Abstract

We report on experiments where super-Gaussian and flat-top, multi-Gaussian Schell-model spatially partially coherent beams, with varying degrees of spatial coherence, were propagated underwater. Two scenarios were explored—calm and mechanically agitated water. The main objective of our study was the experimental comparison of the scintillation statistics. For a similar degree of coherence widths, the results show a potentially improved performance of scintillation index for the multi-Gaussian Schell-model beams as compared to the super-Gaussian beams. It should be noted that the presented results pertain only to the given experimental scenarios and further investigation is necessary to determine the scope of the findings.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simulation study on light propagation in an isotropic turbulence field of the mixed layer

Renmin Yuan, Jianning Sun, Tao Luo, Xuping Wu, Chen Wang, and Chao Lu
Opt. Express 22(6) 7194-7209 (2014)

Capacity of MIMO free space optical communications using multiple partially coherent beams propagation through non-Kolmogorov strong turbulence

Peng Deng, Mohsen Kavehrad, Zhiwen Liu, Zhou Zhou, and XiuHua Yuan
Opt. Express 21(13) 15213-15229 (2013)

M2-factor of truncated partially coherent beams propagating through atmospheric turbulence

Xiaoling Ji and Xiaoqing Li
J. Opt. Soc. Am. A 28(6) 970-975 (2011)

References

  • View by:
  • |
  • |
  • |

  1. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE Press, 2005).
  2. A. Ishimaru, Wave Propagation and Scattering in Random Media, vols. 1 and 2, (Academic, 1978).
  3. F. Wang, X. Liu, and Y. Cai, “Propagation of partially coherent beam in turbulent atmosphere: a review (invited review),” Prog. Electromagn. Res. 150, 123–143 (2015).
    [Crossref]
  4. V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Opt. Spectrosc. 55, 707–712 (1983).
  5. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19(9), 1794–1802 (2002).
    [Crossref]
  6. J. H. Churnside, “Aperture averaging of optical scintillations in the turbulent atmosphere,” Appl. Opt. 30(15), 1982–1994 (1991).
    [Crossref]
  7. S. Rosenberg and M. C. Teich, “Photocounting array receivers for optical communication through the lognormal atmospheric channel 2: optimum and suboptimum receiver performance for binary signaling,” Appl. Opt. 12(11), 2625–2634 (1973).
    [Crossref]
  8. E. J. Lee and V. W. S. Chan, “Part 1: optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Select. Areas Commun. 22(9), 1896–1906 (2004).
    [Crossref]
  9. G. P. Berman, A. R. Bishop, B. M. Chernobrod, D. C. Nguyen, and V. N. Gorshkov, “Suppression of intensity fluctuations in free space high-speed optical communication based on spectral encoding of a partially coherent beam,” Opt. Commun. 280(2), 264–270 (2007).
    [Crossref]
  10. G. P. Berman and A. A. Chumak, “Influence of phase-diffuser dynamics on scintillations of laser radiation in Earth’s atmosphere: long-distance propagation,” Phys. Rev. A 79(6), 063848 (2009).
    [Crossref]
  11. O. Korotkova, “Scintillation index of a stochastic electromagnetic beam propagating in random media,” Opt. Commun. 281(9), 2342–2348 (2008).
    [Crossref]
  12. Y. Gu, O. Korotkova, and G. Gbur, “Scintillation of nonuniformly polarized beams in atmospheric turbulence,” Opt. Lett. 34(15), 2261–2263 (2009).
    [Crossref]
  13. X. Xiao and D. Voelz, “Wave optics simulation of partially coherent and partially polarized beam propagation in turbulence,” Proc. SPIE 7464, Free-Space Laser Communications IX, 74640 T; Aug 21; San Diego, CA. (2009).
  14. S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, and O. Korotkova, “Polarization-induced reduction in scintillation of optical beams propagating in simulated turbulent atmospheric channels,” Waves Random Complex Media 24(4), 452–462 (2014).
    [Crossref]
  15. F. Schill, U. R. Zimmer, and J. Trumpf, “Visible spectrum optical communication and distance sensing for underwater applications,” Proc. Australasian Conf. Robot. Autom., (2004).
  16. N. Farr, J. Ware, C. Pontbriand, T. Hammar, and M. Tivey, “Optical communication system expands CORK seafloor observatory's bandwidth,” Proc. OCEANS Conf. (2010).
  17. M. Doniec, C. Detweiler, I. Vasilescu, and D. Rus, “Using optical communication for remote underwater robot operation,” IEEE/RSJ International Conference on Intelligent Robots and Systems (2010).
  18. B. Cochenour, A. Laux, and L. Mullen, “Temporal dispersion in underwater laser communication links: Closing the loop between model and experiment,” Proceedings Underwater Communications and Networking Conference (UComms), IEEE Third, (2016).
  19. O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Waves Random Complex Media 22(2), 260–266 (2012).
    [Crossref]
  20. Y. Wu, Y. Zhang, and Y. Zhu, “Average intensity and directionality of partially coherent model beams propagating in turbulent ocean,” J. Opt. Soc. Am. A 33(8), 1451–1458 (2016).
    [Crossref]
  21. H. Lajunen and T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36(20), 4104–4106 (2011).
    [Crossref]
  22. Y. Gu and G. Gbur, “Scintillation of nonuniformly correlated beams in atmospheric turbulence,” Opt. Lett. 38(9), 1395–1397 (2013).
    [Crossref]
  23. Y. Cai, Y. Chen, and F. Wang, “Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [Invited],” J. Opt. Soc. Am. A 31(9), 2083–2096 (2014).
    [Crossref]
  24. O. Korotkova, S. Sahin, and E. Shchepakina, “Multi-Gaussian Schell-model beams,” J. Opt. Soc. Am. A 29(10), 2159–2164 (2012).
    [Crossref]
  25. G. Gbur and T. D. Visser, “The structure of partially coherent fields,” Prog. Opt. 55, 285–341 (2010).
    [Crossref]
  26. S. Sahin and O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett. 37(14), 2970–2972 (2012).
    [Crossref]
  27. M. W. Hyde IV, S. Basu, X. Xiao, and D. Voelz, “Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source,” J. Opt. 17(5), 055607 (2015).
    [Crossref]
  28. M. W. Hyde, S. Basu, X. Xiao, and D. G. Voelz, “Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source and phase-only control,” Imaging and Applied Optics 2015 OSA Technical Digest (online) (Optical Society of America), paper PW3E.2. (2015).
  29. M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Experimentally generating any desired partially coherent Schell-model source using phase-only control,” J. Appl. Phys. 118(9), 093102 (2015).
    [Crossref]
  30. S. Avramov-Zamurovic, C. Nelson, S. Guth, and O. Korotkova, “Flatness parameter influence on scintillation reduction for multi-Gaussian Schell-model beams propagating in turbulent air,” Appl. Opt. 55(13), 3442–3446 (2016).
    [Crossref]
  31. C. Nelson, S. Avramov-Zamurovic, O. Korotkova, S. Guth, and R. Malek-Madani, “Scintillation reduction in pseudo Multi-Gaussian Schell Model beams in the maritime environment,” Opt. Commun. 364, 145–149 (2016).
    [Crossref]
  32. S. Avramov-Zamurovic and C. Nelson, “Experimental study on off-axis scattering of flat top partially coherent laser beams when propagating under water in the presence of moving scatterers,” Waves Random Complex Media 28(4), 743–759 (2018).
    [Crossref]

2018 (1)

S. Avramov-Zamurovic and C. Nelson, “Experimental study on off-axis scattering of flat top partially coherent laser beams when propagating under water in the presence of moving scatterers,” Waves Random Complex Media 28(4), 743–759 (2018).
[Crossref]

2016 (3)

2015 (3)

F. Wang, X. Liu, and Y. Cai, “Propagation of partially coherent beam in turbulent atmosphere: a review (invited review),” Prog. Electromagn. Res. 150, 123–143 (2015).
[Crossref]

M. W. Hyde IV, S. Basu, X. Xiao, and D. Voelz, “Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source,” J. Opt. 17(5), 055607 (2015).
[Crossref]

M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Experimentally generating any desired partially coherent Schell-model source using phase-only control,” J. Appl. Phys. 118(9), 093102 (2015).
[Crossref]

2014 (2)

S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, and O. Korotkova, “Polarization-induced reduction in scintillation of optical beams propagating in simulated turbulent atmospheric channels,” Waves Random Complex Media 24(4), 452–462 (2014).
[Crossref]

Y. Cai, Y. Chen, and F. Wang, “Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [Invited],” J. Opt. Soc. Am. A 31(9), 2083–2096 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (1)

2010 (1)

G. Gbur and T. D. Visser, “The structure of partially coherent fields,” Prog. Opt. 55, 285–341 (2010).
[Crossref]

2009 (2)

Y. Gu, O. Korotkova, and G. Gbur, “Scintillation of nonuniformly polarized beams in atmospheric turbulence,” Opt. Lett. 34(15), 2261–2263 (2009).
[Crossref]

G. P. Berman and A. A. Chumak, “Influence of phase-diffuser dynamics on scintillations of laser radiation in Earth’s atmosphere: long-distance propagation,” Phys. Rev. A 79(6), 063848 (2009).
[Crossref]

2008 (1)

O. Korotkova, “Scintillation index of a stochastic electromagnetic beam propagating in random media,” Opt. Commun. 281(9), 2342–2348 (2008).
[Crossref]

2007 (1)

G. P. Berman, A. R. Bishop, B. M. Chernobrod, D. C. Nguyen, and V. N. Gorshkov, “Suppression of intensity fluctuations in free space high-speed optical communication based on spectral encoding of a partially coherent beam,” Opt. Commun. 280(2), 264–270 (2007).
[Crossref]

2004 (1)

E. J. Lee and V. W. S. Chan, “Part 1: optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Select. Areas Commun. 22(9), 1896–1906 (2004).
[Crossref]

2002 (1)

1991 (1)

1983 (1)

V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Opt. Spectrosc. 55, 707–712 (1983).

1973 (1)

Andrews, L. C.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE Press, 2005).

Avramov-Zamurovic, S.

S. Avramov-Zamurovic and C. Nelson, “Experimental study on off-axis scattering of flat top partially coherent laser beams when propagating under water in the presence of moving scatterers,” Waves Random Complex Media 28(4), 743–759 (2018).
[Crossref]

C. Nelson, S. Avramov-Zamurovic, O. Korotkova, S. Guth, and R. Malek-Madani, “Scintillation reduction in pseudo Multi-Gaussian Schell Model beams in the maritime environment,” Opt. Commun. 364, 145–149 (2016).
[Crossref]

S. Avramov-Zamurovic, C. Nelson, S. Guth, and O. Korotkova, “Flatness parameter influence on scintillation reduction for multi-Gaussian Schell-model beams propagating in turbulent air,” Appl. Opt. 55(13), 3442–3446 (2016).
[Crossref]

S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, and O. Korotkova, “Polarization-induced reduction in scintillation of optical beams propagating in simulated turbulent atmospheric channels,” Waves Random Complex Media 24(4), 452–462 (2014).
[Crossref]

Banakh, V. A.

V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Opt. Spectrosc. 55, 707–712 (1983).

Basu, S.

M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Experimentally generating any desired partially coherent Schell-model source using phase-only control,” J. Appl. Phys. 118(9), 093102 (2015).
[Crossref]

M. W. Hyde IV, S. Basu, X. Xiao, and D. Voelz, “Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source,” J. Opt. 17(5), 055607 (2015).
[Crossref]

M. W. Hyde, S. Basu, X. Xiao, and D. G. Voelz, “Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source and phase-only control,” Imaging and Applied Optics 2015 OSA Technical Digest (online) (Optical Society of America), paper PW3E.2. (2015).

Berman, G. P.

G. P. Berman and A. A. Chumak, “Influence of phase-diffuser dynamics on scintillations of laser radiation in Earth’s atmosphere: long-distance propagation,” Phys. Rev. A 79(6), 063848 (2009).
[Crossref]

G. P. Berman, A. R. Bishop, B. M. Chernobrod, D. C. Nguyen, and V. N. Gorshkov, “Suppression of intensity fluctuations in free space high-speed optical communication based on spectral encoding of a partially coherent beam,” Opt. Commun. 280(2), 264–270 (2007).
[Crossref]

Bishop, A. R.

G. P. Berman, A. R. Bishop, B. M. Chernobrod, D. C. Nguyen, and V. N. Gorshkov, “Suppression of intensity fluctuations in free space high-speed optical communication based on spectral encoding of a partially coherent beam,” Opt. Commun. 280(2), 264–270 (2007).
[Crossref]

Buldakov, V. M.

V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Opt. Spectrosc. 55, 707–712 (1983).

Cai, Y.

F. Wang, X. Liu, and Y. Cai, “Propagation of partially coherent beam in turbulent atmosphere: a review (invited review),” Prog. Electromagn. Res. 150, 123–143 (2015).
[Crossref]

Y. Cai, Y. Chen, and F. Wang, “Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [Invited],” J. Opt. Soc. Am. A 31(9), 2083–2096 (2014).
[Crossref]

Chan, V. W. S.

E. J. Lee and V. W. S. Chan, “Part 1: optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Select. Areas Commun. 22(9), 1896–1906 (2004).
[Crossref]

Chen, Y.

Chernobrod, B. M.

G. P. Berman, A. R. Bishop, B. M. Chernobrod, D. C. Nguyen, and V. N. Gorshkov, “Suppression of intensity fluctuations in free space high-speed optical communication based on spectral encoding of a partially coherent beam,” Opt. Commun. 280(2), 264–270 (2007).
[Crossref]

Chumak, A. A.

G. P. Berman and A. A. Chumak, “Influence of phase-diffuser dynamics on scintillations of laser radiation in Earth’s atmosphere: long-distance propagation,” Phys. Rev. A 79(6), 063848 (2009).
[Crossref]

Churnside, J. H.

Cochenour, B.

B. Cochenour, A. Laux, and L. Mullen, “Temporal dispersion in underwater laser communication links: Closing the loop between model and experiment,” Proceedings Underwater Communications and Networking Conference (UComms), IEEE Third, (2016).

Davidson, F. M.

Detweiler, C.

M. Doniec, C. Detweiler, I. Vasilescu, and D. Rus, “Using optical communication for remote underwater robot operation,” IEEE/RSJ International Conference on Intelligent Robots and Systems (2010).

Doniec, M.

M. Doniec, C. Detweiler, I. Vasilescu, and D. Rus, “Using optical communication for remote underwater robot operation,” IEEE/RSJ International Conference on Intelligent Robots and Systems (2010).

Farr, N.

N. Farr, J. Ware, C. Pontbriand, T. Hammar, and M. Tivey, “Optical communication system expands CORK seafloor observatory's bandwidth,” Proc. OCEANS Conf. (2010).

Farwell, N.

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Waves Random Complex Media 22(2), 260–266 (2012).
[Crossref]

Gbur, G.

Gorshkov, V. N.

G. P. Berman, A. R. Bishop, B. M. Chernobrod, D. C. Nguyen, and V. N. Gorshkov, “Suppression of intensity fluctuations in free space high-speed optical communication based on spectral encoding of a partially coherent beam,” Opt. Commun. 280(2), 264–270 (2007).
[Crossref]

Gu, Y.

Guth, S.

C. Nelson, S. Avramov-Zamurovic, O. Korotkova, S. Guth, and R. Malek-Madani, “Scintillation reduction in pseudo Multi-Gaussian Schell Model beams in the maritime environment,” Opt. Commun. 364, 145–149 (2016).
[Crossref]

S. Avramov-Zamurovic, C. Nelson, S. Guth, and O. Korotkova, “Flatness parameter influence on scintillation reduction for multi-Gaussian Schell-model beams propagating in turbulent air,” Appl. Opt. 55(13), 3442–3446 (2016).
[Crossref]

Hammar, T.

N. Farr, J. Ware, C. Pontbriand, T. Hammar, and M. Tivey, “Optical communication system expands CORK seafloor observatory's bandwidth,” Proc. OCEANS Conf. (2010).

Hyde, M. W.

M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Experimentally generating any desired partially coherent Schell-model source using phase-only control,” J. Appl. Phys. 118(9), 093102 (2015).
[Crossref]

M. W. Hyde, S. Basu, X. Xiao, and D. G. Voelz, “Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source and phase-only control,” Imaging and Applied Optics 2015 OSA Technical Digest (online) (Optical Society of America), paper PW3E.2. (2015).

Hyde IV, M. W.

M. W. Hyde IV, S. Basu, X. Xiao, and D. Voelz, “Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source,” J. Opt. 17(5), 055607 (2015).
[Crossref]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media, vols. 1 and 2, (Academic, 1978).

Korotkova, O.

C. Nelson, S. Avramov-Zamurovic, O. Korotkova, S. Guth, and R. Malek-Madani, “Scintillation reduction in pseudo Multi-Gaussian Schell Model beams in the maritime environment,” Opt. Commun. 364, 145–149 (2016).
[Crossref]

S. Avramov-Zamurovic, C. Nelson, S. Guth, and O. Korotkova, “Flatness parameter influence on scintillation reduction for multi-Gaussian Schell-model beams propagating in turbulent air,” Appl. Opt. 55(13), 3442–3446 (2016).
[Crossref]

S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, and O. Korotkova, “Polarization-induced reduction in scintillation of optical beams propagating in simulated turbulent atmospheric channels,” Waves Random Complex Media 24(4), 452–462 (2014).
[Crossref]

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Waves Random Complex Media 22(2), 260–266 (2012).
[Crossref]

S. Sahin and O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett. 37(14), 2970–2972 (2012).
[Crossref]

O. Korotkova, S. Sahin, and E. Shchepakina, “Multi-Gaussian Schell-model beams,” J. Opt. Soc. Am. A 29(10), 2159–2164 (2012).
[Crossref]

Y. Gu, O. Korotkova, and G. Gbur, “Scintillation of nonuniformly polarized beams in atmospheric turbulence,” Opt. Lett. 34(15), 2261–2263 (2009).
[Crossref]

O. Korotkova, “Scintillation index of a stochastic electromagnetic beam propagating in random media,” Opt. Commun. 281(9), 2342–2348 (2008).
[Crossref]

Lajunen, H.

Laux, A.

B. Cochenour, A. Laux, and L. Mullen, “Temporal dispersion in underwater laser communication links: Closing the loop between model and experiment,” Proceedings Underwater Communications and Networking Conference (UComms), IEEE Third, (2016).

Lee, E. J.

E. J. Lee and V. W. S. Chan, “Part 1: optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Select. Areas Commun. 22(9), 1896–1906 (2004).
[Crossref]

Liu, X.

F. Wang, X. Liu, and Y. Cai, “Propagation of partially coherent beam in turbulent atmosphere: a review (invited review),” Prog. Electromagn. Res. 150, 123–143 (2015).
[Crossref]

Malek-Madani, R.

C. Nelson, S. Avramov-Zamurovic, O. Korotkova, S. Guth, and R. Malek-Madani, “Scintillation reduction in pseudo Multi-Gaussian Schell Model beams in the maritime environment,” Opt. Commun. 364, 145–149 (2016).
[Crossref]

S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, and O. Korotkova, “Polarization-induced reduction in scintillation of optical beams propagating in simulated turbulent atmospheric channels,” Waves Random Complex Media 24(4), 452–462 (2014).
[Crossref]

Mullen, L.

B. Cochenour, A. Laux, and L. Mullen, “Temporal dispersion in underwater laser communication links: Closing the loop between model and experiment,” Proceedings Underwater Communications and Networking Conference (UComms), IEEE Third, (2016).

Nelson, C.

S. Avramov-Zamurovic and C. Nelson, “Experimental study on off-axis scattering of flat top partially coherent laser beams when propagating under water in the presence of moving scatterers,” Waves Random Complex Media 28(4), 743–759 (2018).
[Crossref]

C. Nelson, S. Avramov-Zamurovic, O. Korotkova, S. Guth, and R. Malek-Madani, “Scintillation reduction in pseudo Multi-Gaussian Schell Model beams in the maritime environment,” Opt. Commun. 364, 145–149 (2016).
[Crossref]

S. Avramov-Zamurovic, C. Nelson, S. Guth, and O. Korotkova, “Flatness parameter influence on scintillation reduction for multi-Gaussian Schell-model beams propagating in turbulent air,” Appl. Opt. 55(13), 3442–3446 (2016).
[Crossref]

S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, and O. Korotkova, “Polarization-induced reduction in scintillation of optical beams propagating in simulated turbulent atmospheric channels,” Waves Random Complex Media 24(4), 452–462 (2014).
[Crossref]

Nguyen, D. C.

G. P. Berman, A. R. Bishop, B. M. Chernobrod, D. C. Nguyen, and V. N. Gorshkov, “Suppression of intensity fluctuations in free space high-speed optical communication based on spectral encoding of a partially coherent beam,” Opt. Commun. 280(2), 264–270 (2007).
[Crossref]

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE Press, 2005).

Pontbriand, C.

N. Farr, J. Ware, C. Pontbriand, T. Hammar, and M. Tivey, “Optical communication system expands CORK seafloor observatory's bandwidth,” Proc. OCEANS Conf. (2010).

Ricklin, J. C.

Rosenberg, S.

Rus, D.

M. Doniec, C. Detweiler, I. Vasilescu, and D. Rus, “Using optical communication for remote underwater robot operation,” IEEE/RSJ International Conference on Intelligent Robots and Systems (2010).

Saastamoinen, T.

Sahin, S.

Schill, F.

F. Schill, U. R. Zimmer, and J. Trumpf, “Visible spectrum optical communication and distance sensing for underwater applications,” Proc. Australasian Conf. Robot. Autom., (2004).

Shchepakina, E.

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Waves Random Complex Media 22(2), 260–266 (2012).
[Crossref]

O. Korotkova, S. Sahin, and E. Shchepakina, “Multi-Gaussian Schell-model beams,” J. Opt. Soc. Am. A 29(10), 2159–2164 (2012).
[Crossref]

Teich, M. C.

Tivey, M.

N. Farr, J. Ware, C. Pontbriand, T. Hammar, and M. Tivey, “Optical communication system expands CORK seafloor observatory's bandwidth,” Proc. OCEANS Conf. (2010).

Trumpf, J.

F. Schill, U. R. Zimmer, and J. Trumpf, “Visible spectrum optical communication and distance sensing for underwater applications,” Proc. Australasian Conf. Robot. Autom., (2004).

Vasilescu, I.

M. Doniec, C. Detweiler, I. Vasilescu, and D. Rus, “Using optical communication for remote underwater robot operation,” IEEE/RSJ International Conference on Intelligent Robots and Systems (2010).

Visser, T. D.

G. Gbur and T. D. Visser, “The structure of partially coherent fields,” Prog. Opt. 55, 285–341 (2010).
[Crossref]

Voelz, D.

M. W. Hyde IV, S. Basu, X. Xiao, and D. Voelz, “Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source,” J. Opt. 17(5), 055607 (2015).
[Crossref]

X. Xiao and D. Voelz, “Wave optics simulation of partially coherent and partially polarized beam propagation in turbulence,” Proc. SPIE 7464, Free-Space Laser Communications IX, 74640 T; Aug 21; San Diego, CA. (2009).

Voelz, D. G.

M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Experimentally generating any desired partially coherent Schell-model source using phase-only control,” J. Appl. Phys. 118(9), 093102 (2015).
[Crossref]

M. W. Hyde, S. Basu, X. Xiao, and D. G. Voelz, “Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source and phase-only control,” Imaging and Applied Optics 2015 OSA Technical Digest (online) (Optical Society of America), paper PW3E.2. (2015).

Wang, F.

F. Wang, X. Liu, and Y. Cai, “Propagation of partially coherent beam in turbulent atmosphere: a review (invited review),” Prog. Electromagn. Res. 150, 123–143 (2015).
[Crossref]

Y. Cai, Y. Chen, and F. Wang, “Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [Invited],” J. Opt. Soc. Am. A 31(9), 2083–2096 (2014).
[Crossref]

Ware, J.

N. Farr, J. Ware, C. Pontbriand, T. Hammar, and M. Tivey, “Optical communication system expands CORK seafloor observatory's bandwidth,” Proc. OCEANS Conf. (2010).

Wu, Y.

Xiao, X.

M. W. Hyde IV, S. Basu, X. Xiao, and D. Voelz, “Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source,” J. Opt. 17(5), 055607 (2015).
[Crossref]

M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Experimentally generating any desired partially coherent Schell-model source using phase-only control,” J. Appl. Phys. 118(9), 093102 (2015).
[Crossref]

M. W. Hyde, S. Basu, X. Xiao, and D. G. Voelz, “Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source and phase-only control,” Imaging and Applied Optics 2015 OSA Technical Digest (online) (Optical Society of America), paper PW3E.2. (2015).

X. Xiao and D. Voelz, “Wave optics simulation of partially coherent and partially polarized beam propagation in turbulence,” Proc. SPIE 7464, Free-Space Laser Communications IX, 74640 T; Aug 21; San Diego, CA. (2009).

Zhang, Y.

Zhu, Y.

Zimmer, U. R.

F. Schill, U. R. Zimmer, and J. Trumpf, “Visible spectrum optical communication and distance sensing for underwater applications,” Proc. Australasian Conf. Robot. Autom., (2004).

Appl. Opt. (3)

IEEE J. Select. Areas Commun. (1)

E. J. Lee and V. W. S. Chan, “Part 1: optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Select. Areas Commun. 22(9), 1896–1906 (2004).
[Crossref]

J. Appl. Phys. (1)

M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Experimentally generating any desired partially coherent Schell-model source using phase-only control,” J. Appl. Phys. 118(9), 093102 (2015).
[Crossref]

J. Opt. (1)

M. W. Hyde IV, S. Basu, X. Xiao, and D. Voelz, “Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source,” J. Opt. 17(5), 055607 (2015).
[Crossref]

J. Opt. Soc. Am. A (4)

Opt. Commun. (3)

O. Korotkova, “Scintillation index of a stochastic electromagnetic beam propagating in random media,” Opt. Commun. 281(9), 2342–2348 (2008).
[Crossref]

G. P. Berman, A. R. Bishop, B. M. Chernobrod, D. C. Nguyen, and V. N. Gorshkov, “Suppression of intensity fluctuations in free space high-speed optical communication based on spectral encoding of a partially coherent beam,” Opt. Commun. 280(2), 264–270 (2007).
[Crossref]

C. Nelson, S. Avramov-Zamurovic, O. Korotkova, S. Guth, and R. Malek-Madani, “Scintillation reduction in pseudo Multi-Gaussian Schell Model beams in the maritime environment,” Opt. Commun. 364, 145–149 (2016).
[Crossref]

Opt. Lett. (4)

Opt. Spectrosc. (1)

V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Opt. Spectrosc. 55, 707–712 (1983).

Phys. Rev. A (1)

G. P. Berman and A. A. Chumak, “Influence of phase-diffuser dynamics on scintillations of laser radiation in Earth’s atmosphere: long-distance propagation,” Phys. Rev. A 79(6), 063848 (2009).
[Crossref]

Prog. Electromagn. Res. (1)

F. Wang, X. Liu, and Y. Cai, “Propagation of partially coherent beam in turbulent atmosphere: a review (invited review),” Prog. Electromagn. Res. 150, 123–143 (2015).
[Crossref]

Prog. Opt. (1)

G. Gbur and T. D. Visser, “The structure of partially coherent fields,” Prog. Opt. 55, 285–341 (2010).
[Crossref]

Waves Random Complex Media (3)

S. Avramov-Zamurovic and C. Nelson, “Experimental study on off-axis scattering of flat top partially coherent laser beams when propagating under water in the presence of moving scatterers,” Waves Random Complex Media 28(4), 743–759 (2018).
[Crossref]

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Waves Random Complex Media 22(2), 260–266 (2012).
[Crossref]

S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, and O. Korotkova, “Polarization-induced reduction in scintillation of optical beams propagating in simulated turbulent atmospheric channels,” Waves Random Complex Media 24(4), 452–462 (2014).
[Crossref]

Other (8)

F. Schill, U. R. Zimmer, and J. Trumpf, “Visible spectrum optical communication and distance sensing for underwater applications,” Proc. Australasian Conf. Robot. Autom., (2004).

N. Farr, J. Ware, C. Pontbriand, T. Hammar, and M. Tivey, “Optical communication system expands CORK seafloor observatory's bandwidth,” Proc. OCEANS Conf. (2010).

M. Doniec, C. Detweiler, I. Vasilescu, and D. Rus, “Using optical communication for remote underwater robot operation,” IEEE/RSJ International Conference on Intelligent Robots and Systems (2010).

B. Cochenour, A. Laux, and L. Mullen, “Temporal dispersion in underwater laser communication links: Closing the loop between model and experiment,” Proceedings Underwater Communications and Networking Conference (UComms), IEEE Third, (2016).

X. Xiao and D. Voelz, “Wave optics simulation of partially coherent and partially polarized beam propagation in turbulence,” Proc. SPIE 7464, Free-Space Laser Communications IX, 74640 T; Aug 21; San Diego, CA. (2009).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE Press, 2005).

A. Ishimaru, Wave Propagation and Scattering in Random Media, vols. 1 and 2, (Academic, 1978).

M. W. Hyde, S. Basu, X. Xiao, and D. G. Voelz, “Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source and phase-only control,” Imaging and Applied Optics 2015 OSA Technical Digest (online) (Optical Society of America), paper PW3E.2. (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Representative source window functions and example phase screens (top right corners) for a) MGSM beam and b) SG beam as a function of SLM pixel number with $\delta = 0.19\; {\textrm{mm}}$ δ = 0.19 mm . Note that even though $\delta = 0.19\; {\textrm{mm}} $ δ = 0.19 mm , the beam radii for the MGSM beam is 0.24 mm and 0.31 mm for the SG beam.
Fig. 2.
Fig. 2. Experimental set-up - A – He-Ne laser, B – beam expander, C – spatial light modulator, D1,2 – linear polarizer, E1,2 – lenses with focal lengths of 400 mm, F – mechanical iris (placed at the focal planes of E1,2), G1,2 – mirrors, H – beam splitter, I – water tank, J1,2 – cameras, K1,2,3 – computers.
Fig. 3.
Fig. 3. Example measured values of a) mean light intensity ${I_{avg}}$ I a v g and b) scintillation index $S{I_B}$ S I B for the SG beam with δ = 0.38 mm in calm water across the sensor area (3.552 mm × 4.736 mm).
Fig. 4.
Fig. 4. a) SG beam light intensity fluctuations after propagating underwater with mechanical agitation at the pixel location of the maximum intensity ${I_{max}}$ I m a x , as determined form ${I_{avg}}$ I a v g . b) Selected area for analysis $Mas{k_{TR}}$ M a s k T R .
Fig. 5.
Fig. 5. Dependence of the scintillation index $S{I_B}$ S I B on the measured light intensity ${I_{avg}}$ I a v g for the selected analysis area. Conditions were for an SG beam with δ = 0.38 mm propagating in calm water.
Fig. 6.
Fig. 6. Gaussian beam mean intensity ${I_{avg}}$ I a v g distribution across the sensor area propagating through a) calm and b) mechanically agitated water. Sensor area (3.552 mm × 4.736 mm).
Fig. 7.
Fig. 7. Dependence of the scintillation index $S{I_B}$ S I B on the measured light intensity ${I_{avg}}\; $ I a v g for Gaussian beam propagating through a) calm and b) mechanically agitated water.
Fig. 8.
Fig. 8. Measured average scintillation indices for calm and mechanically agitated conditions for MGSM and SG beams.
Fig. 9.
Fig. 9. Percent increase in scintillation for MGSM, SG, and Gaussian beams under air, air + calm water, and air + mechanically agitated conditions.

Tables (1)

Tables Icon

Table 1. Summary of the experimental results

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

μ ( 0 ) ( ρ 1 , ρ 2 ) = 1 C 0 m = 1 M ( M m ) ( 1 ) m 1 m exp [ | ρ 2 ρ 1 | 2 2 m δ 2 ] ,
C 0 = m = 1 M ( M m ) ( 1 ) m 1 m
μ S G ( 0 ) ( ρ 1 , ρ 2 ) = exp [ | ρ 2 ρ 1 | 4 2 δ 4 ] ,
I a v g = j = 1 N ( i m ) j N .
S I B = i = 1 N ( ( i m i B a v g ) ( I a v g B a v g ) ) 2 N ( I a v g B a v g ) 2 ,
M S I B a v g = k = 1 n j = 1 m S I B [ j , k ] n m .
M S I T R a v g = k = 1 n j = 1 m S I T R j , k n m