Abstract

In this work, a novel Single longitudinal mode (SLM) dual-wavelength random fiber laser (DW-RFL) with narrow line-width and tunable separation between the two modes in the range 1.5 – 25 nm (187 GHz – 3.12 THz) is presented. The laser is based on Rayleigh backscattering in a standard single mode fiber of 2 km length acting as distributed mirrors and a semiconductor optical amplifier (SOA) acting as the optical amplifier. Two optical band pass filters are used for the wavelength selection, and two Faraday Rotator mirrors are used to sustain the stability of the two lasing wavelengths against fiber random birefringence. The measured line-width of each mode of the laser varies from 3 to 11.5 kHz with lasing wavelengths and SOA pump currents. The power and the wavelength stabilities at the peak power of each mode were also investigated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-longitudinal-mode broadband tunable random laser

Heba Shawki, Hussein Kotb, and Diaa Khalil
Opt. Lett. 42(16) 3247-3250 (2017)

Low-noise Brillouin random fiber laser with a random grating-based resonator

Yanping Xu, Song Gao, Ping Lu, Stephen Mihailov, Liang Chen, and Xiaoyi Bao
Opt. Lett. 41(14) 3197-3200 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
    [Crossref]
  2. N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
    [Crossref]
  3. M. A. Ummy, N. Madamopoulos, M. Razani, A. Hossain, and R. Dorsinville, “Switchable dual-wavelength SOA-based fiber laser with continuous tunability over the C-band at room-temperature,” Opt. Express 20(21), 23367–23373 (2012).
    [Crossref]
  4. H. Ahmad, F. D. Muhammad, C. H. Pua, and K. Thambiratnam, “Dual-Wavelength Fiber Lasers for the Optical Generation of Microwave and Terahertz Radiation,” IEEE J. Sel. Top. Quantum Electron. 20(5), 166–173 (2014).
    [Crossref]
  5. Y. Xu, L. Zhang, L. Chen, and X. Bao, “Single-mode SOA-based 1kHz-linewidth dual-wavelength random fiber laser,” Opt. Express 25(14), 15828–15837 (2017).
    [Crossref]
  6. H. Omran, H. E. Kotb, and D. Khalil, “Dual wavelength SOA based fiber ring laser,” Proc. SPIE 10083, 1008322 (2017).
    [Crossref]
  7. H. A. Shawki, H. E. Kotb, and D. Khalil, “Narrow Line Width Dual Wavelength EDFA based Random Fiber Laser,” in 35th National Radio Science Conference, (NRSC 2018), March 20–22, 2018.
  8. T. Zhu, B. Zhang, L. Shi, S. Huang, M. Deng, J. Liu, and X. Li, “Tunable dual-wavelength fiber laser with ultranarrow linewidth based on Rayleigh backscattering,” Opt. Express 24(2), 1324–1330 (2016).
    [Crossref]
  9. G. P. Agrawal and A. Olsson, “Self Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
    [Crossref]
  10. S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W. Y. Oh, and B. E. Bouma, “SOA Fiber Ring Lasers: Single- Versus Multiple- Mode Oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
    [Crossref]
  11. H. A. Shawki, H. E. Kotb, and D. Khalil, “Single-longitudinal-mode broadband tunable random laser,” Opt. Lett. 42(16), 3247–3250 (2017).
    [Crossref]
  12. M. Pang, X. Bao, L. Chen, Z. Qin, Y. Lu, and P. Lu, “Frequency stabilized coherent Brillouin random fiber laser: theory and experiments,” Opt. Express 21(22), 27155–27168 (2013).
    [Crossref]
  13. A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications,” Opt. Lett. 31(6), 760–762 (2006).
    [Crossref]
  14. M. Shatif and G. Eisenstein, “Noise Characteristics of Nonlinear Semiconductor Optical Amplifiers in the Gaussian Limit,” IEEE J. Quantum Electron. 32(10), 1801–1809 (1996).
    [Crossref]
  15. M. J. Connelly, “Wideband Semiconductor Optical Amplifier Steady-State Numerical Model,” IEEE J. Quantum Electron. 37(3), 439–447 (2001).
    [Crossref]
  16. H. Dery and G. Eisenstein, “The Impact of Energy Band Diagram and Inhomogeneous Broadening on the Optical Differential Gain in Nanostructure Lasers,” IEEE J. Quantum Electron. 41(1), 26–35 (2005).
    [Crossref]
  17. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630 (1980).
    [Crossref]
  18. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, 1997).

2017 (3)

2016 (1)

2014 (1)

H. Ahmad, F. D. Muhammad, C. H. Pua, and K. Thambiratnam, “Dual-Wavelength Fiber Lasers for the Optical Generation of Microwave and Terahertz Radiation,” IEEE J. Sel. Top. Quantum Electron. 20(5), 166–173 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (1)

S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W. Y. Oh, and B. E. Bouma, “SOA Fiber Ring Lasers: Single- Versus Multiple- Mode Oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

2006 (1)

2005 (1)

H. Dery and G. Eisenstein, “The Impact of Energy Band Diagram and Inhomogeneous Broadening on the Optical Differential Gain in Nanostructure Lasers,” IEEE J. Quantum Electron. 41(1), 26–35 (2005).
[Crossref]

2001 (1)

M. J. Connelly, “Wideband Semiconductor Optical Amplifier Steady-State Numerical Model,” IEEE J. Quantum Electron. 37(3), 439–447 (2001).
[Crossref]

1996 (3)

M. Shatif and G. Eisenstein, “Noise Characteristics of Nonlinear Semiconductor Optical Amplifiers in the Gaussian Limit,” IEEE J. Quantum Electron. 32(10), 1801–1809 (1996).
[Crossref]

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[Crossref]

1989 (1)

G. P. Agrawal and A. Olsson, “Self Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630 (1980).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and A. Olsson, “Self Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

Ahmad, H.

H. Ahmad, F. D. Muhammad, C. H. Pua, and K. Thambiratnam, “Dual-Wavelength Fiber Lasers for the Optical Generation of Microwave and Terahertz Radiation,” IEEE J. Sel. Top. Quantum Electron. 20(5), 166–173 (2014).
[Crossref]

Bao, X.

Bennion, I.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Bilenca, A.

Bouma, B. E.

S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W. Y. Oh, and B. E. Bouma, “SOA Fiber Ring Lasers: Single- Versus Multiple- Mode Oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications,” Opt. Lett. 31(6), 760–762 (2006).
[Crossref]

Chen, H.

S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W. Y. Oh, and B. E. Bouma, “SOA Fiber Ring Lasers: Single- Versus Multiple- Mode Oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

Chen, L.

Chow, J.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Connelly, M. J.

M. J. Connelly, “Wideband Semiconductor Optical Amplifier Steady-State Numerical Model,” IEEE J. Quantum Electron. 37(3), 439–447 (2001).
[Crossref]

Deng, M.

Dery, H.

H. Dery and G. Eisenstein, “The Impact of Energy Band Diagram and Inhomogeneous Broadening on the Optical Differential Gain in Nanostructure Lasers,” IEEE J. Quantum Electron. 41(1), 26–35 (2005).
[Crossref]

Dorsinville, R.

Eggleton, B.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Eisenstein, G.

H. Dery and G. Eisenstein, “The Impact of Energy Band Diagram and Inhomogeneous Broadening on the Optical Differential Gain in Nanostructure Lasers,” IEEE J. Quantum Electron. 41(1), 26–35 (2005).
[Crossref]

M. Shatif and G. Eisenstein, “Noise Characteristics of Nonlinear Semiconductor Optical Amplifiers in the Gaussian Limit,” IEEE J. Quantum Electron. 32(10), 1801–1809 (1996).
[Crossref]

Girard, S. L.

S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W. Y. Oh, and B. E. Bouma, “SOA Fiber Ring Lasers: Single- Versus Multiple- Mode Oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

Hossain, A.

Huang, S.

Ibsen, M.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Khalil, D.

H. Omran, H. E. Kotb, and D. Khalil, “Dual wavelength SOA based fiber ring laser,” Proc. SPIE 10083, 1008322 (2017).
[Crossref]

H. A. Shawki, H. E. Kotb, and D. Khalil, “Single-longitudinal-mode broadband tunable random laser,” Opt. Lett. 42(16), 3247–3250 (2017).
[Crossref]

H. A. Shawki, H. E. Kotb, and D. Khalil, “Narrow Line Width Dual Wavelength EDFA based Random Fiber Laser,” in 35th National Radio Science Conference, (NRSC 2018), March 20–22, 2018.

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630 (1980).
[Crossref]

Kotb, H. E.

H. Omran, H. E. Kotb, and D. Khalil, “Dual wavelength SOA based fiber ring laser,” Proc. SPIE 10083, 1008322 (2017).
[Crossref]

H. A. Shawki, H. E. Kotb, and D. Khalil, “Single-longitudinal-mode broadband tunable random laser,” Opt. Lett. 42(16), 3247–3250 (2017).
[Crossref]

H. A. Shawki, H. E. Kotb, and D. Khalil, “Narrow Line Width Dual Wavelength EDFA based Random Fiber Laser,” in 35th National Radio Science Conference, (NRSC 2018), March 20–22, 2018.

Li, X.

Liu, J.

Lu, P.

Lu, Y.

Madamopoulos, N.

Muhammad, F. D.

H. Ahmad, F. D. Muhammad, C. H. Pua, and K. Thambiratnam, “Dual-Wavelength Fiber Lasers for the Optical Generation of Microwave and Terahertz Radiation,” IEEE J. Sel. Top. Quantum Electron. 20(5), 166–173 (2014).
[Crossref]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630 (1980).
[Crossref]

Oh, W. Y.

S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W. Y. Oh, and B. E. Bouma, “SOA Fiber Ring Lasers: Single- Versus Multiple- Mode Oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630 (1980).
[Crossref]

Olsson, A.

G. P. Agrawal and A. Olsson, “Self Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

Omran, H.

H. Omran, H. E. Kotb, and D. Khalil, “Dual wavelength SOA based fiber ring laser,” Proc. SPIE 10083, 1008322 (2017).
[Crossref]

Pang, M.

Park, N.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[Crossref]

Piche, M.

S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W. Y. Oh, and B. E. Bouma, “SOA Fiber Ring Lasers: Single- Versus Multiple- Mode Oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

Pua, C. H.

H. Ahmad, F. D. Muhammad, C. H. Pua, and K. Thambiratnam, “Dual-Wavelength Fiber Lasers for the Optical Generation of Microwave and Terahertz Radiation,” IEEE J. Sel. Top. Quantum Electron. 20(5), 166–173 (2014).
[Crossref]

Qin, Z.

Razani, M.

Schinn, G. W.

S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W. Y. Oh, and B. E. Bouma, “SOA Fiber Ring Lasers: Single- Versus Multiple- Mode Oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

Shatif, M.

M. Shatif and G. Eisenstein, “Noise Characteristics of Nonlinear Semiconductor Optical Amplifiers in the Gaussian Limit,” IEEE J. Quantum Electron. 32(10), 1801–1809 (1996).
[Crossref]

Shawki, H. A.

H. A. Shawki, H. E. Kotb, and D. Khalil, “Single-longitudinal-mode broadband tunable random laser,” Opt. Lett. 42(16), 3247–3250 (2017).
[Crossref]

H. A. Shawki, H. E. Kotb, and D. Khalil, “Narrow Line Width Dual Wavelength EDFA based Random Fiber Laser,” in 35th National Radio Science Conference, (NRSC 2018), March 20–22, 2018.

Shi, L.

Sugden, K.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Tearney, G. J.

Thambiratnam, K.

H. Ahmad, F. D. Muhammad, C. H. Pua, and K. Thambiratnam, “Dual-Wavelength Fiber Lasers for the Optical Generation of Microwave and Terahertz Radiation,” IEEE J. Sel. Top. Quantum Electron. 20(5), 166–173 (2014).
[Crossref]

Town, G.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Ummy, M. A.

Wysocki, P. F.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[Crossref]

Xu, Y.

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, 1997).

Yun, S. H.

Zhang, B.

Zhang, L.

Zhu, T.

Electron. Lett. (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630 (1980).
[Crossref]

IEEE J. Quantum Electron. (4)

M. Shatif and G. Eisenstein, “Noise Characteristics of Nonlinear Semiconductor Optical Amplifiers in the Gaussian Limit,” IEEE J. Quantum Electron. 32(10), 1801–1809 (1996).
[Crossref]

M. J. Connelly, “Wideband Semiconductor Optical Amplifier Steady-State Numerical Model,” IEEE J. Quantum Electron. 37(3), 439–447 (2001).
[Crossref]

H. Dery and G. Eisenstein, “The Impact of Energy Band Diagram and Inhomogeneous Broadening on the Optical Differential Gain in Nanostructure Lasers,” IEEE J. Quantum Electron. 41(1), 26–35 (2005).
[Crossref]

G. P. Agrawal and A. Olsson, “Self Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. L. Girard, M. Piche, H. Chen, G. W. Schinn, W. Y. Oh, and B. E. Bouma, “SOA Fiber Ring Lasers: Single- Versus Multiple- Mode Oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

H. Ahmad, F. D. Muhammad, C. H. Pua, and K. Thambiratnam, “Dual-Wavelength Fiber Lasers for the Optical Generation of Microwave and Terahertz Radiation,” IEEE J. Sel. Top. Quantum Electron. 20(5), 166–173 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (2)

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (1)

H. Omran, H. E. Kotb, and D. Khalil, “Dual wavelength SOA based fiber ring laser,” Proc. SPIE 10083, 1008322 (2017).
[Crossref]

Other (2)

H. A. Shawki, H. E. Kotb, and D. Khalil, “Narrow Line Width Dual Wavelength EDFA based Random Fiber Laser,” in 35th National Radio Science Conference, (NRSC 2018), March 20–22, 2018.

A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic diagram of Dual-wavelength Random Fiber Laser; SOA: Semiconductor optical amplifier; SMF: Single mode fiber; OF: Optical filter; TOF: Tunable optical filter; FRM: Faraday rotator mirror; VOA: Variable optical attenuator; OSA: Optical spectrum analyzer.
Fig. 2.
Fig. 2. Schematic diagram for the experimental setup used to measure the SOA go versus pump current.
Fig. 3.
Fig. 3. SOA small signal gain go versus pump current at 1550 nm (solid blue line is Eq. (4), and the red circles correspond to experimental results).
Fig. 4.
Fig. 4. Random fiber laser (RFL) simulation model block diagram.
Fig. 5.
Fig. 5. Simulation results of SLM-RFL spectrum at 1550 nm center wavelength.
Fig. 6.
Fig. 6. Simulation results of the dual-wavelength RFL spectrum operating at two wavelength 1550 nm (193.54 THz), and 1525 nm (196.72 THz).
Fig. 7.
Fig. 7. Wavelength tuning of the dual wavelength random laser measured by the optical spectrum analyzer. S denotes the separation between the two lasing modes.
Fig. 8.
Fig. 8. Optical spectrum of dual wavelength RFL with increasing pump current.
Fig. 9.
Fig. 9. Optical spectrum of the dual wavelength tunable random laser at wavelength spacing 0.9 nm and SOA pump current 370 mA.
Fig. 10.
Fig. 10. Dual wavelength RF beat signals at (a) 1551.5 nm, (b) 1550 nm. LW denotes the 3-dB line-width.
Fig. 11.
Fig. 11. (a) Peak Power and (b) wavelength stability, of 1550–1551.5 nm dual-wavelength laser.

Tables (2)

Tables Icon

Table 1. Line-width for dual-wavelength laser at different SOA pump currents selected by the fixed filter and the tunable filter

Tables Icon

Table 2. Comparison between our proposed laser and a similar laser [5] results.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

d h d t = g o L s o a h τ c P i n ( t ) E s a t [ e x p ( h ( t ) ) 1 ]
h ( t ) = 0 L s o a g ( z , t ) d z
P s a t = E s a t τ c
E o u t ( t ) = E i n ( t ) e x p [ 1 2 ( 1 + j α H ) h ( t ) ]
g o L s o a = l n G + [ G 1 ] P i n P s a t
g o = a I b
L o s s = R × C 2 × I L f i l 2 × I L F R M
R = r 2 α ( 1 exp ( 2 α L ) )
P o = P i n G e α L
P o = η ( I I t h )
η = a L s o a P s a t e α L 1 l o s s
I t h = 1 a L s o a l n 1 l o s s + b a
E R = j = 1 T E i n A j e x p ( α z j j 4 π n v z j c )
N ( ω ) = A ( N 1 + j N 2 )