Abstract

We report 190-mJ pulses with spectral content supporting sub-ps pulse-duration at a 10 Hz repetition rate generated by a cryogenically-cooled, bulk Yb:YLF laser amplifier system. The amplifier system relies on a chirped pulse amplification architecture and consists of a fiber front-end, a regenerative amplifier, and two 4-pass amplifiers. The fiber front-end delivers 15-nJ, 1-ns stretched seed pulses, which are first amplified to 13-mJ pulse energy inside a Yb:YLF regenerative amplifier. Then the pulses are boosted further to 115 mJ and 190 mJ in two consecutive 4-pass amplifiers. To our knowledge, these are the highest pulse energies reported from Yb:YLF based amplifiers to date. We foresee shortening the pulsewidths to sub-400-fs range in future studies.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
20-mJ, sub-ps pulses at up to 70 W average power from a cryogenic Yb:YLF regenerative amplifier

Umit Demirbas, Huseyin Cankaya, Yi Hua, Jelto Thesinga, Mikhail Pergament, and Franz X. Kärtner
Opt. Express 28(2) 2466-2479 (2020)

30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier

Junji Kawanaka, Koichi Yamakawa, Hajime Nishioka, and Ken-ichi Ueda
Opt. Lett. 28(21) 2121-2123 (2003)

Multi-millijoule, diode-pumped, cryogenically-cooled Yb:KY(WO4)2 chirped-pulse regenerative amplifier

K. Ogawa, Y. Akahane, M. Aoyama, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, and K. Yamakawa
Opt. Express 15(14) 8598-8602 (2007)

References

  • View by:
  • |
  • |
  • |

  1. L. E. Zapata, F. Reichert, M. Hemmer, and F. X. Kärtner, “250 W average power, 100 kHz repetition rate cryogenic Yb:YAG amplifier for OPCPA pumping,” Opt. Lett. 41(3), 492–495 (2016).
    [Crossref]
  2. K.-H. Hong, C.-J. Lai, A. Siddiqui, and F. X. Kärtner, “130-W picosecond green laser based on a frequency-doubled hybrid cryogenic Yb:YAG amplifier,” Opt. Express 17(19), 16911–16919 (2009).
    [Crossref]
  3. X. Délen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett. 38(2), 109–111 (2013).
    [Crossref]
  4. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
    [Crossref]
  5. A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [Crossref]
  6. J. Brons, V. Pervak, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, “Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator,” Opt. Lett. 41(15), 3567–3570 (2016).
    [Crossref]
  7. T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381–1384 (2017).
    [Crossref]
  8. R. L. Aggarwala, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
    [Crossref]
  9. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [Crossref]
  10. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [Crossref]
  11. L. E. Zapata, H. Lin, A.-L. Calendron, H. Cankaya, M. Hemmer, F. Reichert, W. R. Huang, E. Granados, K. H. Hong, and F. X. Kärtner, “Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers,” Opt. Lett. 40(11), 2610–2613 (2015).
    [Crossref]
  12. D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications [Invited],” Opt. Mater. Express 1(3), 434–450 (2011).
    [Crossref]
  13. L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
    [Crossref]
  14. N. Ter-Gabrielan, V. Fromzel, T. Sanamyan, and M. Dubinskii, “Highly-efficient Q-switched Yb:YLF laser at 995 nm with a second harmonic conversion,” Opt. Mater. Express 7(7), 2396–2403 (2017).
    [Crossref]
  15. D. E. Miller, L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system,” Opt. Lett. 37(13), 2700–2702 (2012).
    [Crossref]
  16. J. Kawanaka, K. Yamakawa, H. Nishioka, and K.-I. Ueda, “30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier,” Opt. Lett. 28(21), 2121–2123 (2003).
    [Crossref]
  17. K. Ogawa, Y. Akahane, and K. Yamakawa, in CLEO: 2011 - Laser Science to Photonic Applications, 2011), 1–2.
  18. Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tünnermann, F. X. Kärtner, and G. Chang, “87-W 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: yttrium lithium fluoride amplifier,” Opt. Lett. 43(8), 1686–1689 (2018).
    [Crossref]
  19. M. Hemmer, L. E. Zapata, Y. Hua, and F. X. Kärtner, in Lasers Congress 2016 (ASSL, LSC, LAC), OSA Technical Digest (online) (Optical Society of America, 2016), ATh4A.3.

2018 (1)

2017 (2)

2016 (2)

2015 (1)

2013 (1)

2012 (1)

2011 (1)

2010 (1)

2009 (1)

2007 (2)

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

2005 (2)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

R. L. Aggarwala, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

2003 (1)

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Aggarwala, R. L.

R. L. Aggarwala, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Akahane, Y.

K. Ogawa, Y. Akahane, and K. Yamakawa, in CLEO: 2011 - Laser Science to Photonic Applications, 2011), 1–2.

Alismail, A.

Aubry, N.

Balembois, F.

Barros, H. G.

Bauer, D.

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Brons, J.

Brown, D. C.

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

Calendron, A.-L.

Cankaya, H.

Chang, G.

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Délen, X.

Didierjean, J.

Dubinskii, M.

Eidam, T.

Fan, T. Y.

D. E. Miller, L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system,” Opt. Lett. 37(13), 2700–2702 (2012).
[Crossref]

D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications [Invited],” Opt. Mater. Express 1(3), 434–450 (2011).
[Crossref]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwala, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Fattahi, H.

Fromzel, V.

Georges, P.

Giesen, A.

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Gorjan, M.

Granados, E.

Hemmer, M.

Hong, K. H.

Hong, K.-H.

Hönninger, C.

Hua, Y.

Huang, W. R.

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Kärtner, F. X.

Kaumanns, M.

Kawanaka, J.

Krausz, F.

Lai, C.-J.

Limpert, J.

Lin, H.

Liu, W.

Major, Z.

Martial, I.

Metzger, T.

Miller, D.

Miller, D. E.

Mottay, E.

Nishioka, H.

Nubbemeyer, T.

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwala, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Ogawa, K.

K. Ogawa, Y. Akahane, and K. Yamakawa, in CLEO: 2011 - Laser Science to Photonic Applications, 2011), 1–2.

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Pervak, V.

Pronin, O.

Rand, D.

Reichert, F.

Ripin, D. J.

D. E. Miller, L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system,” Opt. Lett. 37(13), 2700–2702 (2012).
[Crossref]

D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications [Invited],” Opt. Mater. Express 1(3), 434–450 (2011).
[Crossref]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwala, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Sanamyan, T.

Schimpf, D. N.

Siddiqui, A.

Speiser, J.

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Sutter, D.

Ter-Gabrielan, N.

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Tünnermann, A.

Ueda, K.-I.

Ueffing, M.

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Yamakawa, K.

Zaouter, Y.

Zapata, L. E.

Zhou, G.

Appl. Phys. B (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

J. Appl. Phys. (1)

R. L. Aggarwala, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Opt. Express (1)

Opt. Lett. (9)

J. Brons, V. Pervak, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, “Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator,” Opt. Lett. 41(15), 3567–3570 (2016).
[Crossref]

T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381–1384 (2017).
[Crossref]

J. Kawanaka, K. Yamakawa, H. Nishioka, and K.-I. Ueda, “30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier,” Opt. Lett. 28(21), 2121–2123 (2003).
[Crossref]

X. Délen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett. 38(2), 109–111 (2013).
[Crossref]

L. E. Zapata, H. Lin, A.-L. Calendron, H. Cankaya, M. Hemmer, F. Reichert, W. R. Huang, E. Granados, K. H. Hong, and F. X. Kärtner, “Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers,” Opt. Lett. 40(11), 2610–2613 (2015).
[Crossref]

L. E. Zapata, F. Reichert, M. Hemmer, and F. X. Kärtner, “250 W average power, 100 kHz repetition rate cryogenic Yb:YAG amplifier for OPCPA pumping,” Opt. Lett. 41(3), 492–495 (2016).
[Crossref]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref]

D. E. Miller, L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system,” Opt. Lett. 37(13), 2700–2702 (2012).
[Crossref]

Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tünnermann, F. X. Kärtner, and G. Chang, “87-W 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: yttrium lithium fluoride amplifier,” Opt. Lett. 43(8), 1686–1689 (2018).
[Crossref]

Opt. Mater. Express (2)

Other (2)

K. Ogawa, Y. Akahane, and K. Yamakawa, in CLEO: 2011 - Laser Science to Photonic Applications, 2011), 1–2.

M. Hemmer, L. E. Zapata, Y. Hua, and F. X. Kärtner, in Lasers Congress 2016 (ASSL, LSC, LAC), OSA Technical Digest (online) (Optical Society of America, 2016), ATh4A.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of the cryogenically cooled Yb:YLF amplifier system consisting of an Yb:fiber front-end, a regenerative amplifier, and two 4-pass amplifiers. The layout of the two 4-pass amplifiers is illustrated in more details. FR, λ/2, TFP, HR, CHR, DM, λ/4, Tel. stand for Faraday rotator, a half-wave plate, thin-film polarizer, high-reflector, curved high-reflector, dichroic mirror, quarter wave-plate, and telescope; respectively. In the first 4-pass amplifier, the 0.5% Yb doped, 25-mm long YLF crystal is pumped from both sides by recycling the unabsorbed pump light. In the second 4-pass amplifier, CHR is replaced by a beam block to avoid recycling of the pump beam. Both amplifiers are pumped at 940 nm.
Fig. 2.
Fig. 2. (a) Spectra of the fiber front-end and regenerative amplifier (regen.) and emission cross- section of Yb:YLF for the electric field plane parallel to a-axis at 80 K. (b) Pulse energy measurement of the regenerative amplifier over 4 hours and near field beam profile at the output of the regenerative amplifier (inset).
Fig. 3.
Fig. 3. (a) Pulse energy measurement with respect to pump fluence for the 4-pass amplifiers and near and far- field beam profiles of the second 4-pass amplifier with 190-mJ output pulse energy (insets). (b) Pulse energy measurement of the first 4-pass amplifier over ∼4 hours, near and far- field image of the beam profile (insets).
Fig. 4.
Fig. 4. (a) Spectra of the first (1st 4-pass) and the second four pass amplifiers (2nd 4-pass) (b) Auto-correlation trace of the compressed pulses from the first 4-pass amplifier and transform-limited pulse duration (inset).

Metrics