Abstract

Optical vortices, which carry orbital angular momentum, have attracted much attention in various research fields, such as materials processing, chirality control, and particle manipulation. A recent study experimentally confirmed that twisted fibers of polymerized photocurable resins with a constant period can be formed via irradiation by an optical vortex. It is suspected that this phenomenon is caused by the projection of the angular momentum of an optical vortex to the photocurable resin. The detailed mechanism of the growth of such peculiar fibers has not yet been clarified. In this study, which focuses on one aspect of polymerized structure formation, we develop a coarse-grained particle model in which the particle dynamics in the framework of the Rayleigh scattering theory involving light absorption is theoretically simulated. The period of the twisted fibers expressed using the coarse-grained particles is found to be in reasonable agreement with experimental values and independent of the input power of the laser. In addition, the shape of the polymerized fibers can be controlled by modulating the degree of light absorption.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical vortex trap for resonant confinement of metal nanoparticles

Maria Dienerowitz, Michael Mazilu, Peter J. Reece, Thomas F. Krauss, and Kishan Dholakia
Opt. Express 16(7) 4991-4999 (2008)

Spin-controlled orbital motion in tightly focused high-order Laguerre-Gaussian beams

Yongyin Cao, Tongtong Zhu, Haiyi Lv, and Weiqiang Ding
Opt. Express 24(4) 3377-3384 (2016)

Plasmonic particles set into fast orbital motion by an optical vortex beam

Anni Lehmuskero, Yanming Li, Peter Johansson, and Mikael Käll
Opt. Express 22(4) 4349-4356 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristernsen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
    [Crossref]
  2. A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
    [Crossref]
  3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref] [PubMed]
  4. M. J. Pudgett and L. Allen, “The Poynting vector in Laguerre-Gaussian laser modes,” Opt. Commun. 121, 36–40 (1995).
    [Crossref]
  5. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
    [Crossref]
  6. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
    [Crossref] [PubMed]
  7. G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2511 (1992).
    [Crossref] [PubMed]
  8. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
    [Crossref]
  9. Z. S. Sacks, D. Rozas, and G. A. Swartzlander, “Holographic formation of optical-vortex filaments,” J. Opt. Am. B 15, 2226–2234 (1998).
    [Crossref]
  10. J. Scheuer and M. Orenstein, “Optical vortices crystals: Spontaneous generation in nonlinear semiconductor microcavities,” Science 285, 230–233 (1999).
    [Crossref] [PubMed]
  11. S. H.X. Tao, -C. Yuan, and J. Lin, “Fractional optical vortex beam induced rotation of particles,” Opt. Express 13, 7726–7731 (2005).
    [Crossref]
  12. M. Gecevicius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104, 231110 (2014).
    [Crossref]
  13. M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4, 1–5 (2014).
  14. J. Lee, Y. Arita, R. Matsuo, S. Toyoshima, K. Miyamoto, K. Dholakia, and T. Omatsu, “Sub-millimeter helical fiber created by Bessel vortex beam illumination,” Proc. SPIE 10712, 107120J (2018).
  15. T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18, 17967–17973 (2010).
    [Crossref]
  16. F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6, 1–10 (2016).
    [Crossref]
  17. K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5, 1–4 (2015).
    [Crossref]
  18. A.S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24–26 (1996).
    [Crossref] [PubMed]
  19. J. Lee, Y. Arita, S. Toyoshima, K. Miyamoto, P. Panagiotopoulos, E.M. Wright, K. Dholakia, and T. Omatsu, “Photopolymerization with Light Fields Possessing Orbital Angular Momentum: Generation of Helical Microfibers,” ACS Photonics 5, 4156–4163 (2018).
    [Crossref]
  20. A. Ashikin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref]
  21. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
    [Crossref]
  22. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Cmommun. 124, 529–541 (1996).
    [Crossref]
  23. B. E. A. Saleh and M. C. Teich, “Fundamentals of photonics 2nd ed.,” John Wiley, Canada (2007).
  24. K. Doi, T. Haga, H. Shintaku, and S. Kawano, “Development of coarse-graining DNA models for single-nucleotide resolution analysis,” Phil. Trans. R. Soc A 368, 2615–2628 (2010).
    [Crossref]
  25. W. Qian, K. Doi, S. Uehara, K. Morita, and S. Kawano, “Theoretical study of the transpore velocity control of single-stranded DNA,” Int. J. Mol. Sci. 2014, 13817–13832 (2014).
    [Crossref] [PubMed]
  26. I. Hanasaki, R. Nagura, and S. Kawano, “Coarse-grained picture of Brownian motion in water: Role of size and interaction distance range on the nature of randomness,” J. Chem. Phys. 142, 104301 (2015).
    [Crossref]
  27. F. Nito, T. Shiozaki, R. Nagura, T. Tsuji, K. Doi, C. Hosokawa, and S. Kawano, “Quantitative evaluation of optical forces by single particle tracking in slit-like microfluidic channels,” J. Phys. Chem. C 122, 17963–17975 (2018).
    [Crossref]
  28. T. Tsuji, Y. Sasai, and S. Kawano, “Thermophoretic manipulation of micro- and nanoparticle flow through a sudden contraction in a microchannel with near-infrared laser irradiation,” Phys. Rev. Appl. 10, 044005 (2018).
    [Crossref]
  29. G.W. Smith, “Cure parameters and phase behavior of an ultraviolet-cured polymer-dispersed liquid crystal,” Mol. Cryst. Liq. Cryst. 196, 89–102 (1991).
    [Crossref]
  30. R. Nagura, T. Tsujimura, T. Tsuji, K. Doi, and S. Kawano, “Theoretical study on nanostructure formation by angular momentum projection of optical vortex,” Proc. International Conference on Flow Dynamics 2018, 594–595 (2018).

2018 (5)

J. Lee, Y. Arita, R. Matsuo, S. Toyoshima, K. Miyamoto, K. Dholakia, and T. Omatsu, “Sub-millimeter helical fiber created by Bessel vortex beam illumination,” Proc. SPIE 10712, 107120J (2018).

F. Nito, T. Shiozaki, R. Nagura, T. Tsuji, K. Doi, C. Hosokawa, and S. Kawano, “Quantitative evaluation of optical forces by single particle tracking in slit-like microfluidic channels,” J. Phys. Chem. C 122, 17963–17975 (2018).
[Crossref]

T. Tsuji, Y. Sasai, and S. Kawano, “Thermophoretic manipulation of micro- and nanoparticle flow through a sudden contraction in a microchannel with near-infrared laser irradiation,” Phys. Rev. Appl. 10, 044005 (2018).
[Crossref]

R. Nagura, T. Tsujimura, T. Tsuji, K. Doi, and S. Kawano, “Theoretical study on nanostructure formation by angular momentum projection of optical vortex,” Proc. International Conference on Flow Dynamics 2018, 594–595 (2018).

J. Lee, Y. Arita, S. Toyoshima, K. Miyamoto, P. Panagiotopoulos, E.M. Wright, K. Dholakia, and T. Omatsu, “Photopolymerization with Light Fields Possessing Orbital Angular Momentum: Generation of Helical Microfibers,” ACS Photonics 5, 4156–4163 (2018).
[Crossref]

2016 (1)

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

2015 (2)

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5, 1–4 (2015).
[Crossref]

I. Hanasaki, R. Nagura, and S. Kawano, “Coarse-grained picture of Brownian motion in water: Role of size and interaction distance range on the nature of randomness,” J. Chem. Phys. 142, 104301 (2015).
[Crossref]

2014 (3)

W. Qian, K. Doi, S. Uehara, K. Morita, and S. Kawano, “Theoretical study of the transpore velocity control of single-stranded DNA,” Int. J. Mol. Sci. 2014, 13817–13832 (2014).
[Crossref] [PubMed]

M. Gecevicius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104, 231110 (2014).
[Crossref]

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4, 1–5 (2014).

2010 (2)

K. Doi, T. Haga, H. Shintaku, and S. Kawano, “Development of coarse-graining DNA models for single-nucleotide resolution analysis,” Phil. Trans. R. Soc A 368, 2615–2628 (2010).
[Crossref]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18, 17967–17973 (2010).
[Crossref]

2008 (1)

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
[Crossref]

2005 (1)

1999 (1)

J. Scheuer and M. Orenstein, “Optical vortices crystals: Spontaneous generation in nonlinear semiconductor microcavities,” Science 285, 230–233 (1999).
[Crossref] [PubMed]

1998 (1)

Z. S. Sacks, D. Rozas, and G. A. Swartzlander, “Holographic formation of optical-vortex filaments,” J. Opt. Am. B 15, 2226–2234 (1998).
[Crossref]

1996 (4)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Cmommun. 124, 529–541 (1996).
[Crossref]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref] [PubMed]

A.S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24–26 (1996).
[Crossref] [PubMed]

K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
[Crossref]

1995 (1)

M. J. Pudgett and L. Allen, “The Poynting vector in Laguerre-Gaussian laser modes,” Opt. Commun. 121, 36–40 (1995).
[Crossref]

1994 (2)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref]

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristernsen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

1992 (2)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2511 (1992).
[Crossref] [PubMed]

1991 (1)

G.W. Smith, “Cure parameters and phase behavior of an ultraviolet-cured polymer-dispersed liquid crystal,” Mol. Cryst. Liq. Cryst. 196, 89–102 (1991).
[Crossref]

1986 (1)

1936 (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

Allen, L.

M. J. Pudgett and L. Allen, “The Poynting vector in Laguerre-Gaussian laser modes,” Opt. Commun. 121, 36–40 (1995).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Aoki, N.

Arita, Y.

J. Lee, Y. Arita, S. Toyoshima, K. Miyamoto, P. Panagiotopoulos, E.M. Wright, K. Dholakia, and T. Omatsu, “Photopolymerization with Light Fields Possessing Orbital Angular Momentum: Generation of Helical Microfibers,” ACS Photonics 5, 4156–4163 (2018).
[Crossref]

J. Lee, Y. Arita, R. Matsuo, S. Toyoshima, K. Miyamoto, K. Dholakia, and T. Omatsu, “Sub-millimeter helical fiber created by Bessel vortex beam illumination,” Proc. SPIE 10712, 107120J (2018).

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Cmommun. 124, 529–541 (1996).
[Crossref]

Ashikin, A.

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristernsen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Beresna, M.

M. Gecevicius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104, 231110 (2014).
[Crossref]

Beth, R. A.

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

Bjorkholm, J. E.

Block, S. M.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref]

Carpentier, A. V.

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
[Crossref]

Chu, S.

Chujo, K.

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristernsen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Dholakia, K.

J. Lee, Y. Arita, R. Matsuo, S. Toyoshima, K. Miyamoto, K. Dholakia, and T. Omatsu, “Sub-millimeter helical fiber created by Bessel vortex beam illumination,” Proc. SPIE 10712, 107120J (2018).

J. Lee, Y. Arita, S. Toyoshima, K. Miyamoto, P. Panagiotopoulos, E.M. Wright, K. Dholakia, and T. Omatsu, “Photopolymerization with Light Fields Possessing Orbital Angular Momentum: Generation of Helical Microfibers,” ACS Photonics 5, 4156–4163 (2018).
[Crossref]

Doi, K.

F. Nito, T. Shiozaki, R. Nagura, T. Tsuji, K. Doi, C. Hosokawa, and S. Kawano, “Quantitative evaluation of optical forces by single particle tracking in slit-like microfluidic channels,” J. Phys. Chem. C 122, 17963–17975 (2018).
[Crossref]

R. Nagura, T. Tsujimura, T. Tsuji, K. Doi, and S. Kawano, “Theoretical study on nanostructure formation by angular momentum projection of optical vortex,” Proc. International Conference on Flow Dynamics 2018, 594–595 (2018).

W. Qian, K. Doi, S. Uehara, K. Morita, and S. Kawano, “Theoretical study of the transpore velocity control of single-stranded DNA,” Int. J. Mol. Sci. 2014, 13817–13832 (2014).
[Crossref] [PubMed]

K. Doi, T. Haga, H. Shintaku, and S. Kawano, “Development of coarse-graining DNA models for single-nucleotide resolution analysis,” Phil. Trans. R. Soc A 368, 2615–2628 (2010).
[Crossref]

Drevinskas, R.

M. Gecevicius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104, 231110 (2014).
[Crossref]

Dziedzic, J. M.

Enger, J.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref] [PubMed]

Friese, M. E. J.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref] [PubMed]

Gahagan, K. T.

Gecevicius, M.

M. Gecevicius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104, 231110 (2014).
[Crossref]

Haga, T.

K. Doi, T. Haga, H. Shintaku, and S. Kawano, “Development of coarse-graining DNA models for single-nucleotide resolution analysis,” Phil. Trans. R. Soc A 368, 2615–2628 (2010).
[Crossref]

Hanasaki, I.

I. Hanasaki, R. Nagura, and S. Kawano, “Coarse-grained picture of Brownian motion in water: Role of size and interaction distance range on the nature of randomness,” J. Chem. Phys. 142, 104301 (2015).
[Crossref]

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Cmommun. 124, 529–541 (1996).
[Crossref]

Heckenberg, N. R.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref] [PubMed]

Hidai, H.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

Hosokawa, C.

F. Nito, T. Shiozaki, R. Nagura, T. Tsuji, K. Doi, C. Hosokawa, and S. Kawano, “Quantitative evaluation of optical forces by single particle tracking in slit-like microfluidic channels,” J. Phys. Chem. C 122, 17963–17975 (2018).
[Crossref]

Juman, G.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4, 1–5 (2014).

Kawano, S.

F. Nito, T. Shiozaki, R. Nagura, T. Tsuji, K. Doi, C. Hosokawa, and S. Kawano, “Quantitative evaluation of optical forces by single particle tracking in slit-like microfluidic channels,” J. Phys. Chem. C 122, 17963–17975 (2018).
[Crossref]

T. Tsuji, Y. Sasai, and S. Kawano, “Thermophoretic manipulation of micro- and nanoparticle flow through a sudden contraction in a microchannel with near-infrared laser irradiation,” Phys. Rev. Appl. 10, 044005 (2018).
[Crossref]

R. Nagura, T. Tsujimura, T. Tsuji, K. Doi, and S. Kawano, “Theoretical study on nanostructure formation by angular momentum projection of optical vortex,” Proc. International Conference on Flow Dynamics 2018, 594–595 (2018).

I. Hanasaki, R. Nagura, and S. Kawano, “Coarse-grained picture of Brownian motion in water: Role of size and interaction distance range on the nature of randomness,” J. Chem. Phys. 142, 104301 (2015).
[Crossref]

W. Qian, K. Doi, S. Uehara, K. Morita, and S. Kawano, “Theoretical study of the transpore velocity control of single-stranded DNA,” Int. J. Mol. Sci. 2014, 13817–13832 (2014).
[Crossref] [PubMed]

K. Doi, T. Haga, H. Shintaku, and S. Kawano, “Development of coarse-graining DNA models for single-nucleotide resolution analysis,” Phil. Trans. R. Soc A 368, 2615–2628 (2010).
[Crossref]

Kazansky, P. G.

M. Gecevicius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104, 231110 (2014).
[Crossref]

Kewitsch, A.S.

Kristernsen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristernsen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Law, C. T.

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2511 (1992).
[Crossref] [PubMed]

Lee, J.

J. Lee, Y. Arita, R. Matsuo, S. Toyoshima, K. Miyamoto, K. Dholakia, and T. Omatsu, “Sub-millimeter helical fiber created by Bessel vortex beam illumination,” Proc. SPIE 10712, 107120J (2018).

J. Lee, Y. Arita, S. Toyoshima, K. Miyamoto, P. Panagiotopoulos, E.M. Wright, K. Dholakia, and T. Omatsu, “Photopolymerization with Light Fields Possessing Orbital Angular Momentum: Generation of Helical Microfibers,” ACS Photonics 5, 4156–4163 (2018).
[Crossref]

Lin, J.

Matsuo, R.

J. Lee, Y. Arita, R. Matsuo, S. Toyoshima, K. Miyamoto, K. Dholakia, and T. Omatsu, “Sub-millimeter helical fiber created by Bessel vortex beam illumination,” Proc. SPIE 10712, 107120J (2018).

Michinel, H.

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
[Crossref]

Miyamoto, K.

J. Lee, Y. Arita, R. Matsuo, S. Toyoshima, K. Miyamoto, K. Dholakia, and T. Omatsu, “Sub-millimeter helical fiber created by Bessel vortex beam illumination,” Proc. SPIE 10712, 107120J (2018).

J. Lee, Y. Arita, S. Toyoshima, K. Miyamoto, P. Panagiotopoulos, E.M. Wright, K. Dholakia, and T. Omatsu, “Photopolymerization with Light Fields Possessing Orbital Angular Momentum: Generation of Helical Microfibers,” ACS Photonics 5, 4156–4163 (2018).
[Crossref]

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4, 1–5 (2014).

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18, 17967–17973 (2010).
[Crossref]

Morita, K.

W. Qian, K. Doi, S. Uehara, K. Morita, and S. Kawano, “Theoretical study of the transpore velocity control of single-stranded DNA,” Int. J. Mol. Sci. 2014, 13817–13832 (2014).
[Crossref] [PubMed]

Morita, R.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18, 17967–17973 (2010).
[Crossref]

Nagura, R.

F. Nito, T. Shiozaki, R. Nagura, T. Tsuji, K. Doi, C. Hosokawa, and S. Kawano, “Quantitative evaluation of optical forces by single particle tracking in slit-like microfluidic channels,” J. Phys. Chem. C 122, 17963–17975 (2018).
[Crossref]

R. Nagura, T. Tsujimura, T. Tsuji, K. Doi, and S. Kawano, “Theoretical study on nanostructure formation by angular momentum projection of optical vortex,” Proc. International Conference on Flow Dynamics 2018, 594–595 (2018).

I. Hanasaki, R. Nagura, and S. Kawano, “Coarse-grained picture of Brownian motion in water: Role of size and interaction distance range on the nature of randomness,” J. Chem. Phys. 142, 104301 (2015).
[Crossref]

Nakamura, K.

Nito, F.

F. Nito, T. Shiozaki, R. Nagura, T. Tsuji, K. Doi, C. Hosokawa, and S. Kawano, “Quantitative evaluation of optical forces by single particle tracking in slit-like microfluidic channels,” J. Phys. Chem. C 122, 17963–17975 (2018).
[Crossref]

Nomura, K.

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5, 1–4 (2015).
[Crossref]

Okida, M.

Olivieri, D.

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
[Crossref]

Omatsu, T.

J. Lee, Y. Arita, R. Matsuo, S. Toyoshima, K. Miyamoto, K. Dholakia, and T. Omatsu, “Sub-millimeter helical fiber created by Bessel vortex beam illumination,” Proc. SPIE 10712, 107120J (2018).

J. Lee, Y. Arita, S. Toyoshima, K. Miyamoto, P. Panagiotopoulos, E.M. Wright, K. Dholakia, and T. Omatsu, “Photopolymerization with Light Fields Possessing Orbital Angular Momentum: Generation of Helical Microfibers,” ACS Photonics 5, 4156–4163 (2018).
[Crossref]

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4, 1–5 (2014).

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18, 17967–17973 (2010).
[Crossref]

Orenstein, M.

J. Scheuer and M. Orenstein, “Optical vortices crystals: Spontaneous generation in nonlinear semiconductor microcavities,” Science 285, 230–233 (1999).
[Crossref] [PubMed]

Panagiotopoulos, P.

J. Lee, Y. Arita, S. Toyoshima, K. Miyamoto, P. Panagiotopoulos, E.M. Wright, K. Dholakia, and T. Omatsu, “Photopolymerization with Light Fields Possessing Orbital Angular Momentum: Generation of Helical Microfibers,” ACS Photonics 5, 4156–4163 (2018).
[Crossref]

Pudgett, M. J.

M. J. Pudgett and L. Allen, “The Poynting vector in Laguerre-Gaussian laser modes,” Opt. Commun. 121, 36–40 (1995).
[Crossref]

Qian, W.

W. Qian, K. Doi, S. Uehara, K. Morita, and S. Kawano, “Theoretical study of the transpore velocity control of single-stranded DNA,” Int. J. Mol. Sci. 2014, 13817–13832 (2014).
[Crossref] [PubMed]

Rozas, D.

Z. S. Sacks, D. Rozas, and G. A. Swartzlander, “Holographic formation of optical-vortex filaments,” J. Opt. Am. B 15, 2226–2234 (1998).
[Crossref]

Rubinsztein-Dunlop, H.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref] [PubMed]

Sacks, Z. S.

Z. S. Sacks, D. Rozas, and G. A. Swartzlander, “Holographic formation of optical-vortex filaments,” J. Opt. Am. B 15, 2226–2234 (1998).
[Crossref]

Sakai, K.

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5, 1–4 (2015).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, “Fundamentals of photonics 2nd ed.,” John Wiley, Canada (2007).

Salgueiro, J. R.

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
[Crossref]

Sasai, Y.

T. Tsuji, Y. Sasai, and S. Kawano, “Thermophoretic manipulation of micro- and nanoparticle flow through a sudden contraction in a microchannel with near-infrared laser irradiation,” Phys. Rev. Appl. 10, 044005 (2018).
[Crossref]

Sasaki, K.

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5, 1–4 (2015).
[Crossref]

Scheuer, J.

J. Scheuer and M. Orenstein, “Optical vortices crystals: Spontaneous generation in nonlinear semiconductor microcavities,” Science 285, 230–233 (1999).
[Crossref] [PubMed]

Shintaku, H.

K. Doi, T. Haga, H. Shintaku, and S. Kawano, “Development of coarse-graining DNA models for single-nucleotide resolution analysis,” Phil. Trans. R. Soc A 368, 2615–2628 (2010).
[Crossref]

Shiozaki, T.

F. Nito, T. Shiozaki, R. Nagura, T. Tsuji, K. Doi, C. Hosokawa, and S. Kawano, “Quantitative evaluation of optical forces by single particle tracking in slit-like microfluidic channels,” J. Phys. Chem. C 122, 17963–17975 (2018).
[Crossref]

Smith, G.W.

G.W. Smith, “Cure parameters and phase behavior of an ultraviolet-cured polymer-dispersed liquid crystal,” Mol. Cryst. Liq. Cryst. 196, 89–102 (1991).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref]

Swartzlander, G. A.

Z. S. Sacks, D. Rozas, and G. A. Swartzlander, “Holographic formation of optical-vortex filaments,” J. Opt. Am. B 15, 2226–2234 (1998).
[Crossref]

K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
[Crossref]

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2511 (1992).
[Crossref] [PubMed]

Takahashi, F.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

Tao, S. H.X.

Teich, M. C.

B. E. A. Saleh and M. C. Teich, “Fundamentals of photonics 2nd ed.,” John Wiley, Canada (2007).

Toyoshima, S.

J. Lee, Y. Arita, R. Matsuo, S. Toyoshima, K. Miyamoto, K. Dholakia, and T. Omatsu, “Sub-millimeter helical fiber created by Bessel vortex beam illumination,” Proc. SPIE 10712, 107120J (2018).

J. Lee, Y. Arita, S. Toyoshima, K. Miyamoto, P. Panagiotopoulos, E.M. Wright, K. Dholakia, and T. Omatsu, “Photopolymerization with Light Fields Possessing Orbital Angular Momentum: Generation of Helical Microfibers,” ACS Photonics 5, 4156–4163 (2018).
[Crossref]

Tsuji, T.

F. Nito, T. Shiozaki, R. Nagura, T. Tsuji, K. Doi, C. Hosokawa, and S. Kawano, “Quantitative evaluation of optical forces by single particle tracking in slit-like microfluidic channels,” J. Phys. Chem. C 122, 17963–17975 (2018).
[Crossref]

R. Nagura, T. Tsujimura, T. Tsuji, K. Doi, and S. Kawano, “Theoretical study on nanostructure formation by angular momentum projection of optical vortex,” Proc. International Conference on Flow Dynamics 2018, 594–595 (2018).

T. Tsuji, Y. Sasai, and S. Kawano, “Thermophoretic manipulation of micro- and nanoparticle flow through a sudden contraction in a microchannel with near-infrared laser irradiation,” Phys. Rev. Appl. 10, 044005 (2018).
[Crossref]

Tsujimura, T.

R. Nagura, T. Tsujimura, T. Tsuji, K. Doi, and S. Kawano, “Theoretical study on nanostructure formation by angular momentum projection of optical vortex,” Proc. International Conference on Flow Dynamics 2018, 594–595 (2018).

Uehara, S.

W. Qian, K. Doi, S. Uehara, K. Morita, and S. Kawano, “Theoretical study of the transpore velocity control of single-stranded DNA,” Int. J. Mol. Sci. 2014, 13817–13832 (2014).
[Crossref] [PubMed]

Watabe, M.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4, 1–5 (2014).

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristernsen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Wright, E.M.

J. Lee, Y. Arita, S. Toyoshima, K. Miyamoto, P. Panagiotopoulos, E.M. Wright, K. Dholakia, and T. Omatsu, “Photopolymerization with Light Fields Possessing Orbital Angular Momentum: Generation of Helical Microfibers,” ACS Photonics 5, 4156–4163 (2018).
[Crossref]

Yamamoto, T.

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5, 1–4 (2015).
[Crossref]

Yamane, K.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

Yariv, A.

Yuan, -C.

ACS Photonics (1)

J. Lee, Y. Arita, S. Toyoshima, K. Miyamoto, P. Panagiotopoulos, E.M. Wright, K. Dholakia, and T. Omatsu, “Photopolymerization with Light Fields Possessing Orbital Angular Momentum: Generation of Helical Microfibers,” ACS Photonics 5, 4156–4163 (2018).
[Crossref]

Am. J. Phys. (1)

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
[Crossref]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref]

Appl. Phys. Lett. (1)

M. Gecevicius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104, 231110 (2014).
[Crossref]

Int. J. Mol. Sci. (1)

W. Qian, K. Doi, S. Uehara, K. Morita, and S. Kawano, “Theoretical study of the transpore velocity control of single-stranded DNA,” Int. J. Mol. Sci. 2014, 13817–13832 (2014).
[Crossref] [PubMed]

J. Chem. Phys. (1)

I. Hanasaki, R. Nagura, and S. Kawano, “Coarse-grained picture of Brownian motion in water: Role of size and interaction distance range on the nature of randomness,” J. Chem. Phys. 142, 104301 (2015).
[Crossref]

J. Opt. Am. B (1)

Z. S. Sacks, D. Rozas, and G. A. Swartzlander, “Holographic formation of optical-vortex filaments,” J. Opt. Am. B 15, 2226–2234 (1998).
[Crossref]

J. Phys. Chem. C (1)

F. Nito, T. Shiozaki, R. Nagura, T. Tsuji, K. Doi, C. Hosokawa, and S. Kawano, “Quantitative evaluation of optical forces by single particle tracking in slit-like microfluidic channels,” J. Phys. Chem. C 122, 17963–17975 (2018).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

G.W. Smith, “Cure parameters and phase behavior of an ultraviolet-cured polymer-dispersed liquid crystal,” Mol. Cryst. Liq. Cryst. 196, 89–102 (1991).
[Crossref]

Opt. Cmommun. (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Cmommun. 124, 529–541 (1996).
[Crossref]

Opt. Commun. (2)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristernsen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

M. J. Pudgett and L. Allen, “The Poynting vector in Laguerre-Gaussian laser modes,” Opt. Commun. 121, 36–40 (1995).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phil. Trans. R. Soc A (1)

K. Doi, T. Haga, H. Shintaku, and S. Kawano, “Development of coarse-graining DNA models for single-nucleotide resolution analysis,” Phil. Trans. R. Soc A 368, 2615–2628 (2010).
[Crossref]

Phys. Rev. (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

Phys. Rev. A (2)

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Appl. (1)

T. Tsuji, Y. Sasai, and S. Kawano, “Thermophoretic manipulation of micro- and nanoparticle flow through a sudden contraction in a microchannel with near-infrared laser irradiation,” Phys. Rev. Appl. 10, 044005 (2018).
[Crossref]

Phys. Rev. Lett. (1)

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2511 (1992).
[Crossref] [PubMed]

Proc. International Conference on Flow Dynamics (1)

R. Nagura, T. Tsujimura, T. Tsuji, K. Doi, and S. Kawano, “Theoretical study on nanostructure formation by angular momentum projection of optical vortex,” Proc. International Conference on Flow Dynamics 2018, 594–595 (2018).

Proc. SPIE (1)

J. Lee, Y. Arita, R. Matsuo, S. Toyoshima, K. Miyamoto, K. Dholakia, and T. Omatsu, “Sub-millimeter helical fiber created by Bessel vortex beam illumination,” Proc. SPIE 10712, 107120J (2018).

Sci. Rep. (3)

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5, 1–4 (2015).
[Crossref]

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4, 1–5 (2014).

Science (1)

J. Scheuer and M. Orenstein, “Optical vortices crystals: Spontaneous generation in nonlinear semiconductor microcavities,” Science 285, 230–233 (1999).
[Crossref] [PubMed]

Other (1)

B. E. A. Saleh and M. C. Teich, “Fundamentals of photonics 2nd ed.,” John Wiley, Canada (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic diagram of the gradient and scattering forces caused by a time-averaged optical vortex. Bold black arrows are the force vectors and narrow black arrows are the corresponding r and z components. Bold blue arrows are Poynting vectors and narrow blue arrows are the corresponding θ and z components. Radial dependence of (b) gradient force for the r component and the z component and (c) scattering force for the θ component and the z component in Eqs. (13) and (15) at z = 0   μm with n f = 1.49, n p = 1.52, w 0 = 2   μm, d = 50 nm, and η = 9.24 × 10 3 m−1. Each force is normalized by that maximum magnitude.
Fig. 2
Fig. 2 Schematic diagram of numerical system. UV optical vortex is focused onto the liquid resin and a twisted fiber is generated at the focal plane and pushed forward. Coarse-grained particles are generated at the strong-intensity ring on the focal plane. The particles are launched from this ring by optical forces one after another.
Fig. 3
Fig. 3 Unsteady velocities of a coarse-grained particle with specific weights γ s = 1 , 2 , 5, and 10. (a) r-directional velocity, vr, and (b) z-directional velocity, vz. Red, green, blue, and yellow solid lines are results for m a s = 1 , 2 , 5, and 10, respectively. Black dashed line indicates the constant velocity at which the motion of the particle is overdamped. Each velocity is normalized by that terminal value.
Fig. 4
Fig. 4 Distributions of light intensity in the rz plane for absorption coefficients of (a) η = 0, (b) η = 9.24 × 10 2, (c) η = 9.24 × 10 3, and (d) η = 9.24 × 10 4 m−1. Each intensity is normalized by the point of maximum value placed at ( r , z ) = ( w 0 / 2 , 0 ).
Fig. 5
Fig. 5 z directional optical forces acting on coarse-grained particles with various diameters. Where, each force is normalized by F s c a t , z in d = 50 nm. Black solid line represents scattering force F s c a t , z in Eq. (20). Red dashed line, green dotted line, blue dash-dot line, and yellow dash-dot-dot line represent gradient forces F g r a d , z in Eq. (19) for η = 9.24 × 10 4, 9.24 × 10 3, 9.24 × 10 2, and 9.24 × 10 1 m−1, respectively. The inset graph has a single logarithmic expression on the vertical axis. In this graph, each force is represented by its absolute value. ’A’ is the intersection between the black solid and blue dash-dot lines and ’B’ is that between the black solid and green dotted lines.
Fig. 6
Fig. 6 Dynamics of coarse-grained particles with diameter d = 50 nm subjected to optical forces created by an optical vortex. The absorption coefficient is η = 9.24 × 10 3 m−1. For gray and white structures, the initial rotational position is θ = 0 and θ = π rad, respectively. (a) Three-dimensional representation projected onto (b) the xy plane and (c) the yz plane. In these figures, the z directional representation is compressed by 100 fold.
Fig. 7
Fig. 7 yz projection of helical orbit formed by coarse-grained particles with diameters of (a) d = 25 nm, (b) d = 30 nm, (c) d = 40 nm, and (d) d = 50 nm. The absorption coefficient is η = 9.24 × 10 3 m−1. The z directional representation is compressed 100 fold. The intervals between vertical lines show the period of the helical orbit.
Fig. 8
Fig. 8 Diameter dependence of the period of the helical orbit for various absorption coefficients. Red dashed line shows η = 9.24 × 10 3 m−1, green dotted line shows η = 9.24 × 10 2 m−1, blue dash-dot line shows η = 9.24 × 10 1 m−1, and black solid line shows η 0 m−1 . ’A’ and ’B’ are the same as shown in Fig. 5.
Fig. 9
Fig. 9 z directional forces and period of helical structures for wavelengths λ = 250, 300, and 350 nm. (a) Logarithmic expression of z directional forces acting on coarse-grained particles with various diameters. Where, each force is normalized by F s c a t , z in d = 50 nm. Black solid line represents scattering force F s c a t , z shown in Eq. (20). Red dashed line, green dotted line, and blue dash-dot line represent gradient forces F g r a d , z shown in Eq. (19) for η = 9.24 × 10 4, 9.24 × 10 3, and 9.24 × 10 2 m−1, respectively. (b) Diameter dependence of the period of helical structures for various absorption coefficients. Red dashed line shows η = 9.24 × 10 4 m−1, green dotted line shows a = 9.24 × 10 3 m−1, blue dash-dot line shows η = 9.24 × 10 2 m−1, and black solid line shows η 0 m−1.

Tables (1)

Tables Icon

Table 1 Physical properties of NOA65 used in computer simulation.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

n = n re + i n im ,
k = n ω c = n re ω c + i n im ω c = k re + i k im ,
E ( r , θ , z , t ) = Re [ E ( r , θ , z ) exp ( i ω t ) ] ,
H ( r , θ , z , t ) = Re [ H ( r , θ , z ) exp ( i ω t ) ] ,
E ( r , θ , z ) = E 0 w 0 w ( z ) 2 r w ( z ) exp ( r 2 w 2 ( z ) k i m r 2 2 R ( z ) k im z ) × [ ( cos   θ e r sin   θ e θ ) + ( i cos   θ k r e r i 2 r cos   θ k r e w 2 ( z ) i k i m r cos   θ k r e R t ( z ) r c o s   θ R ( z ) + s i n   θ k r e r ) e z ] exp [ i ( θ + k re z 2 Φ ( z ) + k r e r 2 2 R ( z ) ) ] ,
H ( r , θ , z ) = n re c ε 0 E 0 w 0 w ( z ) 2 r w ( z ) exp ( r 2 w 2 ( z ) k im r 2 2 R ( z ) k im z ) × [ ( sin   θ e r + cos   θ e θ ) + ( i sin   θ k re r i 2 r sin θ k re w 2 ( z ) i k im r sin   θ k re R f t ( z ) r sin   θ R ( z ) cos   θ k re r ) e z ] exp [ i ( θ + k re z 2 Φ ( z ) + k re r 2 2 R ( z ) ) ] ,
z 0 = k re w 0 2 2
w ( z ) = w 0 1 + z 2 z 0 2 ,
R ( z ) = z ( 1 + z 0 2 z 2 ) ,
Φ ( z ) = Tan 1 ( z z 0 ) .
I ( r , z ) = 1 t p 0 t p S d t = I ( r , z ) exp ( k im r 2 R ( z ) 2 k im z ) ,
I ( r , z ) = n re c ε 0 E 0 2 2 w 0 2 w 2 ( z ) 2 r 2 w 2 ( z ) exp ( 2 r 2 w 2 ( z ) ) ( r R ( z ) e r + 1 k re r e θ + e z ) .
F grad = 1 2 α | 1 t p 0 t p E ( r , θ , z , t ) d t | 2 = α 4 E 0 2 w 0 2 w 2 ( z ) exp ( 2 r 2 w 2 ( z ) η z ) [ 4 w 2 ( z ) ( 1 2 r 2 w 2 ( z ) ) r e r   + 2 r 2 w 2 ( z ) [ 4 w ( z ) ( 1 r 2 w 2 ( z ) ) w ( z ) z η ] e z ] ,
α = 1 2 π ε f d 3 Re ( ε p ε f ε p + 2 ε f ).
F scat = n f c C scat I = C scat ε f E 0 2 2 w 0 2 w 2 ( z ) 2 r 2 w 2 ( z ) exp ( 2 r 2 w 2 ( z ) η z ) ( 1 k f r e θ + e z ) ,
C scat = π 24 k f 4 d 6 ( ε p ε f ε p + 2 ε f ) 2 .
M v t = ξ v + F grad + F scat ,
0 = ξ v + F grad + F scat ,
F grad , z = 1 8 π ε f d 3 ε p ε f ε p + 2 ε f E 0 2 η exp ( 1 ) ,
F scat , z = 1 48 π ε f k f 4 d 6 ( ε p ε f ε p + 2 ε f ) 2 E 0 2 exp ( 1 ) .
F scat , θ = 2 48 π ε f k f 3 d 6 1 w 0 ( ε p ε f ε p + 2 ε f ) 2 E 0 2 exp ( 1 ) = 2 k f w 0 F scat , z .
L p = 2 π r F scat , z + F grad , z F scat , θ = π k f w 0 2 [ 6 π w 0 2 k f 3 ( ε p + 2 ε f ε p ε f ) ] η d 3 .