Abstract

Direct digital synthesis in concert with an electro-optic phase modulator was employed to generate optical frequency combs with tooth spacings as low as 100 Hz. These combs were utilized to probe electromagnetically induced transparency (EIT) and hyperfine pumping in potassium vapor cells. Long-term coherent averaging was demonstrated with performance similar to that achieved with a vastly more expensive arbitrary waveform generator. From the potassium EIT transition we were able to determine the ground state hyperfine splitting with a fit uncertainty of 80 Hz. Importantly, because of the mutual coherence between the control and probe beams, which originate from a single laser, features with linewidths several orders-of-magnitude narrower than the laser linewidth could be observed in a multiplexed fashion. This approach removes the need for slow scanning of a traditional cw laser or mode-locked-laser-based optical frequency comb.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetically induced transparency in vacuum and buffer gas potassium cells probed via electro-optic frequency combs

D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges
Opt. Lett. 42(21) 4430-4433 (2017)

Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy

Shuai Wang, Xinyu Fan, Bingxin Xu, and Zuyuan He
Opt. Lett. 42(19) 3984-3987 (2017)

Fast MHz spectral-resolution dual-comb spectroscopy with electro-optic modulators

Shuai Wang, Xinyu Fan, Bingxin Xu, and Zuyuan He
Opt. Lett. 44(1) 65-68 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
    [Crossref]
  2. M. Kourogi, T. Enami, and M. Ohtsu, “A monolithic optical frequency comb generator,” IEEE Photonics Technol. Lett. 6(2), 214–217 (1994).
    [Crossref]
  3. J. Ye, L.-S. Ma, T. Daly, and J. L. Hall, “Highly selective terahertz optical frequency comb generator,” Opt. Lett. 22(5), 301–303 (1997).
    [Crossref]
  4. V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
    [Crossref]
  5. D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39(9), 2688–2690 (2014).
    [Crossref]
  6. G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
    [Crossref]
  7. K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4(4), 406–411 (2017).
    [Crossref]
  8. D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Multiplexed sub-Doppler spectroscopy with an optical frequency comb,” Phys. Rev. A 94(6), 061801 (2016).
    [Crossref]
  9. D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Electromagnetically induced transparency in vacuum and buffer gas potassium cells probed via electro-optic frequency combs,” Opt. Lett. 42(21), 4430–4433 (2017).
    [Crossref]
  10. N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J. D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23(21), 27806–27818 (2015).
    [Crossref]
  11. N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous Observation of Nonlinear Magneto-Optical Rotation in the Temporal and Spectral Domains with an Electro-Optic Frequency Comb,” Phys. Rev. Appl. 10(3), 034012 (2018).
    [Crossref]
  12. N. B. Hebert, V. Michaud-Belleau, C. Perrella, G. W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
    [Crossref]
  13. Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time,” Light: Sci. Appl. 4(6), e300 (2015).
    [Crossref]
  14. A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24(10), 10424–10434 (2016).
    [Crossref]
  15. X. T. Lou, Z. Y. Yuan, and Y. K. Dong, “Rapid spectroscopic gas sensing using optical linear chirp chain,” Opt. Express 27(9), 13160–13171 (2019).
    [Crossref]
  16. S. Wang, X. Y. Fan, B. X. Xu, and Z. Y. He, “Fast MHz spectral-resolution dual-comb spectroscopy with electro-optic modulators,” Opt. Lett. 44(1), 65–68 (2019).
    [Crossref]
  17. S. Wang, X. Fan, B. Xu, and Z. He, “Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy,” Opt. Lett. 42(19), 3984–3987 (2017).
    [Crossref]
  18. X. Yan, X. Zou, W. Pan, L. Yan, and J. Azaña, “Fully digital programmable optical frequency comb generation and application,” Opt. Lett. 43(2), 283–286 (2018).
    [Crossref]
  19. B. Xu, X. Fan, S. Wang, and Z. He, “Broadband and high-resolution electro-optic dual-comb interferometer with frequency agility,” Opt. Express 27(6), 9266–9275 (2019).
    [Crossref]
  20. I. A. Finneran, D. B. Holland, P. B. Carroll, and G. A. Blake, “A direct digital synthesis chirped pulse Fourier transform microwave spectrometer,” Rev. Sci. Instrum. 84(8), 083104 (2013).
    [Crossref]
  21. V. A. Sautenkov, Y. V. Rostovtsev, C. Y. Ye, G. R. Welch, O. Kocharovskaya, and M. O. Scully, “Electromagnetically induced transparency in rubidium vapor prepared by a comb of short optical pulses,” Phys. Rev. A 71(6), 063804 (2005).
    [Crossref]
  22. S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free Fourier transform spectroscopy,” Opt. Lett. 43(1), 162–165 (2018).
    [Crossref]
  23. S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74(3), 032503 (2006).
    [Crossref]
  24. “AD9914 Data Sheet”, retrieved 12 July 2019, https://www.analog.com/media/en/technical-documentation/data-sheets/AD9914.pdf .
  25. D. McGloin, M. H. Dunn, and D. J. Fulton, “Polarization effects in electromagnetically induced transparency,” Phys. Rev. A 62(5), 053802 (2000).
    [Crossref]
  26. S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz,” Phys. Rev. A 56(2), R1063–R1066 (1997).
    [Crossref]
  27. S. Ezekiel, S. P. Smith, M. S. Shahriar, and P. R. Hemmer, “New opportunities in fiberoptic sensors,” J. Lightwave Technol. 13(7), 1189–1192 (1995).
    [Crossref]
  28. D. E. Nikonov, U. W. Rathe, M. O. Scully, S. Y. Zhu, E. S. Fry, X. F. Li, G. G. Padmabandu, and M. Fleischhauer, “Atomic coherence effects within the sodium D1 manifold. II. Coherent optical pumping,” Quantum Opt. 6(4), 245–260 (1994).
    [Crossref]
  29. A. J. Fleisher, D. A. Long, and J. T. Hodges, “Quantitative modeling of complex molecular response in coherent cavity-enhanced dual-comb spectroscopy,” J. Mol. Spectrosc. 352, 26–35 (2018).
    [Crossref]
  30. Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A 80(4), 041805 (2009).
    [Crossref]
  31. E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
    [Crossref]
  32. T. Jeong, I.-H. Bae, and H. S. Moon, “Noise filtering via electromagnetically induced transparency,” Opt. Commun. 383, 31–35 (2017).
    [Crossref]
  33. Y. W. Chan, V. W. Cohen, and H. B. Silsbee, “Measurement of hyperfine structure in ground states of 39K, 41K and 23Na,” Bull. Am. Phys. Soc. 15, 1521 (1970).
  34. G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum. 79(5), 053103 (2008).
    [Crossref]
  35. J. L. Neill, B. J. Harris, A. L. Steber, K. O. Douglass, D. F. Plusquellic, and B. H. Pate, “Segmented chirped-pulse Fourier transform submillimeter spectroscopy for broadband gas analysis,” Opt. Express 21(17), 19743–19749 (2013).
    [Crossref]
  36. E. Gerecht, K. O. Douglass, and D. F. Plusquellic, “Chirped-pulse terahertz spectroscopy for broadband trace gas sensing,” Opt. Express 19(9), 8973–8984 (2011).
    [Crossref]

2019 (3)

2018 (4)

A. J. Fleisher, D. A. Long, and J. T. Hodges, “Quantitative modeling of complex molecular response in coherent cavity-enhanced dual-comb spectroscopy,” J. Mol. Spectrosc. 352, 26–35 (2018).
[Crossref]

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free Fourier transform spectroscopy,” Opt. Lett. 43(1), 162–165 (2018).
[Crossref]

X. Yan, X. Zou, W. Pan, L. Yan, and J. Azaña, “Fully digital programmable optical frequency comb generation and application,” Opt. Lett. 43(2), 283–286 (2018).
[Crossref]

N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous Observation of Nonlinear Magneto-Optical Rotation in the Temporal and Spectral Domains with an Electro-Optic Frequency Comb,” Phys. Rev. Appl. 10(3), 034012 (2018).
[Crossref]

2017 (4)

2016 (4)

D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Multiplexed sub-Doppler spectroscopy with an optical frequency comb,” Phys. Rev. A 94(6), 061801 (2016).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24(10), 10424–10434 (2016).
[Crossref]

N. B. Hebert, V. Michaud-Belleau, C. Perrella, G. W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

2015 (2)

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time,” Light: Sci. Appl. 4(6), e300 (2015).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J. D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23(21), 27806–27818 (2015).
[Crossref]

2014 (2)

2013 (2)

J. L. Neill, B. J. Harris, A. L. Steber, K. O. Douglass, D. F. Plusquellic, and B. H. Pate, “Segmented chirped-pulse Fourier transform submillimeter spectroscopy for broadband gas analysis,” Opt. Express 21(17), 19743–19749 (2013).
[Crossref]

I. A. Finneran, D. B. Holland, P. B. Carroll, and G. A. Blake, “A direct digital synthesis chirped pulse Fourier transform microwave spectrometer,” Rev. Sci. Instrum. 84(8), 083104 (2013).
[Crossref]

2011 (1)

2009 (1)

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A 80(4), 041805 (2009).
[Crossref]

2008 (1)

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum. 79(5), 053103 (2008).
[Crossref]

2006 (2)

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74(3), 032503 (2006).
[Crossref]

2005 (1)

V. A. Sautenkov, Y. V. Rostovtsev, C. Y. Ye, G. R. Welch, O. Kocharovskaya, and M. O. Scully, “Electromagnetically induced transparency in rubidium vapor prepared by a comb of short optical pulses,” Phys. Rev. A 71(6), 063804 (2005).
[Crossref]

2000 (1)

D. McGloin, M. H. Dunn, and D. J. Fulton, “Polarization effects in electromagnetically induced transparency,” Phys. Rev. A 62(5), 053802 (2000).
[Crossref]

1997 (2)

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz,” Phys. Rev. A 56(2), R1063–R1066 (1997).
[Crossref]

J. Ye, L.-S. Ma, T. Daly, and J. L. Hall, “Highly selective terahertz optical frequency comb generator,” Opt. Lett. 22(5), 301–303 (1997).
[Crossref]

1995 (1)

S. Ezekiel, S. P. Smith, M. S. Shahriar, and P. R. Hemmer, “New opportunities in fiberoptic sensors,” J. Lightwave Technol. 13(7), 1189–1192 (1995).
[Crossref]

1994 (2)

D. E. Nikonov, U. W. Rathe, M. O. Scully, S. Y. Zhu, E. S. Fry, X. F. Li, G. G. Padmabandu, and M. Fleischhauer, “Atomic coherence effects within the sodium D1 manifold. II. Coherent optical pumping,” Quantum Opt. 6(4), 245–260 (1994).
[Crossref]

M. Kourogi, T. Enami, and M. Ohtsu, “A monolithic optical frequency comb generator,” IEEE Photonics Technol. Lett. 6(2), 214–217 (1994).
[Crossref]

1993 (1)

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
[Crossref]

1970 (1)

Y. W. Chan, V. W. Cohen, and H. B. Silsbee, “Measurement of hyperfine structure in ground states of 39K, 41K and 23Na,” Bull. Am. Phys. Soc. 15, 1521 (1970).

Anstie, J. D.

N. B. Hebert, V. Michaud-Belleau, C. Perrella, G. W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J. D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23(21), 27806–27818 (2015).
[Crossref]

Azaña, J.

Bae, I.-H.

T. Jeong, I.-H. Bae, and H. S. Moon, “Noise filtering via electromagnetically induced transparency,” Opt. Commun. 383, 31–35 (2017).
[Crossref]

Bao, Y.

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time,” Light: Sci. Appl. 4(6), e300 (2015).
[Crossref]

Baryakhtar, M.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A 80(4), 041805 (2009).
[Crossref]

Beha, K.

Bendahmane, A.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Bielska, K.

Blake, G. A.

I. A. Finneran, D. B. Holland, P. B. Carroll, and G. A. Blake, “A direct digital synthesis chirped pulse Fourier transform microwave spectrometer,” Rev. Sci. Instrum. 84(8), 083104 (2013).
[Crossref]

Brandt, S.

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz,” Phys. Rev. A 56(2), R1063–R1066 (1997).
[Crossref]

Brown, G. G.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum. 79(5), 053103 (2008).
[Crossref]

Carroll, P. B.

I. A. Finneran, D. B. Holland, P. B. Carroll, and G. A. Blake, “A direct digital synthesis chirped pulse Fourier transform microwave spectrometer,” Rev. Sci. Instrum. 84(8), 083104 (2013).
[Crossref]

Chan, Y. W.

Y. W. Chan, V. W. Cohen, and H. B. Silsbee, “Measurement of hyperfine structure in ground states of 39K, 41K and 23Na,” Bull. Am. Phys. Soc. 15, 1521 (1970).

Chen, Q.

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time,” Light: Sci. Appl. 4(6), e300 (2015).
[Crossref]

Cohen, V. W.

Y. W. Chan, V. W. Cohen, and H. B. Silsbee, “Measurement of hyperfine structure in ground states of 39K, 41K and 23Na,” Bull. Am. Phys. Soc. 15, 1521 (1970).

Coillet, A.

Cole, D. C.

Crescimanno, M.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A 80(4), 041805 (2009).
[Crossref]

Daly, T.

Del’Haye, P.

Deschênes, J. D.

Dian, B. C.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum. 79(5), 053103 (2008).
[Crossref]

Diddams, S. A.

Dong, Y. K.

Douglass, K. O.

Dunn, M. H.

D. McGloin, M. H. Dunn, and D. J. Fulton, “Polarization effects in electromagnetically induced transparency,” Phys. Rev. A 62(5), 053802 (2000).
[Crossref]

Enami, T.

M. Kourogi, T. Enami, and M. Ohtsu, “A monolithic optical frequency comb generator,” IEEE Photonics Technol. Lett. 6(2), 214–217 (1994).
[Crossref]

Ezekiel, S.

S. Ezekiel, S. P. Smith, M. S. Shahriar, and P. R. Hemmer, “New opportunities in fiberoptic sensors,” J. Lightwave Technol. 13(7), 1189–1192 (1995).
[Crossref]

Falke, S.

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74(3), 032503 (2006).
[Crossref]

Fan, X.

Fan, X. Y.

Finneran, I. A.

I. A. Finneran, D. B. Holland, P. B. Carroll, and G. A. Blake, “A direct digital synthesis chirped pulse Fourier transform microwave spectrometer,” Rev. Sci. Instrum. 84(8), 083104 (2013).
[Crossref]

Fleischhauer, M.

D. E. Nikonov, U. W. Rathe, M. O. Scully, S. Y. Zhu, E. S. Fry, X. F. Li, G. G. Padmabandu, and M. Fleischhauer, “Atomic coherence effects within the sodium D1 manifold. II. Coherent optical pumping,” Quantum Opt. 6(4), 245–260 (1994).
[Crossref]

Fleisher, A. J.

Fry, E. S.

D. E. Nikonov, U. W. Rathe, M. O. Scully, S. Y. Zhu, E. S. Fry, X. F. Li, G. G. Padmabandu, and M. Fleischhauer, “Atomic coherence effects within the sodium D1 manifold. II. Coherent optical pumping,” Quantum Opt. 6(4), 245–260 (1994).
[Crossref]

Fulton, D. J.

D. McGloin, M. H. Dunn, and D. J. Fulton, “Polarization effects in electromagnetically induced transparency,” Phys. Rev. A 62(5), 053802 (2000).
[Crossref]

Genest, J.

N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous Observation of Nonlinear Magneto-Optical Rotation in the Temporal and Spectral Domains with an Electro-Optic Frequency Comb,” Phys. Rev. Appl. 10(3), 034012 (2018).
[Crossref]

N. B. Hebert, V. Michaud-Belleau, C. Perrella, G. W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J. D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23(21), 27806–27818 (2015).
[Crossref]

Gerecht, E.

Geyer, S. M.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum. 79(5), 053103 (2008).
[Crossref]

Grosche, G.

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74(3), 032503 (2006).
[Crossref]

Guelachvili, G.

Hall, J. L.

Hänsch, T. W.

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free Fourier transform spectroscopy,” Opt. Lett. 43(1), 162–165 (2018).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Harris, B. J.

He, Z.

He, Z. Y.

Hebert, N. B.

N. B. Hebert, V. Michaud-Belleau, C. Perrella, G. W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

Hébert, N. B.

N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous Observation of Nonlinear Magneto-Optical Rotation in the Temporal and Spectral Domains with an Electro-Optic Frequency Comb,” Phys. Rev. Appl. 10(3), 034012 (2018).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J. D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23(21), 27806–27818 (2015).
[Crossref]

Hemmer, P. R.

S. Ezekiel, S. P. Smith, M. S. Shahriar, and P. R. Hemmer, “New opportunities in fiberoptic sensors,” J. Lightwave Technol. 13(7), 1189–1192 (1995).
[Crossref]

Hipke, A.

Hodges, J. T.

Hohensee, M.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A 80(4), 041805 (2009).
[Crossref]

Holland, D. B.

I. A. Finneran, D. B. Holland, P. B. Carroll, and G. A. Blake, “A direct digital synthesis chirped pulse Fourier transform microwave spectrometer,” Rev. Sci. Instrum. 84(8), 083104 (2013).
[Crossref]

Hovhannisyan, T.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Jeong, T.

T. Jeong, I.-H. Bae, and H. S. Moon, “Noise filtering via electromagnetically induced transparency,” Opt. Commun. 383, 31–35 (2017).
[Crossref]

Jiang, L.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A 80(4), 041805 (2009).
[Crossref]

Kocharovskaya, O.

V. A. Sautenkov, Y. V. Rostovtsev, C. Y. Ye, G. R. Welch, O. Kocharovskaya, and M. O. Scully, “Electromagnetically induced transparency in rubidium vapor prepared by a comb of short optical pulses,” Phys. Rev. A 71(6), 063804 (2005).
[Crossref]

Kourogi, M.

M. Kourogi, T. Enami, and M. Ohtsu, “A monolithic optical frequency comb generator,” IEEE Photonics Technol. Lett. 6(2), 214–217 (1994).
[Crossref]

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
[Crossref]

Li, J.

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time,” Light: Sci. Appl. 4(6), e300 (2015).
[Crossref]

Li, X. F.

D. E. Nikonov, U. W. Rathe, M. O. Scully, S. Y. Zhu, E. S. Fry, X. F. Li, G. G. Padmabandu, and M. Fleischhauer, “Atomic coherence effects within the sodium D1 manifold. II. Coherent optical pumping,” Quantum Opt. 6(4), 245–260 (1994).
[Crossref]

Li, Z.

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time,” Light: Sci. Appl. 4(6), e300 (2015).
[Crossref]

Light, P.

N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous Observation of Nonlinear Magneto-Optical Rotation in the Temporal and Spectral Domains with an Electro-Optic Frequency Comb,” Phys. Rev. Appl. 10(3), 034012 (2018).
[Crossref]

Lisdat, C.

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74(3), 032503 (2006).
[Crossref]

Long, D. A.

Lou, X. T.

Luiten, A.

N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous Observation of Nonlinear Magneto-Optical Rotation in the Temporal and Spectral Domains with an Electro-Optic Frequency Comb,” Phys. Rev. Appl. 10(3), 034012 (2018).
[Crossref]

Luiten, A. N.

N. B. Hebert, V. Michaud-Belleau, C. Perrella, G. W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J. D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23(21), 27806–27818 (2015).
[Crossref]

Lukin, M. D.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A 80(4), 041805 (2009).
[Crossref]

Ma, L.-S.

Maxwell, S. E.

McGloin, D.

D. McGloin, M. H. Dunn, and D. J. Fulton, “Polarization effects in electromagnetically induced transparency,” Phys. Rev. A 62(5), 053802 (2000).
[Crossref]

Meek, S. A.

Meschede, D.

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz,” Phys. Rev. A 56(2), R1063–R1066 (1997).
[Crossref]

Michaud-Belleau, V.

N. B. Hebert, V. Michaud-Belleau, C. Perrella, G. W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J. D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23(21), 27806–27818 (2015).
[Crossref]

Mikhailov, E. E.

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

Millot, G.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Moon, H. S.

T. Jeong, I.-H. Bae, and H. S. Moon, “Noise filtering via electromagnetically induced transparency,” Opt. Commun. 383, 31–35 (2017).
[Crossref]

Nagel, A.

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz,” Phys. Rev. A 56(2), R1063–R1066 (1997).
[Crossref]

Nakagawa, K.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
[Crossref]

Neill, J. L.

Nikonov, D. E.

D. E. Nikonov, U. W. Rathe, M. O. Scully, S. Y. Zhu, E. S. Fry, X. F. Li, G. G. Padmabandu, and M. Fleischhauer, “Atomic coherence effects within the sodium D1 manifold. II. Coherent optical pumping,” Quantum Opt. 6(4), 245–260 (1994).
[Crossref]

Ohtsu, M.

M. Kourogi, T. Enami, and M. Ohtsu, “A monolithic optical frequency comb generator,” IEEE Photonics Technol. Lett. 6(2), 214–217 (1994).
[Crossref]

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
[Crossref]

Padmabandu, G. G.

D. E. Nikonov, U. W. Rathe, M. O. Scully, S. Y. Zhu, E. S. Fry, X. F. Li, G. G. Padmabandu, and M. Fleischhauer, “Atomic coherence effects within the sodium D1 manifold. II. Coherent optical pumping,” Quantum Opt. 6(4), 245–260 (1994).
[Crossref]

Pan, W.

Papp, S. B.

Pate, B. H.

J. L. Neill, B. J. Harris, A. L. Steber, K. O. Douglass, D. F. Plusquellic, and B. H. Pate, “Segmented chirped-pulse Fourier transform submillimeter spectroscopy for broadband gas analysis,” Opt. Express 21(17), 19743–19749 (2013).
[Crossref]

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum. 79(5), 053103 (2008).
[Crossref]

Perrella, C.

N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous Observation of Nonlinear Magneto-Optical Rotation in the Temporal and Spectral Domains with an Electro-Optic Frequency Comb,” Phys. Rev. Appl. 10(3), 034012 (2018).
[Crossref]

N. B. Hebert, V. Michaud-Belleau, C. Perrella, G. W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

Phillips, D. F.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A 80(4), 041805 (2009).
[Crossref]

Picqué, N.

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free Fourier transform spectroscopy,” Opt. Lett. 43(1), 162–165 (2018).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Pitois, S.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Plusquellic, D. F.

Pustelny, S.

N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous Observation of Nonlinear Magneto-Optical Rotation in the Temporal and Spectral Domains with an Electro-Optic Frequency Comb,” Phys. Rev. Appl. 10(3), 034012 (2018).
[Crossref]

Rathe, U. W.

D. E. Nikonov, U. W. Rathe, M. O. Scully, S. Y. Zhu, E. S. Fry, X. F. Li, G. G. Padmabandu, and M. Fleischhauer, “Atomic coherence effects within the sodium D1 manifold. II. Coherent optical pumping,” Quantum Opt. 6(4), 245–260 (1994).
[Crossref]

Reed, Z. D.

Rostovtsev, Y. V.

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

V. A. Sautenkov, Y. V. Rostovtsev, C. Y. Ye, G. R. Welch, O. Kocharovskaya, and M. O. Scully, “Electromagnetically induced transparency in rubidium vapor prepared by a comb of short optical pulses,” Phys. Rev. A 71(6), 063804 (2005).
[Crossref]

Sautenkov, V. A.

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

V. A. Sautenkov, Y. V. Rostovtsev, C. Y. Ye, G. R. Welch, O. Kocharovskaya, and M. O. Scully, “Electromagnetically induced transparency in rubidium vapor prepared by a comb of short optical pulses,” Phys. Rev. A 71(6), 063804 (2005).
[Crossref]

Schnatz, H.

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74(3), 032503 (2006).
[Crossref]

Scully, M. O.

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

V. A. Sautenkov, Y. V. Rostovtsev, C. Y. Ye, G. R. Welch, O. Kocharovskaya, and M. O. Scully, “Electromagnetically induced transparency in rubidium vapor prepared by a comb of short optical pulses,” Phys. Rev. A 71(6), 063804 (2005).
[Crossref]

D. E. Nikonov, U. W. Rathe, M. O. Scully, S. Y. Zhu, E. S. Fry, X. F. Li, G. G. Padmabandu, and M. Fleischhauer, “Atomic coherence effects within the sodium D1 manifold. II. Coherent optical pumping,” Quantum Opt. 6(4), 245–260 (1994).
[Crossref]

Shahriar, M. S.

S. Ezekiel, S. P. Smith, M. S. Shahriar, and P. R. Hemmer, “New opportunities in fiberoptic sensors,” J. Lightwave Technol. 13(7), 1189–1192 (1995).
[Crossref]

Shipman, S. T.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum. 79(5), 053103 (2008).
[Crossref]

Silsbee, H. B.

Y. W. Chan, V. W. Cohen, and H. B. Silsbee, “Measurement of hyperfine structure in ground states of 39K, 41K and 23Na,” Bull. Am. Phys. Soc. 15, 1521 (1970).

Smith, S. P.

S. Ezekiel, S. P. Smith, M. S. Shahriar, and P. R. Hemmer, “New opportunities in fiberoptic sensors,” J. Lightwave Technol. 13(7), 1189–1192 (1995).
[Crossref]

Stace, T. M.

N. B. Hebert, V. Michaud-Belleau, C. Perrella, G. W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

Steber, A. L.

Tiemann, E.

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74(3), 032503 (2006).
[Crossref]

Torres-Company, V.

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

Truong, G. W.

N. B. Hebert, V. Michaud-Belleau, C. Perrella, G. W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

Van Camp, M.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A 80(4), 041805 (2009).
[Crossref]

Walsworth, R. L.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A 80(4), 041805 (2009).
[Crossref]

Wang, S.

Wang, T.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A 80(4), 041805 (2009).
[Crossref]

Weiner, A. M.

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

Welch, G. R.

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

V. A. Sautenkov, Y. V. Rostovtsev, C. Y. Ye, G. R. Welch, O. Kocharovskaya, and M. O. Scully, “Electromagnetically induced transparency in rubidium vapor prepared by a comb of short optical pulses,” Phys. Rev. A 71(6), 063804 (2005).
[Crossref]

Wilson, N.

N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous Observation of Nonlinear Magneto-Optical Rotation in the Temporal and Spectral Domains with an Electro-Optic Frequency Comb,” Phys. Rev. Appl. 10(3), 034012 (2018).
[Crossref]

Wynands, R.

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz,” Phys. Rev. A 56(2), R1063–R1066 (1997).
[Crossref]

Xiao, Y.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A 80(4), 041805 (2009).
[Crossref]

Xu, B.

Xu, B. X.

Yan, L.

Yan, M.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Yan, X.

Ye, C. Y.

V. A. Sautenkov, Y. V. Rostovtsev, C. Y. Ye, G. R. Welch, O. Kocharovskaya, and M. O. Scully, “Electromagnetically induced transparency in rubidium vapor prepared by a comb of short optical pulses,” Phys. Rev. A 71(6), 063804 (2005).
[Crossref]

Ye, J.

Yelin, S. F.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A 80(4), 041805 (2009).
[Crossref]

Yi, X.

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time,” Light: Sci. Appl. 4(6), e300 (2015).
[Crossref]

Yuan, Z. Y.

Zhang, A.

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

Zhang, X.

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time,” Light: Sci. Appl. 4(6), e300 (2015).
[Crossref]

Zhu, S. Y.

D. E. Nikonov, U. W. Rathe, M. O. Scully, S. Y. Zhu, E. S. Fry, X. F. Li, G. G. Padmabandu, and M. Fleischhauer, “Atomic coherence effects within the sodium D1 manifold. II. Coherent optical pumping,” Quantum Opt. 6(4), 245–260 (1994).
[Crossref]

Zou, X.

Zubairy, M. S.

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

Bull. Am. Phys. Soc. (1)

Y. W. Chan, V. W. Cohen, and H. B. Silsbee, “Measurement of hyperfine structure in ground states of 39K, 41K and 23Na,” Bull. Am. Phys. Soc. 15, 1521 (1970).

IEEE J. Quantum Electron. (1)

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Kourogi, T. Enami, and M. Ohtsu, “A monolithic optical frequency comb generator,” IEEE Photonics Technol. Lett. 6(2), 214–217 (1994).
[Crossref]

J. Lightwave Technol. (1)

S. Ezekiel, S. P. Smith, M. S. Shahriar, and P. R. Hemmer, “New opportunities in fiberoptic sensors,” J. Lightwave Technol. 13(7), 1189–1192 (1995).
[Crossref]

J. Mol. Spectrosc. (1)

A. J. Fleisher, D. A. Long, and J. T. Hodges, “Quantitative modeling of complex molecular response in coherent cavity-enhanced dual-comb spectroscopy,” J. Mol. Spectrosc. 352, 26–35 (2018).
[Crossref]

Laser Photonics Rev. (1)

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

Light: Sci. Appl. (1)

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time,” Light: Sci. Appl. 4(6), e300 (2015).
[Crossref]

Nat. Photonics (1)

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Opt. Commun. (1)

T. Jeong, I.-H. Bae, and H. S. Moon, “Noise filtering via electromagnetically induced transparency,” Opt. Commun. 383, 31–35 (2017).
[Crossref]

Opt. Express (6)

Opt. Lett. (7)

Optica (1)

Phys. Rev. A (7)

D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Multiplexed sub-Doppler spectroscopy with an optical frequency comb,” Phys. Rev. A 94(6), 061801 (2016).
[Crossref]

V. A. Sautenkov, Y. V. Rostovtsev, C. Y. Ye, G. R. Welch, O. Kocharovskaya, and M. O. Scully, “Electromagnetically induced transparency in rubidium vapor prepared by a comb of short optical pulses,” Phys. Rev. A 71(6), 063804 (2005).
[Crossref]

S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74(3), 032503 (2006).
[Crossref]

D. McGloin, M. H. Dunn, and D. J. Fulton, “Polarization effects in electromagnetically induced transparency,” Phys. Rev. A 62(5), 053802 (2000).
[Crossref]

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz,” Phys. Rev. A 56(2), R1063–R1066 (1997).
[Crossref]

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A 80(4), 041805 (2009).
[Crossref]

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

Phys. Rev. Appl. (2)

N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous Observation of Nonlinear Magneto-Optical Rotation in the Temporal and Spectral Domains with an Electro-Optic Frequency Comb,” Phys. Rev. Appl. 10(3), 034012 (2018).
[Crossref]

N. B. Hebert, V. Michaud-Belleau, C. Perrella, G. W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

Quantum Opt. (1)

D. E. Nikonov, U. W. Rathe, M. O. Scully, S. Y. Zhu, E. S. Fry, X. F. Li, G. G. Padmabandu, and M. Fleischhauer, “Atomic coherence effects within the sodium D1 manifold. II. Coherent optical pumping,” Quantum Opt. 6(4), 245–260 (1994).
[Crossref]

Rev. Sci. Instrum. (2)

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum. 79(5), 053103 (2008).
[Crossref]

I. A. Finneran, D. B. Holland, P. B. Carroll, and G. A. Blake, “A direct digital synthesis chirped pulse Fourier transform microwave spectrometer,” Rev. Sci. Instrum. 84(8), 083104 (2013).
[Crossref]

Other (1)

“AD9914 Data Sheet”, retrieved 12 July 2019, https://www.analog.com/media/en/technical-documentation/data-sheets/AD9914.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Energy level diagram for 39K. The upper state, 42P1/2, splitting is 55.5 MHz while the lower state, 42S1/2, splitting is 461.7 MHz [23]. (b) Direct digital synthesizer (DDS) architecture for chirp generation. A low jitter digital gate delay generator is used to control the chirp repetition rate (frep). (c) Experimental schematic. The probe laser is divided into probe and local oscillator legs in a self-heterodyne configuration. The probe comb is generated by an electro-optic phase modulator (PM) driven with an RF source (either the arbitrary waveform generator or a direct digital synthesizer). An acousto-optic modulator (AOM) is used to separate the positive and negative order comb teeth in the resulting interferogram and as an actuator for the phase lock. This phase lock (using a phase-frequency detector, PFD, and voltage-controlled oscillator, VCO) cancels out thermal and mechanical fluctuations between the probe and local oscillator legs and allows for coherent averaging.
Fig. 2.
Fig. 2. (Lower panels) Magnitude of the Fourier transform of typical radiofrequency outputs from the direct digital synthesizer (left) and arbitrary waveform generator (right). Each trace contained 5×106 samples recorded at 5×109 samples per second. The resulting radiofrequency combs span 200 MHz to 650 MHz with a spacing of 200 kHz. (Upper panels) These panels give a zoomed-in-view. The relative standard deviations of the shown 11 comb teeth are 1.4% (left) and 1.0% (right).
Fig. 3.
Fig. 3. Electromagnetically induced transparency (EIT) and hyperfine pumping spectra for the 39K and 41K D1 transitions in the evacuated gas cell using the arbitrary waveform generator (AWG) and direct digital synthesizer (DDS) for comb generation. The x-axis is given as detuning relative to the carrier. The cell was held near 37 °C and contained potassium at natural isotopic abundance. The shown spectra were recorded with a comb tooth spacing of 200 kHz. One thousand interferograms were coherently averaged in the time domain before being Fourier transformed and normalized to produce a spectrum. Each interferogram contained 5×106 samples recorded at 5×109 samples per second. Ten of these spectra were then averaged to produce the shown traces.
Fig. 4.
Fig. 4. Typical ultrahigh resolution optical frequency combs containing 400 comb teeth spaced at 100 Hz. The x-axis is given as detuning relative to the center of the frequency comb which is located 461.73 MHz from the carrier. The top comb was generated via direct digital synthesis while the bottom comb was generated with the arbitrary waveform generator. The shown self-heterodyne spectra are the average of five off-resonance frequency domain traces. Each component trace was the magnitude of the Fourier transform of one thousand coherently averaged interferograms which contained 5×107 samples recorded at 1×109 samples per second. The inset shows a zoomed-in-view of the optical frequency combs. Note that the comb teeth are resolution bandwidth limited. The relative standard deviation of the magnitudes of the twenty-one comb teeth shown in the inset are 1.2% (direct digital synthesizer, top) and 1.7% (arbitrary waveform generator, bottom).
Fig. 5.
Fig. 5. Electromagnetically induced transparency (EIT) spectrum for the 39K D1 transition in the buffer gas cell using the arbitrary waveform generator (AWG) and direct digital synthesizer (DDS) for comb generation. The x-axis is given as detuning relative to the carrier. The DDS trace was shifted down vertically one division for clarity. The cell contained 2.67 kPa of argon buffer gas and was held near 36 °C. The shown spectra were recorded with a comb tooth spacing of 100 Hz. One thousand interferograms were coherently averaged in the time domain before being Fourier transformed and normalized to produce a spectrum. Each interferogram contained 5×107 samples recorded at 1×109 samples per second. Ten of these spectra were then averaged to produce the shown traces. The differences in the baseline curvature are likely due to temporal variations of the normalization procedure rather than due to inherent differences between the AWG and DDS.

Metrics