl. Opt. 43(8), 1663–1668 (2004).
[Crossref]

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically Stimulated Luminescent Glass Optical Fibre Dosemeter,” Radiat. Prot. Dosim. 101(1), 23–26 (2002).
[Crossref]

B. L. Justus, K. J. Pawlovich, C. D. Merritt, and A. L. Huston, “Optically and Thermally Stimulated Luminescence Characteristics of Cu1+-Doped Fused Quartz,” Radiat. Prot. Dosim. 81(1), 5–10 (1999).
[Crossref]

Justus, B. L.

B. L. Justus, P. Falkenstein, A. L. Huston, M. C. Plazas, H. Ning, and R. W. Miller, “Gated fiber-optic-coupled detector for in vivo real-time radiation dosimetry,” Appl. Opt. 43(8), 1663–1668 (2004).
[Crossref]

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically Stimulated Luminescent Glass Optical Fibre Dosemeter,” Radiat. Prot. Dosim. 101(1), 23–26 (2002).
[Crossref]

B. L. Justus, K. J. Pawlovich, C. D. Merritt, and A. L. Huston, “Optically and Thermally Stimulated Luminescence Characteristics of Cu1+-Doped Fused Quartz,” Radiat. Prot. Dosim. 81(1), 5–10 (1999).
[Crossref]

Kadir, A. B. A.

A. Saidu, H. Wagiran, M. A. Saeed, Y. S. M. Alajerami, and A. B. A. Kadir, “Effect of co-doping of sodium on the thermoluminescence dosimetry properties of copper-doped zinc lithium borate glass system,” Appl. Radiat. Isot. 118, 375–381 (2016).
[Crossref]

Kulkarni, M. S.

S. U. Gaikwad, R. R. Patil, M. S. Kulkarni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence in doped NaF,” Appl. Radiat. Isot. 111, 75–79 (2016).
[Crossref]

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Phase dependent TL–OSL studies in various phases of chemically synthesized Cu doped crystalline SiO2,” J. Lumin. 171, 72–78 (2016).
[Crossref]

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Optically stimulated luminescence in Cu+ doped lithium orthophosphate,” Phys. B Condens. Matter. 458, 117–123 (2015).
[Crossref]

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Synthesis and TL–OSL studies in Cu activated lithium silicate,” Radiat. Meas. 77, 18–25 (2015).
[Crossref]

R. A. Barve, R. R. Patil, N. P. Gaikwad, M. S. Kulkarni, D. R. Mishra, A. Soni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence and thermoluminescence in some Cu+ doped alkali fluoro-silicates,” Radiat. Meas. 59, 73–80 (2013).
[Crossref]

R. A. Barve, R. R. Patil, N. S. Rawat, N. P. Gaikwad, R. Pradeep, B. C. Bhatt, S. V. Moharil, and M. S. Kulkarni, “Blue and infra-red stimulated luminescence in Cu+ doped fused quartz for application in radiation dosimetry,” Nucl. Instrum. Methods Phys. Res., Sect. B 289, 100–105 (2012).
[Crossref]

Mahiou, R.

B. Capoen, H. El Hamzaoui, G. Bouwmans, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Sol–gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry,” Opt. Mater. 51, 104–109 (2016).
[Crossref]

H. El Hamzaoui, G. Bouwmans, B. Capoen, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Effects of densification atmosphere on optical properties of ionic copper-activated sol–gel silica glass: towards an efficient radiation dosimeter,” Mater. Res. Express 1(2), 026203 (2014).
[Crossref]

Merritt, C. D.

B. L. Justus, K. J. Pawlovich, C. D. Merritt, and A. L. Huston, “Optically and Thermally Stimulated Luminescence Characteristics of Cu1+-Doped Fused Quartz,” Radiat. Prot. Dosim. 81(1), 5–10 (1999).
[Crossref]

Miller, R. W.

B. L. Justus, P. Falkenstein, A. L. Huston, M. C. Plazas, H. Ning, and R. W. Miller, “Gated fiber-optic-coupled detector for in vivo real-time radiation dosimetry,” Appl. Opt. 43(8), 1663–1668 (2004).
[Crossref]

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically Stimulated Luminescent Glass Optical Fibre Dosemeter,” Radiat. Prot. Dosim. 101(1), 23–26 (2002).
[Crossref]

Mishra, D. R.

R. A. Barve, R. R. Patil, N. P. Gaikwad, M. S. Kulkarni, D. R. Mishra, A. Soni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence and thermoluminescence in some Cu+ doped alkali fluoro-silicates,” Radiat. Meas. 59, 73–80 (2013).
[Crossref]

Moharil, S. V.

S. U. Gaikwad, R. R. Patil, M. S. Kulkarni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence in doped NaF,” Appl. Radiat. Isot. 111, 75–79 (2016).
[Crossref]

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Phase dependent TL–OSL studies in various phases of chemically synthesized Cu doped crystalline SiO2,” J. Lumin. 171, 72–78 (2016).
[Crossref]

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Synthesis and TL–OSL studies in Cu activated lithium silicate,” Radiat. Meas. 77, 18–25 (2015).
[Crossref]

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Optically stimulated luminescence in Cu+ doped lithium orthophosphate,” Phys. B Condens. Matter. 458, 117–123 (2015).
[Crossref]

R. A. Barve, R. R. Patil, N. P. Gaikwad, M. S. Kulkarni, D. R. Mishra, A. Soni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence and thermoluminescence in some Cu+ doped alkali fluoro-silicates,” Radiat. Meas. 59, 73–80 (2013).
[Crossref]

R. A. Barve, R. R. Patil, N. S. Rawat, N. P. Gaikwad, R. Pradeep, B. C. Bhatt, S. V. Moharil, and M. S. Kulkarni, “Blue and infra-red stimulated luminescence in Cu+ doped fused quartz for application in radiation dosimetry,” Nucl. Instrum. Methods Phys. Res., Sect. B 289, 100–105 (2012).
[Crossref]

Ning, H.

B. L. Justus, P. Falkenstein, A. L. Huston, M. C. Plazas, H. Ning, and R. W. Miller, “Gated fiber-optic-coupled detector for in vivo real-time radiation dosimetry,” Appl. Opt. 43(8), 1663–1668 (2004).
[Crossref]

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically Stimulated Luminescent Glass Optical Fibre Dosemeter,” Radiat. Prot. Dosim. 101(1), 23–26 (2002).
[Crossref]

Ouerdane, Y.

B. Capoen, H. El Hamzaoui, G. Bouwmans, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Sol–gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry,” Opt. Mater. 51, 104–109 (2016).
[Crossref]

H. El Hamzaoui, G. Bouwmans, B. Capoen, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Effects of densification atmosphere on optical properties of ionic copper-activated sol–gel silica glass: towards an efficient radiation dosimeter,” Mater. Res. Express 1(2), 026203 (2014).
[Crossref]

H. El Hamzaoui, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Boukenter, S. Girard, and M. Bouazaoui, “Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter,” Opt. Express 20(28), 29751–29760 (2012).
[Crossref]

Patil, R. R.

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Phase dependent TL–OSL studies in various phases of chemically synthesized Cu doped crystalline SiO2,” J. Lumin. 171, 72–78 (2016).
[Crossref]

S. U. Gaikwad, R. R. Patil, M. S. Kulkarni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence in doped NaF,” Appl. Radiat. Isot. 111, 75–79 (2016).
[Crossref]

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Optically stimulated luminescence in Cu+ doped lithium orthophosphate,” Phys. B Condens. Matter. 458, 117–123 (2015).
[Crossref]

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Synthesis and TL–OSL studies in Cu activated lithium silicate,” Radiat. Meas. 77, 18–25 (2015).
[Crossref]

R. A. Barve, R. R. Patil, N. P. Gaikwad, M. S. Kulkarni, D. R. Mishra, A. Soni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence and thermoluminescence in some Cu+ doped alkali fluoro-silicates,” Radiat. Meas. 59, 73–80 (2013).
[Crossref]

R. A. Barve, R. R. Patil, N. S. Rawat, N. P. Gaikwad, R. Pradeep, B. C. Bhatt, S. V. Moharil, and M. S. Kulkarni, “Blue and infra-red stimulated luminescence in Cu+ doped fused quartz for application in radiation dosimetry,” Nucl. Instrum. Methods Phys. Res., Sect. B 289, 100–105 (2012).
[Crossref]

Pawlovich, K. J.

B. L. Justus, K. J. Pawlovich, C. D. Merritt, and A. L. Huston, “Optically and Thermally Stimulated Luminescence Characteristics of Cu1+-Doped Fused Quartz,” Radiat. Prot. Dosim. 81(1), 5–10 (1999).
[Crossref]

Plazas, M. C.

Pradeep, R.

R. A. Barve, R. R. Patil, N. S. Rawat, N. P. Gaikwad, R. Pradeep, B. C. Bhatt, S. V. Moharil, and M. S. Kulkarni, “Blue and infra-red stimulated luminescence in Cu+ doped fused quartz for application in radiation dosimetry,” Nucl. Instrum. Methods Phys. Res., Sect. B 289, 100–105 (2012).
[Crossref]

Rawat, N. S.

R. A. Barve, R. R. Patil, N. S. Rawat, N. P. Gaikwad, R. Pradeep, B. C. Bhatt, S. V. Moharil, and M. S. Kulkarni, “Blue and infra-red stimulated luminescence in Cu+ doped fused quartz for application in radiation dosimetry,” Nucl. Instrum. Methods Phys. Res., Sect. B 289, 100–105 (2012).
[Crossref]

Saeed, M. A.

A. Saidu, H. Wagiran, M. A. Saeed, Y. S. M. Alajerami, and A. B. A. Kadir, “Effect of co-doping of sodium on the thermoluminescence dosimetry properties of copper-doped zinc lithium borate glass system,” Appl. Radiat. Isot. 118, 375–381 (2016).
[Crossref]

Saidu, A.

A. Saidu, H. Wagiran, M. A. Saeed, Y. S. M. Alajerami, and A. B. A. Kadir, “Effect of co-doping of sodium on the thermoluminescence dosimetry properties of copper-doped zinc lithium borate glass system,” Appl. Radiat. Isot. 118, 375–381 (2016).
[Crossref]

Sigel, G. H.

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28(9), 516–518 (1976).
[Crossref]

Soni, A.

R. A. Barve, R. R. Patil, N. P. Gaikwad, M. S. Kulkarni, D. R. Mishra, A. Soni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence and thermoluminescence in some Cu+ doped alkali fluoro-silicates,” Radiat. Meas. 59, 73–80 (2013).
[Crossref]

Wagiran, H.

A. Saidu, H. Wagiran, M. A. Saeed, Y. S. M. Alajerami, and A. B. A. Kadir, “Effect of co-doping of sodium on the thermoluminescence dosimetry properties of copper-doped zinc lithium borate glass system,” Appl. Radiat. Isot. 118, 375–381 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28(9), 516–518 (1976).
[Crossref]

Appl. Radiat. Isot. (2)

A. Saidu, H. Wagiran, M. A. Saeed, Y. S. M. Alajerami, and A. B. A. Kadir, “Effect of co-doping of sodium on the thermoluminescence dosimetry properties of copper-doped zinc lithium borate glass system,” Appl. Radiat. Isot. 118, 375–381 (2016).
[Crossref]

S. U. Gaikwad, R. R. Patil, M. S. Kulkarni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence in doped NaF,” Appl. Radiat. Isot. 111, 75–79 (2016).
[Crossref]

J. Appl. Phys. (1)

Y. Hibino and H. Hanafusa, “Defect structure and formation mechanism of drawing-induced absorption at 630 nm in silica optical fibers,” J. Appl. Phys. 60(5), 1797–1801 (1986).
[Crossref]

J. Lumin. (1)

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Phase dependent TL–OSL studies in various phases of chemically synthesized Cu doped crystalline SiO2,” J. Lumin. 171, 72–78 (2016).
[Crossref]

Mater. Res. Express (1)

H. El Hamzaoui, G. Bouwmans, B. Capoen, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Effects of densification atmosphere on optical properties of ionic copper-activated sol–gel silica glass: towards an efficient radiation dosimeter,” Mater. Res. Express 1(2), 026203 (2014).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. B (1)

R. A. Barve, R. R. Patil, N. S. Rawat, N. P. Gaikwad, R. Pradeep, B. C. Bhatt, S. V. Moharil, and M. S. Kulkarni, “Blue and infra-red stimulated luminescence in Cu+ doped fused quartz for application in radiation dosimetry,” Nucl. Instrum. Methods Phys. Res., Sect. B 289, 100–105 (2012).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

B. Capoen, H. El Hamzaoui, G. Bouwmans, Y. Ouerdane, G. Chadeyron, R. Mahiou, S. Girard, A. Boukenter, and M. Bouazaoui, “Sol–gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry,” Opt. Mater. 51, 104–109 (2016).
[Crossref]

Phys. B Condens. Matter. (1)

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Optically stimulated luminescence in Cu+ doped lithium orthophosphate,” Phys. B Condens. Matter. 458, 117–123 (2015).
[Crossref]

Radiat. Meas. (2)

R. A. Barve, R. R. Patil, N. P. Gaikwad, M. S. Kulkarni, D. R. Mishra, A. Soni, B. C. Bhatt, and S. V. Moharil, “Optically stimulated luminescence and thermoluminescence in some Cu+ doped alkali fluoro-silicates,” Radiat. Meas. 59, 73–80 (2013).
[Crossref]

R. A. Barve, R. R. Patil, S. V. Moharil, B. C. Bhatt, and M. S. Kulkarni, “Synthesis and TL–OSL studies in Cu activated lithium silicate,” Radiat. Meas. 77, 18–25 (2015).
[Crossref]

Radiat. Prot. Dosim. (2)

B. L. Justus, K. J. Pawlovich, C. D. Merritt, and A. L. Huston, “Optically and Thermally Stimulated Luminescence Characteristics of Cu1+-Doped Fused Quartz,” Radiat. Prot. Dosim. 81(1), 5–10 (1999).
[Crossref]

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, and R. Altemus, “Optically Stimulated Luminescent Glass Optical Fibre Dosemeter,” Radiat. Prot. Dosim. 101(1), 23–26 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Scheme of the dosimeter system used for RL and OSL measurements.
Fig. 2.
Fig. 2. Normalized RL and PL (under laser excitation at 325 nm) spectra of the Cu-doped silica rod.
Fig. 3.
Fig. 3. Decomposition into Gaussian bands of the RL spectrum (a) and the PL spectrum (b).
Fig. 4.
Fig. 4. Typical RL response of the Cu+-doped rod spliced to the transport fiber during an X-ray irradiation run.
Fig. 5.
Fig. 5. RL response of the Cu+-doped rod spliced to a fiber as a function of the X-ray dose rate.
Fig. 6.
Fig. 6. (a) X-ray RL spectra under different dose rates. (b) Maximum RL intensity evolution plotted against the dose rate for the Cu-doped rod.
Fig. 7.
Fig. 7. OSL decay curves for different X-ray exposure times at a dose rate of 171 mGy/s (silica) during the stimulation with a laser diode at λ = 660 nm.
Fig. 8.
Fig. 8. (a) Dose dependence of the OSL response of the Cu+-doped rod exposed to irradiation at different X-ray dose rates. Each point represents the normalized integrated OSL response. (b) Zoom on the low dose range of the same curve.
Fig. 9.
Fig. 9. OSL decay curves after X-ray irradiation at 46 Gy and 384 Gy accumulated doses with a 384 mGy/s dose rate.
Fig. 10.
Fig. 10. Fading behavior of the integrated OSL signal for an accumulated dose of 17 Gy at a dose rate of 170 mGy/s. The red plot is reported as a guideline.

Tables (1)

Tables Icon

Table 1. Different decay times of the OSL signal for three different doses

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = A f e t τ f + A m e t τ m + A s e t τ s

Metrics