Abstract

The potential of femtosecond filament induced breakdown spectroscopy technique (fs FIBS) towards the detection of explosive/energetic molecules (EMs) at a standoff (ST) distance of ∼6.5 m is demonstrated. A set of six energetic nitroimidazoles were investigated and discriminated with the fs FIBS technique in tandem with principal component analysis (PCA). The fs ST-FIBS spectra of these EMs were dominated with CN emissions with weak C2 emission and devoid of other atomic peaks (H, N, and O). In addition, an enhancement in LIBS/ST FIBS signal of EMs is achieved in the presence of Ag nanoparticles (NPs) using the nanoparticle enhanced LIBS (NELIBS) technique. Furthermore, the potential of fs filaments for detecting explosive traces is also demonstrated by detecting the residue of an explosive molecule CL-20 on a brass target using the fs NEFIBS technique.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis

Abdul Kalam Shaik, Nageswara Rao Epuru, Hamad Syed, Chandu Byram, and Venugopal Rao Soma
Opt. Express 26(7) 8069-8083 (2018)

Discrimination of bimetallic alloy targets using femtosecond filament-induced breakdown spectroscopy in standoff mode

Abdul Kalam Shaik, Ajmathulla, and Venugopal Rao Soma
Opt. Lett. 43(15) 3465-3468 (2018)

Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection

Frank C. De Lucia, Jennifer L. Gottfried, and Andrzej W. Miziolek
Opt. Express 17(2) 419-425 (2009)

References

  • View by:
  • |
  • |
  • |

  1. W. Li, X. Li, X. Li, Z. Hao, Y. Lu, and X. Zeng, “A review of remote laser-induced breakdown spectroscopy,” Appl. Spectrosc. Rev. (2018).
  2. S. Harilal, B. Brumfield, N. LaHaye, K. Hartig, and M. Phillips, “Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
    [Crossref]
  3. P. Skrodzki, M. Burger, I. Jovanovic, M. Phillips, B. Brumfield, and S. Harilal, “Tracking of oxide formation in laser-produced uranium plasmas,” Opt. Lett. 43(20), 5118 (2018).
    [Crossref]
  4. S. D. Christesen, A. W. Fountain, J. A. Guicheteau, T. H. Chyba, and W. F. Pearman, “Laser spectroscopy for the detection of chemical, biological and explosive threats,” in Laser Spectroscopy for Sensing, M. Baudelet, ed. (Woodhead Publishing, 2014), pp. 393.
  5. F. Fortes and J. Laserna, “The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon,” Spectrochim. Acta B 65(12), 975–990 (2010).
    [Crossref]
  6. I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Range-adaptive standoff recognition of explosive fingerprints on solid surfaces using a supervised learning method and laser-induced breakdown spectroscopy,” Anal. Chem. 86(10), 5045–5052 (2014).
    [Crossref]
  7. J. L. Gottfried, F. C. De Lucia Jr, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24(3), 288 (2009).
    [Crossref]
  8. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
    [Crossref]
  9. S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941 (2016).
    [Crossref]
  10. A. K. Shaik, E. N. Rao, and S. V. Rao, “Photonics applied: Standoff spectroscopy: Standoff libs for explosives detection-challenges and status,” Laser Focus World24 (2017).
  11. P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote libs with ultrashort pulses: Characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
    [Crossref]
  12. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
    [Crossref]
  13. P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60(7-8), 1025–1033 (2005).
    [Crossref]
  14. E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
    [Crossref]
  15. H. L. Xu and S. L. Chin, “Femtosecond laser filamentation for atmospheric sensing,” Sensors 11(1), 32–53 (2010).
    [Crossref]
  16. S. Tzortzakis, D. Anglos, and D. Gray, “Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (libs) analysis: Applications in cultural heritage monitoring,” Opt. Lett. 31(8), 1139 (2006).
    [Crossref]
  17. T. Fujii, N. Goto, M. Miki, T. Nayuki, and K. Nemoto, “Lidar measurement of constituents of microparticles in air by laser-induced breakdown spectroscopy using femtosecond terawatt laser pulses,” Opt. Lett. 31(23), 3456 (2006).
    [Crossref]
  18. A. K. Shaik, N. R. Epuru, H. Syed, C. Byram, and V. R. Soma, “Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis,” Opt. Express 26(7), 8069 (2018).
    [Crossref]
  19. L. J. Radziemski and D. A. Cremers, “Remote libs measurements,” in Handbook of Laser Induced Breakdown Spectroscopy (John Wiley & Sons, 2013).
  20. Y. Hu, J. Nie, K. Sun, and L. Wang, “Filamentation of femtosecond laser pulse influenced by the air turbulence at various propagation distances,” Opt. Commun. 383, 281–286 (2017).
    [Crossref]
  21. Z. Jin, J. Zhang, M. Xu, X. Lu, Y. Li, Z. Wang, Z. Wei, X. Yuan, and W. Yu, “Control of filamentation induced by femtosecond laser pulses propagating in air,” Opt. Express 13(25), 10424 (2005).
    [Crossref]
  22. M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” in Enabling Technologies and Design of Nonlethal Weapons (International Society for Optics and Photonics, 2006), p. 621907.
  23. P. Polynkin, M. Kolesik, A. Roberts, D. Faccio, P. Di Trapani, and J. Moloney, “Generation of extended plasma channels in air using femtosecond bessel beams,” Opt. Express 16(20), 15733 (2008).
    [Crossref]
  24. H. Xu, W. Liu, and S. Chin, “Remote time-resolved filament-induced breakdown spectroscopy of biological materials,” Opt. Lett. 31(10), 1540 (2006).
    [Crossref]
  25. M. Baudelet, M. Richardson, and M. Sigman, “Self-channeling of femtosecond laser pulses for rapid and efficient standoff detection of energetic materials,” in IEEE Conference on Technologies for Homeland Security (IEEE, 2009), pp. 472.
  26. A. K. Shaik and V. R. Soma, “Standoff detection of rdx, tnt, and hmx using femtosecond filament induced breakdown spectroscopy,” in Hyperspectral Imaging and Sounding of the Environment (Optical Society of America, 2018), p. JW4A. 1.
  27. A. K. Shaik, Ajmathulla, and V. R. Soma, “Discrimination of bimetallic alloy targets using femtosecond filament-induced breakdown spectroscopy in standoff mode,” Opt. Lett. 43(15), 3465 (2018).
    [Crossref]
  28. https://www.nist.gov/pml/atomic-spectra-database .
  29. R. W. B. Pearse and A. G. Gaydon, The Identification of Molecular Spectra (Chapman and Hall, 1941).
  30. S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond libs plasma of high energy materials,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
    [Crossref]
  31. S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
    [Crossref]
  32. P. Pořízka, J. Klus, E. Képeš, D. Prochazka, D. W. Hahn, and J. Kaiser, “On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review,” Spectrochim. Acta B (2018).
  33. P. Pořízka, J. Klus, A. Hrdlička, J. Vrábel, P. Škarková, D. Prochazka, J. Novotný, K. Novotný, and J. Kaiser, “Impact of laser-induced breakdown spectroscopy data normalization on multivariate classification accuracy,” J. Anal. At. Spectrom. 32(2), 277–288 (2017).
    [Crossref]
  34. M. Dell’Aglio, R. Alrifai, and A. De Giacomo, “Nanoparticle enhanced laser induced breakdown spectroscopy (nelibs), a first review,” Spectrochim. Acta B 148, 105–112 (2018).
    [Crossref]
  35. A. De Giacomo, C. Koral, G. Valenza, R. Gaudiuso, and M. Dell’Aglio, “Nanoparticle enhanced laser-induced breakdown spectroscopy for microdrop analysis at subppm level,” Anal. Chem. 88(10), 5251–5257 (2016).
    [Crossref]
  36. A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “Sers substrate for detection of explosives,” Nanoscale 4(23), 7419 (2012).
    [Crossref]
  37. V. R. Soma, G. K. Podagatlapalli, and H. Syed, “Femtomolar detection of explosive molecules using laser ablated targets and sers,” in International Conference on Fibre Optics and Photonics (Optical Society of America, 2016), p. Th4D. 2.
  38. C. Byram, S. S. B. Moram, A. K. Shaik, and V. R. Soma, “Versatile gold based sers substrates fabricated by ultrafast laser ablation for sensing picric acid and ammonium nitrate,” Chem. Phys. Lett. 685, 103–107 (2017).
    [Crossref]
  39. A. Kalam, V. Srikanth, and V. R. Soma, “Nanoparticle enhanced laser induced breakdown spectroscopy with femtosecond pulses,” in International Conference on Fibre Optics and Photonics (Optical Society of America, 2016), p. Th3A. 89.
  40. N. Kommu, M. Balaraju, V. D. Ghule, and A. K. Sahoo, “Synthetic manifestation of nitro substituted tetrazole-n-(hetero) aryl derivatives and energetic studies,” J. Mater. Chem. A 5(16), 7366–7371 (2017).
    [Crossref]
  41. J. Sawyer, J. Abboud, Z. Zhang, and S. F. Adams, “Reduction of breakdown threshold by metal nanoparticle seeding in a dc microdischarge,” Nanoscale Res. Lett. 10(1), 15 (2015).
    [Crossref]
  42. D. Rusak, T. Anthony, and Z. Bell, “Note: A novel technique for analysis of aqueous solutions by laser-induced breakdown spectroscopy,” Rev. Sci. Instrum. 86(11), 116106 (2015).
    [Crossref]
  43. A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples,” Anal. Chem. 85(21), 10180–10187 (2013).
    [Crossref]
  44. Y. Kabessa, O. Eyal, O. Bar-On, V. Korouma, S. Yagur-Kroll, S. Belkin, and A. J. Agranat, “Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells,” Biosens. Bioelectron. 79, 784–788 (2016).
    [Crossref]
  45. A. De Giacomo, M. Dell’Aglio, R. Gaudiuso, C. Koral, and G. Valenza, “Perspective on the use of nanoparticles to improve libs analytical performance: Nanoparticle enhanced laser induced breakdown spectroscopy (nelibs),” J. Anal. At. Spectrom. 31(8), 1566–1573 (2016).
    [Crossref]

2018 (5)

2017 (5)

C. Byram, S. S. B. Moram, A. K. Shaik, and V. R. Soma, “Versatile gold based sers substrates fabricated by ultrafast laser ablation for sensing picric acid and ammonium nitrate,” Chem. Phys. Lett. 685, 103–107 (2017).
[Crossref]

N. Kommu, M. Balaraju, V. D. Ghule, and A. K. Sahoo, “Synthetic manifestation of nitro substituted tetrazole-n-(hetero) aryl derivatives and energetic studies,” J. Mater. Chem. A 5(16), 7366–7371 (2017).
[Crossref]

P. Pořízka, J. Klus, A. Hrdlička, J. Vrábel, P. Škarková, D. Prochazka, J. Novotný, K. Novotný, and J. Kaiser, “Impact of laser-induced breakdown spectroscopy data normalization on multivariate classification accuracy,” J. Anal. At. Spectrom. 32(2), 277–288 (2017).
[Crossref]

S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond libs plasma of high energy materials,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
[Crossref]

Y. Hu, J. Nie, K. Sun, and L. Wang, “Filamentation of femtosecond laser pulse influenced by the air turbulence at various propagation distances,” Opt. Commun. 383, 281–286 (2017).
[Crossref]

2016 (5)

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941 (2016).
[Crossref]

A. De Giacomo, C. Koral, G. Valenza, R. Gaudiuso, and M. Dell’Aglio, “Nanoparticle enhanced laser-induced breakdown spectroscopy for microdrop analysis at subppm level,” Anal. Chem. 88(10), 5251–5257 (2016).
[Crossref]

Y. Kabessa, O. Eyal, O. Bar-On, V. Korouma, S. Yagur-Kroll, S. Belkin, and A. J. Agranat, “Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells,” Biosens. Bioelectron. 79, 784–788 (2016).
[Crossref]

A. De Giacomo, M. Dell’Aglio, R. Gaudiuso, C. Koral, and G. Valenza, “Perspective on the use of nanoparticles to improve libs analytical performance: Nanoparticle enhanced laser induced breakdown spectroscopy (nelibs),” J. Anal. At. Spectrom. 31(8), 1566–1573 (2016).
[Crossref]

2015 (2)

J. Sawyer, J. Abboud, Z. Zhang, and S. F. Adams, “Reduction of breakdown threshold by metal nanoparticle seeding in a dc microdischarge,” Nanoscale Res. Lett. 10(1), 15 (2015).
[Crossref]

D. Rusak, T. Anthony, and Z. Bell, “Note: A novel technique for analysis of aqueous solutions by laser-induced breakdown spectroscopy,” Rev. Sci. Instrum. 86(11), 116106 (2015).
[Crossref]

2014 (1)

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Range-adaptive standoff recognition of explosive fingerprints on solid surfaces using a supervised learning method and laser-induced breakdown spectroscopy,” Anal. Chem. 86(10), 5045–5052 (2014).
[Crossref]

2013 (1)

A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples,” Anal. Chem. 85(21), 10180–10187 (2013).
[Crossref]

2012 (1)

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “Sers substrate for detection of explosives,” Nanoscale 4(23), 7419 (2012).
[Crossref]

2010 (2)

F. Fortes and J. Laserna, “The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon,” Spectrochim. Acta B 65(12), 975–990 (2010).
[Crossref]

H. L. Xu and S. L. Chin, “Femtosecond laser filamentation for atmospheric sensing,” Sensors 11(1), 32–53 (2010).
[Crossref]

2009 (2)

J. L. Gottfried, F. C. De Lucia Jr, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24(3), 288 (2009).
[Crossref]

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref]

2008 (1)

2007 (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

2006 (3)

2005 (2)

Z. Jin, J. Zhang, M. Xu, X. Lu, Y. Li, Z. Wang, Z. Wei, X. Yuan, and W. Yu, “Control of filamentation induced by femtosecond laser pulses propagating in air,” Opt. Express 13(25), 10424 (2005).
[Crossref]

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60(7-8), 1025–1033 (2005).
[Crossref]

2004 (2)

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote libs with ultrashort pulses: Characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Abboud, J.

J. Sawyer, J. Abboud, Z. Zhang, and S. F. Adams, “Reduction of breakdown threshold by metal nanoparticle seeding in a dc microdischarge,” Nanoscale Res. Lett. 10(1), 15 (2015).
[Crossref]

Ackermann, R.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60(7-8), 1025–1033 (2005).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Adams, S. F.

J. Sawyer, J. Abboud, Z. Zhang, and S. F. Adams, “Reduction of breakdown threshold by metal nanoparticle seeding in a dc microdischarge,” Nanoscale Res. Lett. 10(1), 15 (2015).
[Crossref]

Agranat, A. J.

Y. Kabessa, O. Eyal, O. Bar-On, V. Korouma, S. Yagur-Kroll, S. Belkin, and A. J. Agranat, “Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells,” Biosens. Bioelectron. 79, 784–788 (2016).
[Crossref]

Ajmathulla,

Alrifai, R.

M. Dell’Aglio, R. Alrifai, and A. De Giacomo, “Nanoparticle enhanced laser induced breakdown spectroscopy (nelibs), a first review,” Spectrochim. Acta B 148, 105–112 (2018).
[Crossref]

Andrusyak, O.

M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” in Enabling Technologies and Design of Nonlethal Weapons (International Society for Optics and Photonics, 2006), p. 621907.

Anglos, D.

Anthony, T.

D. Rusak, T. Anthony, and Z. Bell, “Note: A novel technique for analysis of aqueous solutions by laser-induced breakdown spectroscopy,” Rev. Sci. Instrum. 86(11), 116106 (2015).
[Crossref]

Balaraju, M.

N. Kommu, M. Balaraju, V. D. Ghule, and A. K. Sahoo, “Synthetic manifestation of nitro substituted tetrazole-n-(hetero) aryl derivatives and energetic studies,” J. Mater. Chem. A 5(16), 7366–7371 (2017).
[Crossref]

Bar-On, O.

Y. Kabessa, O. Eyal, O. Bar-On, V. Korouma, S. Yagur-Kroll, S. Belkin, and A. J. Agranat, “Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells,” Biosens. Bioelectron. 79, 784–788 (2016).
[Crossref]

Baudelet, M.

M. Baudelet, M. Richardson, and M. Sigman, “Self-channeling of femtosecond laser pulses for rapid and efficient standoff detection of energetic materials,” in IEEE Conference on Technologies for Homeland Security (IEEE, 2009), pp. 472.

Belkin, S.

Y. Kabessa, O. Eyal, O. Bar-On, V. Korouma, S. Yagur-Kroll, S. Belkin, and A. J. Agranat, “Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells,” Biosens. Bioelectron. 79, 784–788 (2016).
[Crossref]

Bell, Z.

D. Rusak, T. Anthony, and Z. Bell, “Note: A novel technique for analysis of aqueous solutions by laser-induced breakdown spectroscopy,” Rev. Sci. Instrum. 86(11), 116106 (2015).
[Crossref]

Brown, C.

M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” in Enabling Technologies and Design of Nonlethal Weapons (International Society for Optics and Photonics, 2006), p. 621907.

Brumfield, B.

P. Skrodzki, M. Burger, I. Jovanovic, M. Phillips, B. Brumfield, and S. Harilal, “Tracking of oxide formation in laser-produced uranium plasmas,” Opt. Lett. 43(20), 5118 (2018).
[Crossref]

S. Harilal, B. Brumfield, N. LaHaye, K. Hartig, and M. Phillips, “Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

Brumfield, B. E.

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941 (2016).
[Crossref]

Buividas, R.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “Sers substrate for detection of explosives,” Nanoscale 4(23), 7419 (2012).
[Crossref]

Burger, M.

Byram, C.

A. K. Shaik, N. R. Epuru, H. Syed, C. Byram, and V. R. Soma, “Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis,” Opt. Express 26(7), 8069 (2018).
[Crossref]

C. Byram, S. S. B. Moram, A. K. Shaik, and V. R. Soma, “Versatile gold based sers substrates fabricated by ultrafast laser ablation for sensing picric acid and ammonium nitrate,” Chem. Phys. Lett. 685, 103–107 (2017).
[Crossref]

Cerkez, E. B.

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref]

Chin, S.

Chin, S. L.

H. L. Xu and S. L. Chin, “Femtosecond laser filamentation for atmospheric sensing,” Sensors 11(1), 32–53 (2010).
[Crossref]

Chou, A.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “Sers substrate for detection of explosives,” Nanoscale 4(23), 7419 (2012).
[Crossref]

Christesen, S. D.

S. D. Christesen, A. W. Fountain, J. A. Guicheteau, T. H. Chyba, and W. F. Pearman, “Laser spectroscopy for the detection of chemical, biological and explosive threats,” in Laser Spectroscopy for Sensing, M. Baudelet, ed. (Woodhead Publishing, 2014), pp. 393.

Chyba, T. H.

S. D. Christesen, A. W. Fountain, J. A. Guicheteau, T. H. Chyba, and W. F. Pearman, “Laser spectroscopy for the detection of chemical, biological and explosive threats,” in Laser Spectroscopy for Sensing, M. Baudelet, ed. (Woodhead Publishing, 2014), pp. 393.

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Cremers, D. A.

L. J. Radziemski and D. A. Cremers, “Remote libs measurements,” in Handbook of Laser Induced Breakdown Spectroscopy (John Wiley & Sons, 2013).

De Giacomo, A.

M. Dell’Aglio, R. Alrifai, and A. De Giacomo, “Nanoparticle enhanced laser induced breakdown spectroscopy (nelibs), a first review,” Spectrochim. Acta B 148, 105–112 (2018).
[Crossref]

A. De Giacomo, C. Koral, G. Valenza, R. Gaudiuso, and M. Dell’Aglio, “Nanoparticle enhanced laser-induced breakdown spectroscopy for microdrop analysis at subppm level,” Anal. Chem. 88(10), 5251–5257 (2016).
[Crossref]

A. De Giacomo, M. Dell’Aglio, R. Gaudiuso, C. Koral, and G. Valenza, “Perspective on the use of nanoparticles to improve libs analytical performance: Nanoparticle enhanced laser induced breakdown spectroscopy (nelibs),” J. Anal. At. Spectrom. 31(8), 1566–1573 (2016).
[Crossref]

A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples,” Anal. Chem. 85(21), 10180–10187 (2013).
[Crossref]

De Lucia Jr, F. C.

J. L. Gottfried, F. C. De Lucia Jr, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24(3), 288 (2009).
[Crossref]

De Pascale, O.

A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples,” Anal. Chem. 85(21), 10180–10187 (2013).
[Crossref]

Dell’Aglio, M.

M. Dell’Aglio, R. Alrifai, and A. De Giacomo, “Nanoparticle enhanced laser induced breakdown spectroscopy (nelibs), a first review,” Spectrochim. Acta B 148, 105–112 (2018).
[Crossref]

A. De Giacomo, C. Koral, G. Valenza, R. Gaudiuso, and M. Dell’Aglio, “Nanoparticle enhanced laser-induced breakdown spectroscopy for microdrop analysis at subppm level,” Anal. Chem. 88(10), 5251–5257 (2016).
[Crossref]

A. De Giacomo, M. Dell’Aglio, R. Gaudiuso, C. Koral, and G. Valenza, “Perspective on the use of nanoparticles to improve libs analytical performance: Nanoparticle enhanced laser induced breakdown spectroscopy (nelibs),” J. Anal. At. Spectrom. 31(8), 1566–1573 (2016).
[Crossref]

A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples,” Anal. Chem. 85(21), 10180–10187 (2013).
[Crossref]

Di Trapani, P.

Epuru, N. R.

Eyal, O.

Y. Kabessa, O. Eyal, O. Bar-On, V. Korouma, S. Yagur-Kroll, S. Belkin, and A. J. Agranat, “Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells,” Biosens. Bioelectron. 79, 784–788 (2016).
[Crossref]

Faccio, D.

Fisher, M.

M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” in Enabling Technologies and Design of Nonlethal Weapons (International Society for Optics and Photonics, 2006), p. 621907.

Fortes, F.

F. Fortes and J. Laserna, “The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon,” Spectrochim. Acta B 65(12), 975–990 (2010).
[Crossref]

Fountain, A. W.

S. D. Christesen, A. W. Fountain, J. A. Guicheteau, T. H. Chyba, and W. F. Pearman, “Laser spectroscopy for the detection of chemical, biological and explosive threats,” in Laser Spectroscopy for Sensing, M. Baudelet, ed. (Woodhead Publishing, 2014), pp. 393.

Fredericks, P. M.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “Sers substrate for detection of explosives,” Nanoscale 4(23), 7419 (2012).
[Crossref]

Fujii, T.

Gaona, I.

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Range-adaptive standoff recognition of explosive fingerprints on solid surfaces using a supervised learning method and laser-induced breakdown spectroscopy,” Anal. Chem. 86(10), 5045–5052 (2014).
[Crossref]

Gaudiuso, R.

A. De Giacomo, C. Koral, G. Valenza, R. Gaudiuso, and M. Dell’Aglio, “Nanoparticle enhanced laser-induced breakdown spectroscopy for microdrop analysis at subppm level,” Anal. Chem. 88(10), 5251–5257 (2016).
[Crossref]

A. De Giacomo, M. Dell’Aglio, R. Gaudiuso, C. Koral, and G. Valenza, “Perspective on the use of nanoparticles to improve libs analytical performance: Nanoparticle enhanced laser induced breakdown spectroscopy (nelibs),” J. Anal. At. Spectrom. 31(8), 1566–1573 (2016).
[Crossref]

A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples,” Anal. Chem. 85(21), 10180–10187 (2013).
[Crossref]

Gaydon, A. G.

R. W. B. Pearse and A. G. Gaydon, The Identification of Molecular Spectra (Chapman and Hall, 1941).

Ghule, V. D.

N. Kommu, M. Balaraju, V. D. Ghule, and A. K. Sahoo, “Synthetic manifestation of nitro substituted tetrazole-n-(hetero) aryl derivatives and energetic studies,” J. Mater. Chem. A 5(16), 7366–7371 (2017).
[Crossref]

Goto, N.

Gottfried, J. L.

J. L. Gottfried, F. C. De Lucia Jr, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24(3), 288 (2009).
[Crossref]

Gray, D.

Guicheteau, J. A.

S. D. Christesen, A. W. Fountain, J. A. Guicheteau, T. H. Chyba, and W. F. Pearman, “Laser spectroscopy for the detection of chemical, biological and explosive threats,” in Laser Spectroscopy for Sensing, M. Baudelet, ed. (Woodhead Publishing, 2014), pp. 393.

Hahn, D. W.

P. Pořízka, J. Klus, E. Képeš, D. Prochazka, D. W. Hahn, and J. Kaiser, “On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review,” Spectrochim. Acta B (2018).

Hao, Z.

W. Li, X. Li, X. Li, Z. Hao, Y. Lu, and X. Zeng, “A review of remote laser-induced breakdown spectroscopy,” Appl. Spectrosc. Rev. (2018).

Harilal, S.

S. Harilal, B. Brumfield, N. LaHaye, K. Hartig, and M. Phillips, “Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

P. Skrodzki, M. Burger, I. Jovanovic, M. Phillips, B. Brumfield, and S. Harilal, “Tracking of oxide formation in laser-produced uranium plasmas,” Opt. Lett. 43(20), 5118 (2018).
[Crossref]

Harilal, S. S.

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

Hartig, K.

S. Harilal, B. Brumfield, N. LaHaye, K. Hartig, and M. Phillips, “Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

Heck, G.

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref]

Hrdlicka, A.

P. Pořízka, J. Klus, A. Hrdlička, J. Vrábel, P. Škarková, D. Prochazka, J. Novotný, K. Novotný, and J. Kaiser, “Impact of laser-induced breakdown spectroscopy data normalization on multivariate classification accuracy,” J. Anal. At. Spectrom. 32(2), 277–288 (2017).
[Crossref]

Hu, Y.

Y. Hu, J. Nie, K. Sun, and L. Wang, “Filamentation of femtosecond laser pulse influenced by the air turbulence at various propagation distances,” Opt. Commun. 383, 281–286 (2017).
[Crossref]

Izake, E. L.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “Sers substrate for detection of explosives,” Nanoscale 4(23), 7419 (2012).
[Crossref]

Jaatinen, E.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “Sers substrate for detection of explosives,” Nanoscale 4(23), 7419 (2012).
[Crossref]

Jin, Z.

Johnson, E.

M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” in Enabling Technologies and Design of Nonlethal Weapons (International Society for Optics and Photonics, 2006), p. 621907.

Jovanovic, I.

Judge, E. J.

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref]

Juodkazis, S.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “Sers substrate for detection of explosives,” Nanoscale 4(23), 7419 (2012).
[Crossref]

Kabessa, Y.

Y. Kabessa, O. Eyal, O. Bar-On, V. Korouma, S. Yagur-Kroll, S. Belkin, and A. J. Agranat, “Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells,” Biosens. Bioelectron. 79, 784–788 (2016).
[Crossref]

Kaiser, J.

P. Pořízka, J. Klus, A. Hrdlička, J. Vrábel, P. Škarková, D. Prochazka, J. Novotný, K. Novotný, and J. Kaiser, “Impact of laser-induced breakdown spectroscopy data normalization on multivariate classification accuracy,” J. Anal. At. Spectrom. 32(2), 277–288 (2017).
[Crossref]

P. Pořízka, J. Klus, E. Képeš, D. Prochazka, D. W. Hahn, and J. Kaiser, “On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review,” Spectrochim. Acta B (2018).

Kalam, A.

A. Kalam, V. Srikanth, and V. R. Soma, “Nanoparticle enhanced laser induced breakdown spectroscopy with femtosecond pulses,” in International Conference on Fibre Optics and Photonics (Optical Society of America, 2016), p. Th3A. 89.

Kalam, S. A.

S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond libs plasma of high energy materials,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
[Crossref]

Kasparian, J.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60(7-8), 1025–1033 (2005).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote libs with ultrashort pulses: Characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

Képeš, E.

P. Pořízka, J. Klus, E. Képeš, D. Prochazka, D. W. Hahn, and J. Kaiser, “On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review,” Spectrochim. Acta B (2018).

Klus, J.

P. Pořízka, J. Klus, A. Hrdlička, J. Vrábel, P. Škarková, D. Prochazka, J. Novotný, K. Novotný, and J. Kaiser, “Impact of laser-induced breakdown spectroscopy data normalization on multivariate classification accuracy,” J. Anal. At. Spectrom. 32(2), 277–288 (2017).
[Crossref]

P. Pořízka, J. Klus, E. Képeš, D. Prochazka, D. W. Hahn, and J. Kaiser, “On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review,” Spectrochim. Acta B (2018).

Kolesik, M.

Kommu, N.

N. Kommu, M. Balaraju, V. D. Ghule, and A. K. Sahoo, “Synthetic manifestation of nitro substituted tetrazole-n-(hetero) aryl derivatives and energetic studies,” J. Mater. Chem. A 5(16), 7366–7371 (2017).
[Crossref]

S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond libs plasma of high energy materials,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
[Crossref]

Koral, C.

A. De Giacomo, M. Dell’Aglio, R. Gaudiuso, C. Koral, and G. Valenza, “Perspective on the use of nanoparticles to improve libs analytical performance: Nanoparticle enhanced laser induced breakdown spectroscopy (nelibs),” J. Anal. At. Spectrom. 31(8), 1566–1573 (2016).
[Crossref]

A. De Giacomo, C. Koral, G. Valenza, R. Gaudiuso, and M. Dell’Aglio, “Nanoparticle enhanced laser-induced breakdown spectroscopy for microdrop analysis at subppm level,” Anal. Chem. 88(10), 5251–5257 (2016).
[Crossref]

A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples,” Anal. Chem. 85(21), 10180–10187 (2013).
[Crossref]

Korouma, V.

Y. Kabessa, O. Eyal, O. Bar-On, V. Korouma, S. Yagur-Kroll, S. Belkin, and A. J. Agranat, “Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells,” Biosens. Bioelectron. 79, 784–788 (2016).
[Crossref]

LaHaye, N.

S. Harilal, B. Brumfield, N. LaHaye, K. Hartig, and M. Phillips, “Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

Laserna, J.

F. Fortes and J. Laserna, “The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon,” Spectrochim. Acta B 65(12), 975–990 (2010).
[Crossref]

Laserna, J. J.

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Range-adaptive standoff recognition of explosive fingerprints on solid surfaces using a supervised learning method and laser-induced breakdown spectroscopy,” Anal. Chem. 86(10), 5045–5052 (2014).
[Crossref]

Levis, R. J.

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref]

Li, W.

W. Li, X. Li, X. Li, Z. Hao, Y. Lu, and X. Zeng, “A review of remote laser-induced breakdown spectroscopy,” Appl. Spectrosc. Rev. (2018).

Li, X.

W. Li, X. Li, X. Li, Z. Hao, Y. Lu, and X. Zeng, “A review of remote laser-induced breakdown spectroscopy,” Appl. Spectrosc. Rev. (2018).

W. Li, X. Li, X. Li, Z. Hao, Y. Lu, and X. Zeng, “A review of remote laser-induced breakdown spectroscopy,” Appl. Spectrosc. Rev. (2018).

Li, Y.

Liu, W.

Lu, X.

Lu, Y.

W. Li, X. Li, X. Li, Z. Hao, Y. Lu, and X. Zeng, “A review of remote laser-induced breakdown spectroscopy,” Appl. Spectrosc. Rev. (2018).

Mathi, P.

S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond libs plasma of high energy materials,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
[Crossref]

Méjean, G.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60(7-8), 1025–1033 (2005).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote libs with ultrashort pulses: Characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

Miki, M.

Miziolek, A. W.

J. L. Gottfried, F. C. De Lucia Jr, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24(3), 288 (2009).
[Crossref]

Moloney, J.

Moram, S. S. B.

C. Byram, S. S. B. Moram, A. K. Shaik, and V. R. Soma, “Versatile gold based sers substrates fabricated by ultrafast laser ablation for sensing picric acid and ammonium nitrate,” Chem. Phys. Lett. 685, 103–107 (2017).
[Crossref]

Moros, J.

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Range-adaptive standoff recognition of explosive fingerprints on solid surfaces using a supervised learning method and laser-induced breakdown spectroscopy,” Anal. Chem. 86(10), 5045–5052 (2014).
[Crossref]

Murthy, N. L.

S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond libs plasma of high energy materials,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
[Crossref]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Nayuki, T.

Nemoto, K.

Nie, J.

Y. Hu, J. Nie, K. Sun, and L. Wang, “Filamentation of femtosecond laser pulse influenced by the air turbulence at various propagation distances,” Opt. Commun. 383, 281–286 (2017).
[Crossref]

Novotný, J.

P. Pořízka, J. Klus, A. Hrdlička, J. Vrábel, P. Škarková, D. Prochazka, J. Novotný, K. Novotný, and J. Kaiser, “Impact of laser-induced breakdown spectroscopy data normalization on multivariate classification accuracy,” J. Anal. At. Spectrom. 32(2), 277–288 (2017).
[Crossref]

Novotný, K.

P. Pořízka, J. Klus, A. Hrdlička, J. Vrábel, P. Škarková, D. Prochazka, J. Novotný, K. Novotný, and J. Kaiser, “Impact of laser-induced breakdown spectroscopy data normalization on multivariate classification accuracy,” J. Anal. At. Spectrom. 32(2), 277–288 (2017).
[Crossref]

Pearman, W. F.

S. D. Christesen, A. W. Fountain, J. A. Guicheteau, T. H. Chyba, and W. F. Pearman, “Laser spectroscopy for the detection of chemical, biological and explosive threats,” in Laser Spectroscopy for Sensing, M. Baudelet, ed. (Woodhead Publishing, 2014), pp. 393.

Pearse, R. W. B.

R. W. B. Pearse and A. G. Gaydon, The Identification of Molecular Spectra (Chapman and Hall, 1941).

Phillips, M.

S. Harilal, B. Brumfield, N. LaHaye, K. Hartig, and M. Phillips, “Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

P. Skrodzki, M. Burger, I. Jovanovic, M. Phillips, B. Brumfield, and S. Harilal, “Tracking of oxide formation in laser-produced uranium plasmas,” Opt. Lett. 43(20), 5118 (2018).
[Crossref]

Phillips, M. C.

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

Podagatlapalli, G. K.

V. R. Soma, G. K. Podagatlapalli, and H. Syed, “Femtomolar detection of explosive molecules using laser ablated targets and sers,” in International Conference on Fibre Optics and Photonics (Optical Society of America, 2016), p. Th4D. 2.

Polynkin, P.

Porízka, P.

P. Pořízka, J. Klus, A. Hrdlička, J. Vrábel, P. Škarková, D. Prochazka, J. Novotný, K. Novotný, and J. Kaiser, “Impact of laser-induced breakdown spectroscopy data normalization on multivariate classification accuracy,” J. Anal. At. Spectrom. 32(2), 277–288 (2017).
[Crossref]

P. Pořízka, J. Klus, E. Képeš, D. Prochazka, D. W. Hahn, and J. Kaiser, “On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review,” Spectrochim. Acta B (2018).

Prochazka, D.

P. Pořízka, J. Klus, A. Hrdlička, J. Vrábel, P. Škarková, D. Prochazka, J. Novotný, K. Novotný, and J. Kaiser, “Impact of laser-induced breakdown spectroscopy data normalization on multivariate classification accuracy,” J. Anal. At. Spectrom. 32(2), 277–288 (2017).
[Crossref]

P. Pořízka, J. Klus, E. Képeš, D. Prochazka, D. W. Hahn, and J. Kaiser, “On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review,” Spectrochim. Acta B (2018).

Radziemski, L. J.

L. J. Radziemski and D. A. Cremers, “Remote libs measurements,” in Handbook of Laser Induced Breakdown Spectroscopy (John Wiley & Sons, 2013).

Rao, E. N.

A. K. Shaik, E. N. Rao, and S. V. Rao, “Photonics applied: Standoff spectroscopy: Standoff libs for explosives detection-challenges and status,” Laser Focus World24 (2017).

Rao, S. V.

S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond libs plasma of high energy materials,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
[Crossref]

A. K. Shaik, E. N. Rao, and S. V. Rao, “Photonics applied: Standoff spectroscopy: Standoff libs for explosives detection-challenges and status,” Laser Focus World24 (2017).

Richardson, M.

M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” in Enabling Technologies and Design of Nonlethal Weapons (International Society for Optics and Photonics, 2006), p. 621907.

M. Baudelet, M. Richardson, and M. Sigman, “Self-channeling of femtosecond laser pulses for rapid and efficient standoff detection of energetic materials,” in IEEE Conference on Technologies for Homeland Security (IEEE, 2009), pp. 472.

Roberts, A.

Rohwetter, P.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60(7-8), 1025–1033 (2005).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote libs with ultrashort pulses: Characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

Rusak, D.

D. Rusak, T. Anthony, and Z. Bell, “Note: A novel technique for analysis of aqueous solutions by laser-induced breakdown spectroscopy,” Rev. Sci. Instrum. 86(11), 116106 (2015).
[Crossref]

Sahoo, A. K.

N. Kommu, M. Balaraju, V. D. Ghule, and A. K. Sahoo, “Synthetic manifestation of nitro substituted tetrazole-n-(hetero) aryl derivatives and energetic studies,” J. Mater. Chem. A 5(16), 7366–7371 (2017).
[Crossref]

Salmon, E.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60(7-8), 1025–1033 (2005).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote libs with ultrashort pulses: Characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

Sawyer, J.

J. Sawyer, J. Abboud, Z. Zhang, and S. F. Adams, “Reduction of breakdown threshold by metal nanoparticle seeding in a dc microdischarge,” Nanoscale Res. Lett. 10(1), 15 (2015).
[Crossref]

Seniutinas, G.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “Sers substrate for detection of explosives,” Nanoscale 4(23), 7419 (2012).
[Crossref]

Serrano, J.

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Range-adaptive standoff recognition of explosive fingerprints on solid surfaces using a supervised learning method and laser-induced breakdown spectroscopy,” Anal. Chem. 86(10), 5045–5052 (2014).
[Crossref]

Shaik, A. K.

A. K. Shaik, N. R. Epuru, H. Syed, C. Byram, and V. R. Soma, “Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis,” Opt. Express 26(7), 8069 (2018).
[Crossref]

A. K. Shaik, Ajmathulla, and V. R. Soma, “Discrimination of bimetallic alloy targets using femtosecond filament-induced breakdown spectroscopy in standoff mode,” Opt. Lett. 43(15), 3465 (2018).
[Crossref]

C. Byram, S. S. B. Moram, A. K. Shaik, and V. R. Soma, “Versatile gold based sers substrates fabricated by ultrafast laser ablation for sensing picric acid and ammonium nitrate,” Chem. Phys. Lett. 685, 103–107 (2017).
[Crossref]

A. K. Shaik, E. N. Rao, and S. V. Rao, “Photonics applied: Standoff spectroscopy: Standoff libs for explosives detection-challenges and status,” Laser Focus World24 (2017).

A. K. Shaik and V. R. Soma, “Standoff detection of rdx, tnt, and hmx using femtosecond filament induced breakdown spectroscopy,” in Hyperspectral Imaging and Sounding of the Environment (Optical Society of America, 2018), p. JW4A. 1.

Siders, C.

M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” in Enabling Technologies and Design of Nonlethal Weapons (International Society for Optics and Photonics, 2006), p. 621907.

Sigman, M.

M. Baudelet, M. Richardson, and M. Sigman, “Self-channeling of femtosecond laser pulses for rapid and efficient standoff detection of energetic materials,” in IEEE Conference on Technologies for Homeland Security (IEEE, 2009), pp. 472.

Singh, A. K.

S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond libs plasma of high energy materials,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
[Crossref]

Škarková, P.

P. Pořízka, J. Klus, A. Hrdlička, J. Vrábel, P. Škarková, D. Prochazka, J. Novotný, K. Novotný, and J. Kaiser, “Impact of laser-induced breakdown spectroscopy data normalization on multivariate classification accuracy,” J. Anal. At. Spectrom. 32(2), 277–288 (2017).
[Crossref]

Skrodzki, P.

Soma, V. R.

A. K. Shaik, N. R. Epuru, H. Syed, C. Byram, and V. R. Soma, “Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis,” Opt. Express 26(7), 8069 (2018).
[Crossref]

A. K. Shaik, Ajmathulla, and V. R. Soma, “Discrimination of bimetallic alloy targets using femtosecond filament-induced breakdown spectroscopy in standoff mode,” Opt. Lett. 43(15), 3465 (2018).
[Crossref]

C. Byram, S. S. B. Moram, A. K. Shaik, and V. R. Soma, “Versatile gold based sers substrates fabricated by ultrafast laser ablation for sensing picric acid and ammonium nitrate,” Chem. Phys. Lett. 685, 103–107 (2017).
[Crossref]

A. Kalam, V. Srikanth, and V. R. Soma, “Nanoparticle enhanced laser induced breakdown spectroscopy with femtosecond pulses,” in International Conference on Fibre Optics and Photonics (Optical Society of America, 2016), p. Th3A. 89.

V. R. Soma, G. K. Podagatlapalli, and H. Syed, “Femtomolar detection of explosive molecules using laser ablated targets and sers,” in International Conference on Fibre Optics and Photonics (Optical Society of America, 2016), p. Th4D. 2.

A. K. Shaik and V. R. Soma, “Standoff detection of rdx, tnt, and hmx using femtosecond filament induced breakdown spectroscopy,” in Hyperspectral Imaging and Sounding of the Environment (Optical Society of America, 2018), p. JW4A. 1.

Srikanth, V.

A. Kalam, V. Srikanth, and V. R. Soma, “Nanoparticle enhanced laser induced breakdown spectroscopy with femtosecond pulses,” in International Conference on Fibre Optics and Photonics (Optical Society of America, 2016), p. Th3A. 89.

Stelmaszczyk, K.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60(7-8), 1025–1033 (2005).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote libs with ultrashort pulses: Characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

Sun, K.

Y. Hu, J. Nie, K. Sun, and L. Wang, “Filamentation of femtosecond laser pulse influenced by the air turbulence at various propagation distances,” Opt. Commun. 383, 281–286 (2017).
[Crossref]

Suter, J. D.

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

Syed, H.

A. K. Shaik, N. R. Epuru, H. Syed, C. Byram, and V. R. Soma, “Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis,” Opt. Express 26(7), 8069 (2018).
[Crossref]

V. R. Soma, G. K. Podagatlapalli, and H. Syed, “Femtomolar detection of explosive molecules using laser ablated targets and sers,” in International Conference on Fibre Optics and Photonics (Optical Society of America, 2016), p. Th4D. 2.

Tzortzakis, S.

Valenza, G.

A. De Giacomo, C. Koral, G. Valenza, R. Gaudiuso, and M. Dell’Aglio, “Nanoparticle enhanced laser-induced breakdown spectroscopy for microdrop analysis at subppm level,” Anal. Chem. 88(10), 5251–5257 (2016).
[Crossref]

A. De Giacomo, M. Dell’Aglio, R. Gaudiuso, C. Koral, and G. Valenza, “Perspective on the use of nanoparticles to improve libs analytical performance: Nanoparticle enhanced laser induced breakdown spectroscopy (nelibs),” J. Anal. At. Spectrom. 31(8), 1566–1573 (2016).
[Crossref]

Vrábel, J.

P. Pořízka, J. Klus, A. Hrdlička, J. Vrábel, P. Škarková, D. Prochazka, J. Novotný, K. Novotný, and J. Kaiser, “Impact of laser-induced breakdown spectroscopy data normalization on multivariate classification accuracy,” J. Anal. At. Spectrom. 32(2), 277–288 (2017).
[Crossref]

Wang, L.

Y. Hu, J. Nie, K. Sun, and L. Wang, “Filamentation of femtosecond laser pulse influenced by the air turbulence at various propagation distances,” Opt. Commun. 383, 281–286 (2017).
[Crossref]

Wang, Z.

Wei, Z.

Wolf, J.-P.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60(7-8), 1025–1033 (2005).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote libs with ultrashort pulses: Characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

Wöste, L.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60(7-8), 1025–1033 (2005).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote libs with ultrashort pulses: Characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

Xu, H.

Xu, H. L.

H. L. Xu and S. L. Chin, “Femtosecond laser filamentation for atmospheric sensing,” Sensors 11(1), 32–53 (2010).
[Crossref]

Xu, M.

Yagur-Kroll, S.

Y. Kabessa, O. Eyal, O. Bar-On, V. Korouma, S. Yagur-Kroll, S. Belkin, and A. J. Agranat, “Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells,” Biosens. Bioelectron. 79, 784–788 (2016).
[Crossref]

Yeak, J.

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941 (2016).
[Crossref]

Yu, J.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60(7-8), 1025–1033 (2005).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote libs with ultrashort pulses: Characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

Yu, W.

Yuan, X.

Zeng, X.

W. Li, X. Li, X. Li, Z. Hao, Y. Lu, and X. Zeng, “A review of remote laser-induced breakdown spectroscopy,” Appl. Spectrosc. Rev. (2018).

Zhang, J.

Zhang, Z.

J. Sawyer, J. Abboud, Z. Zhang, and S. F. Adams, “Reduction of breakdown threshold by metal nanoparticle seeding in a dc microdischarge,” Nanoscale Res. Lett. 10(1), 15 (2015).
[Crossref]

Anal. Chem. (4)

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Range-adaptive standoff recognition of explosive fingerprints on solid surfaces using a supervised learning method and laser-induced breakdown spectroscopy,” Anal. Chem. 86(10), 5045–5052 (2014).
[Crossref]

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref]

A. De Giacomo, C. Koral, G. Valenza, R. Gaudiuso, and M. Dell’Aglio, “Nanoparticle enhanced laser-induced breakdown spectroscopy for microdrop analysis at subppm level,” Anal. Chem. 88(10), 5251–5257 (2016).
[Crossref]

A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples,” Anal. Chem. 85(21), 10180–10187 (2013).
[Crossref]

Appl. Phys. Lett. (1)

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Appl. Phys. Rev. (1)

S. Harilal, B. Brumfield, N. LaHaye, K. Hartig, and M. Phillips, “Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

Biosens. Bioelectron. (1)

Y. Kabessa, O. Eyal, O. Bar-On, V. Korouma, S. Yagur-Kroll, S. Belkin, and A. J. Agranat, “Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells,” Biosens. Bioelectron. 79, 784–788 (2016).
[Crossref]

Chem. Phys. Lett. (1)

C. Byram, S. S. B. Moram, A. K. Shaik, and V. R. Soma, “Versatile gold based sers substrates fabricated by ultrafast laser ablation for sensing picric acid and ammonium nitrate,” Chem. Phys. Lett. 685, 103–107 (2017).
[Crossref]

J. Anal. At. Spectrom. (6)

P. Pořízka, J. Klus, A. Hrdlička, J. Vrábel, P. Škarková, D. Prochazka, J. Novotný, K. Novotný, and J. Kaiser, “Impact of laser-induced breakdown spectroscopy data normalization on multivariate classification accuracy,” J. Anal. At. Spectrom. 32(2), 277–288 (2017).
[Crossref]

A. De Giacomo, M. Dell’Aglio, R. Gaudiuso, C. Koral, and G. Valenza, “Perspective on the use of nanoparticles to improve libs analytical performance: Nanoparticle enhanced laser induced breakdown spectroscopy (nelibs),” J. Anal. At. Spectrom. 31(8), 1566–1573 (2016).
[Crossref]

S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond libs plasma of high energy materials,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote libs with ultrashort pulses: Characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

J. L. Gottfried, F. C. De Lucia Jr, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24(3), 288 (2009).
[Crossref]

J. Mater. Chem. A (1)

N. Kommu, M. Balaraju, V. D. Ghule, and A. K. Sahoo, “Synthetic manifestation of nitro substituted tetrazole-n-(hetero) aryl derivatives and energetic studies,” J. Mater. Chem. A 5(16), 7366–7371 (2017).
[Crossref]

Nanoscale (1)

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “Sers substrate for detection of explosives,” Nanoscale 4(23), 7419 (2012).
[Crossref]

Nanoscale Res. Lett. (1)

J. Sawyer, J. Abboud, Z. Zhang, and S. F. Adams, “Reduction of breakdown threshold by metal nanoparticle seeding in a dc microdischarge,” Nanoscale Res. Lett. 10(1), 15 (2015).
[Crossref]

Opt. Commun. (1)

Y. Hu, J. Nie, K. Sun, and L. Wang, “Filamentation of femtosecond laser pulse influenced by the air turbulence at various propagation distances,” Opt. Commun. 383, 281–286 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Rev. Sci. Instrum. (1)

D. Rusak, T. Anthony, and Z. Bell, “Note: A novel technique for analysis of aqueous solutions by laser-induced breakdown spectroscopy,” Rev. Sci. Instrum. 86(11), 116106 (2015).
[Crossref]

Sensors (1)

H. L. Xu and S. L. Chin, “Femtosecond laser filamentation for atmospheric sensing,” Sensors 11(1), 32–53 (2010).
[Crossref]

Spectrochim. Acta B (3)

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60(7-8), 1025–1033 (2005).
[Crossref]

M. Dell’Aglio, R. Alrifai, and A. De Giacomo, “Nanoparticle enhanced laser induced breakdown spectroscopy (nelibs), a first review,” Spectrochim. Acta B 148, 105–112 (2018).
[Crossref]

F. Fortes and J. Laserna, “The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon,” Spectrochim. Acta B 65(12), 975–990 (2010).
[Crossref]

Other (12)

V. R. Soma, G. K. Podagatlapalli, and H. Syed, “Femtomolar detection of explosive molecules using laser ablated targets and sers,” in International Conference on Fibre Optics and Photonics (Optical Society of America, 2016), p. Th4D. 2.

A. Kalam, V. Srikanth, and V. R. Soma, “Nanoparticle enhanced laser induced breakdown spectroscopy with femtosecond pulses,” in International Conference on Fibre Optics and Photonics (Optical Society of America, 2016), p. Th3A. 89.

M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” in Enabling Technologies and Design of Nonlethal Weapons (International Society for Optics and Photonics, 2006), p. 621907.

M. Baudelet, M. Richardson, and M. Sigman, “Self-channeling of femtosecond laser pulses for rapid and efficient standoff detection of energetic materials,” in IEEE Conference on Technologies for Homeland Security (IEEE, 2009), pp. 472.

A. K. Shaik and V. R. Soma, “Standoff detection of rdx, tnt, and hmx using femtosecond filament induced breakdown spectroscopy,” in Hyperspectral Imaging and Sounding of the Environment (Optical Society of America, 2018), p. JW4A. 1.

A. K. Shaik, E. N. Rao, and S. V. Rao, “Photonics applied: Standoff spectroscopy: Standoff libs for explosives detection-challenges and status,” Laser Focus World24 (2017).

W. Li, X. Li, X. Li, Z. Hao, Y. Lu, and X. Zeng, “A review of remote laser-induced breakdown spectroscopy,” Appl. Spectrosc. Rev. (2018).

S. D. Christesen, A. W. Fountain, J. A. Guicheteau, T. H. Chyba, and W. F. Pearman, “Laser spectroscopy for the detection of chemical, biological and explosive threats,” in Laser Spectroscopy for Sensing, M. Baudelet, ed. (Woodhead Publishing, 2014), pp. 393.

L. J. Radziemski and D. A. Cremers, “Remote libs measurements,” in Handbook of Laser Induced Breakdown Spectroscopy (John Wiley & Sons, 2013).

https://www.nist.gov/pml/atomic-spectra-database .

R. W. B. Pearse and A. G. Gaydon, The Identification of Molecular Spectra (Chapman and Hall, 1941).

P. Pořízka, J. Klus, E. Képeš, D. Prochazka, D. W. Hahn, and J. Kaiser, “On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review,” Spectrochim. Acta B (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of fs filament induced breakdown spectroscopic setup (∼6.5 m/ ∼8 m) depicting the two-lens combination system to focus the fs pulses at 6.5 m away from the L2 and a Schmidt Cassegrain telescope to collect the plasma emissions from 8 m. Inset shows a typical fs filament of ∼30 cm length and stage utilized to place the sample.
Fig. 2.
Fig. 2. Stack plot representing typical fs ST-FIBS spectra of nitroimidazoles in the wavelength region (a) 330–700 nm (b) 700–870 nm obtained at ∼6.5 m in standoff mode. The fs ST-FIBS spectra of all the HEMs were recorded in accumulation mode (6 accumulations) without any flat field correction with a gate delay of 20 ns, gate width of 1 μs, ICCD gain of 3000, and exposure time of 1.5 s
Fig. 3.
Fig. 3. Molecular bands identified and labelled in a typical fs ST-FIBS spectrum of 4-NIm (a) CN (Δν=0), (b) CN (Δν=−1), and (c) C2 (Δν=0) band heads.
Fig. 4.
Fig. 4. (a) PC score plot and (b) first three PCs of un-normalized ST-FIBS spectra (385–390 nm), (c) PC score plot (d) and first three PCs of un-normalized ST-FIBS spectra (375–390 nm) of nitroimidazoles.
Fig. 5.
Fig. 5. (a) UV-Vis extinction spectra in 300 nm to 750 nm range and (b) TEM micrograph of standard 60 nm Ag nanospheres (NanoXact, 0.02 mg/ml) purchased from nanoComposix. (U.S.A.). (c) and (d) exhibit the two-factor enhancement in spectral intensity of C I 247.8 nm and CN molecular band in proximal setup in the presence of Ag NPs. (e) two factor enhancement in CN molecular band of TNT (bulk pellet, 150 mg) in standoff mode at ∼6.5 m. (f) Detection of CN molecular band head at 338.34 nm from a trace of CL-20 (1 mg/ 1 cm2) in the presence of AgNPs60 nm using NE-FIBS technique in standoff mode (∼6.5 m).

Tables (1)

Tables Icon

Table 1. Details of explosive molecules and the configurations employed for their investigated

Metrics