Abstract

We report a technique based upon the cavity ringdown method that enables the characterization of the Brillouin gain coefficient directly in a laser cavity. Material gain, optical cavity parameters, and lasing properties can be extracted from measurements within a single experiment.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Pulsed, single-mode cavity ringdown spectroscopy

Roger D. van Zee, Joseph T. Hodges, and J. Patrick Looney
Appl. Opt. 38(18) 3951-3960 (1999)

Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection

Zhixin Li, Weiguang Ma, Xiaofang Fu, Wei Tan, Gang Zhao, Lei Dong, Lei Zhang, Wangbao Yin, and Suotang Jia
Opt. Express 21(15) 17961-17971 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10- 16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
    [Crossref]
  2. K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
    [Crossref]
  3. J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
    [Crossref]
  4. P. J. Rodrigo and C. Pedersen, “Reduction of phase-induced intensity noise in a fiber-based coherent doppler lidar using polarization control,” Opt. Express 18(5), 5320–5327 (2010).
    [Crossref]
  5. E. Ippen and R. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21(11), 539–541 (1972).
    [Crossref]
  6. S. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16(6), 393–395 (1991).
    [Crossref]
  7. W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
    [Crossref]
  8. M.-G. Suh, Q.-F. Yang, and K. J. Vahala, “Phonon-Limited-Linewidth of Brillouin Lasers at Cryogenic Temperatures,” Phys. Rev. Lett. 119(14), 143901 (2017).
    [Crossref]
  9. A. Sebastian, I. V. Balakireva, S. Fresnel, S. Trebaol, and P. Besnard, “Relative intensity noise in a multi-stokes brillouin laser,” Opt. Express 26(26), 33700–33711 (2018).
    [Crossref]
  10. G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century, (Springer, 2000), pp. 195–211.
  11. N. Shibata, R. G. Waarts, and R. P. Braun, “Brillouin-gain spectra for single-mode fibers having pure-silica, geo 2-doped, and p 2 o 5-doped cores,” Opt. Lett. 12(4), 269–271 (1987).
    [Crossref]
  12. R. Tkach, A. Chraplyvy, and R. Derosier, “Spontaneous brillouin scattering for single-mode optical-fibre characterisation,” Electron. Lett. 22(19), 1011–1013 (1986).
    [Crossref]
  13. D. Cotter, “Observation of stimulated brillouin scattering in low-loss silica fibre at 1.3 μm,” Electron. Lett. 18(12), 495–496 (1982).
    [Crossref]
  14. K. S. Abedin, “Observation of strong stimulated brillouin scattering in single-mode as 2 se 3 chalcogenide fiber,” Opt. Express 13(25), 10266–10271 (2005).
    [Crossref]
  15. Y. Dumeige, S. Trebaol, L. Ghişa, T. K. N. Nguyen, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” J. Opt. Soc. Am. B 25(12), 2073–2080 (2008).
    [Crossref]
  16. G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, M. Dispenza, and A. Secchi, “Planar coupling to high-q lithium niobate disk resonators,” Opt. Express 19(4), 3651–3656 (2011).
    [Crossref]
  17. R. Henriet, G. Lin, A. Coillet, M. Jacquot, L. Furfaro, L. Larger, and Y. K. Chembo, “Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor,” Opt. Lett. 40(7), 1567–1570 (2015).
    [Crossref]
  18. A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-q wgm microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
    [Crossref]
  19. S. Trebaol, Y. Dumeige, and P. Féron, “Ringing phenomenon in coupled cavities: Application to modal coupling in whispering-gallery-mode resonators,” Phys. Rev. A 81(4), 043828 (2010).
    [Crossref]
  20. A. A. Savchenkov, A. B. Matsko, M. Mohageg, and L. Maleki, “Ringdown spectroscopy of stimulated raman scattering in a whispering gallery mode resonator,” Opt. Lett. 32(5), 497–499 (2007).
    [Crossref]
  21. A. Rasoloniaina, V. Huet, M. Thual, S. Balac, P. Féron, and Y. Dumeige, “Analysis of third-order nonlinearity effects in very high-q wgm resonator cavity ringdown spectroscopy,” J. Opt. Soc. Am. B 32(3), 370–378 (2015).
    [Crossref]
  22. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, 1984).
  23. A. Yariv, “Universal relations for coupling of optical power betweenmicroresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [Crossref]
  24. P. D. Dragic, “Brillouin gain reduction via b2o3 doping,” J. Lightwave Technol. 29(7), 967–973 (2011).
    [Crossref]
  25. N. Lagakos, J. A. Bucaro, and R. Hughes, “Acoustic sensitivity predictions of single-mode optical fibers using Brillouin scattering,” Appl. Opt. 19(21), 3668 (1980).
    [Crossref]
  26. “Corning smf-28 ultra optical fiber,” https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf , note = Accessed 24 May 2019.

2018 (1)

2017 (1)

M.-G. Suh, Q.-F. Yang, and K. J. Vahala, “Phonon-Limited-Linewidth of Brillouin Lasers at Cryogenic Temperatures,” Phys. Rev. Lett. 119(14), 143901 (2017).
[Crossref]

2016 (1)

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

2015 (3)

2012 (1)

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

2011 (3)

2010 (2)

P. J. Rodrigo and C. Pedersen, “Reduction of phase-induced intensity noise in a fiber-based coherent doppler lidar using polarization control,” Opt. Express 18(5), 5320–5327 (2010).
[Crossref]

S. Trebaol, Y. Dumeige, and P. Féron, “Ringing phenomenon in coupled cavities: Application to modal coupling in whispering-gallery-mode resonators,” Phys. Rev. A 81(4), 043828 (2010).
[Crossref]

2008 (1)

2007 (1)

2005 (2)

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

K. S. Abedin, “Observation of strong stimulated brillouin scattering in single-mode as 2 se 3 chalcogenide fiber,” Opt. Express 13(25), 10266–10271 (2005).
[Crossref]

2000 (1)

A. Yariv, “Universal relations for coupling of optical power betweenmicroresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

1991 (1)

1987 (1)

1986 (1)

R. Tkach, A. Chraplyvy, and R. Derosier, “Spontaneous brillouin scattering for single-mode optical-fibre characterisation,” Electron. Lett. 22(19), 1011–1013 (1986).
[Crossref]

1982 (1)

D. Cotter, “Observation of stimulated brillouin scattering in low-loss silica fibre at 1.3 μm,” Electron. Lett. 18(12), 495–496 (1982).
[Crossref]

1980 (1)

1972 (1)

E. Ippen and R. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21(11), 539–541 (1972).
[Crossref]

Abedin, K. S.

Agrawal, G. P.

G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century, (Springer, 2000), pp. 195–211.

Alnis, J.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Balac, S.

Balakireva, I. V.

Baynes, F. N.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

Becker, J.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

Berneschi, S.

Besnard, P.

Braun, R. P.

Bucaro, J. A.

Chembo, Y. K.

Chraplyvy, A.

R. Tkach, A. Chraplyvy, and R. Derosier, “Spontaneous brillouin scattering for single-mode optical-fibre characterisation,” Electron. Lett. 22(19), 1011–1013 (1986).
[Crossref]

Coillet, A.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

R. Henriet, G. Lin, A. Coillet, M. Jacquot, L. Furfaro, L. Larger, and Y. K. Chembo, “Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor,” Opt. Lett. 40(7), 1567–1570 (2015).
[Crossref]

Cole, D. C.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

Conti, G. N.

Cosi, F.

Cotter, D.

D. Cotter, “Observation of stimulated brillouin scattering in low-loss silica fibre at 1.3 μm,” Electron. Lett. 18(12), 495–496 (1982).
[Crossref]

Derosier, R.

R. Tkach, A. Chraplyvy, and R. Derosier, “Spontaneous brillouin scattering for single-mode optical-fibre characterisation,” Electron. Lett. 22(19), 1011–1013 (1986).
[Crossref]

Diddams, S. A.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

Dispenza, M.

Dragic, P. D.

Droste, S.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Dumeige, Y.

A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-q wgm microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

A. Rasoloniaina, V. Huet, M. Thual, S. Balac, P. Féron, and Y. Dumeige, “Analysis of third-order nonlinearity effects in very high-q wgm resonator cavity ringdown spectroscopy,” J. Opt. Soc. Am. B 32(3), 370–378 (2015).
[Crossref]

S. Trebaol, Y. Dumeige, and P. Féron, “Ringing phenomenon in coupled cavities: Application to modal coupling in whispering-gallery-mode resonators,” Phys. Rev. A 81(4), 043828 (2010).
[Crossref]

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. N. Nguyen, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” J. Opt. Soc. Am. B 25(12), 2073–2080 (2008).
[Crossref]

Ezekiel, S.

Féron, P.

A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-q wgm microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

A. Rasoloniaina, V. Huet, M. Thual, S. Balac, P. Féron, and Y. Dumeige, “Analysis of third-order nonlinearity effects in very high-q wgm resonator cavity ringdown spectroscopy,” J. Opt. Soc. Am. B 32(3), 370–378 (2015).
[Crossref]

S. Trebaol, Y. Dumeige, and P. Féron, “Ringing phenomenon in coupled cavities: Application to modal coupling in whispering-gallery-mode resonators,” Phys. Rev. A 81(4), 043828 (2010).
[Crossref]

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. N. Nguyen, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” J. Opt. Soc. Am. B 25(12), 2073–2080 (2008).
[Crossref]

Fox, R. W.

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10- 16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Fresnel, S.

Furfaro, L.

Geng, J.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Ghisa, L.

Grosche, G.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Hänsch, T. W.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Haus, H. A.

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, 1984).

Henriet, R.

Holzwarth, R.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Huet, V.

A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-q wgm microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

A. Rasoloniaina, V. Huet, M. Thual, S. Balac, P. Féron, and Y. Dumeige, “Analysis of third-order nonlinearity effects in very high-q wgm resonator cavity ringdown spectroscopy,” J. Opt. Soc. Am. B 32(3), 370–378 (2015).
[Crossref]

Hughes, R.

Ippen, E.

E. Ippen and R. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21(11), 539–541 (1972).
[Crossref]

Jacquot, M.

Jiang, S.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Jiang, Y.

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10- 16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Lagakos, N.

Larger, L.

Le Cren, E.

A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-q wgm microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Legero, T.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Lemke, N. D.

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10- 16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Lin, G.

Loh, W.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

Ludlow, A.

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10- 16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Ma, L.-S.

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10- 16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Maleki, L.

Matsko, A. B.

Michely, L.

A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-q wgm microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Mohageg, M.

Mortier, M.

A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-q wgm microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Nguyen, T. K. N.

A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-q wgm microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. N. Nguyen, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” J. Opt. Soc. Am. B 25(12), 2073–2080 (2008).
[Crossref]

Oates, C. W.

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10- 16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Papp, S. B.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

Pedersen, C.

Pelli, S.

Predehl, K.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Rasoloniaina, A.

A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-q wgm microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

A. Rasoloniaina, V. Huet, M. Thual, S. Balac, P. Féron, and Y. Dumeige, “Analysis of third-order nonlinearity effects in very high-q wgm resonator cavity ringdown spectroscopy,” J. Opt. Soc. Am. B 32(3), 370–378 (2015).
[Crossref]

Raupach, S. M.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Righini, G. C.

Rodrigo, P. J.

Savchenkov, A. A.

Schnatz, H.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Sebastian, A.

Secchi, A.

Sherman, J. A.

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10- 16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Shibata, N.

Smith, S.

Soria, S.

Spiegelberg, C.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Stolen, R.

E. Ippen and R. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21(11), 539–541 (1972).
[Crossref]

Suh, M.-G.

M.-G. Suh, Q.-F. Yang, and K. J. Vahala, “Phonon-Limited-Linewidth of Brillouin Lasers at Cryogenic Temperatures,” Phys. Rev. Lett. 119(14), 143901 (2017).
[Crossref]

Tavernier, H.

Terra, O.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Thual, M.

Tkach, R.

R. Tkach, A. Chraplyvy, and R. Derosier, “Spontaneous brillouin scattering for single-mode optical-fibre characterisation,” Electron. Lett. 22(19), 1011–1013 (1986).
[Crossref]

Trebaol, S.

Udem, T.

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Vahala, K. J.

M.-G. Suh, Q.-F. Yang, and K. J. Vahala, “Phonon-Limited-Linewidth of Brillouin Lasers at Cryogenic Temperatures,” Phys. Rev. Lett. 119(14), 143901 (2017).
[Crossref]

Waarts, R. G.

Yang, Q.-F.

M.-G. Suh, Q.-F. Yang, and K. J. Vahala, “Phonon-Limited-Linewidth of Brillouin Lasers at Cryogenic Temperatures,” Phys. Rev. Lett. 119(14), 143901 (2017).
[Crossref]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power betweenmicroresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

Zarinetchi, F.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Ippen and R. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21(11), 539–541 (1972).
[Crossref]

Electron. Lett. (3)

R. Tkach, A. Chraplyvy, and R. Derosier, “Spontaneous brillouin scattering for single-mode optical-fibre characterisation,” Electron. Lett. 22(19), 1011–1013 (1986).
[Crossref]

D. Cotter, “Observation of stimulated brillouin scattering in low-loss silica fibre at 1.3 μm,” Electron. Lett. 18(12), 495–496 (1982).
[Crossref]

A. Yariv, “Universal relations for coupling of optical power betweenmicroresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10- 16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

New J. Phys. (1)

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. A (1)

S. Trebaol, Y. Dumeige, and P. Féron, “Ringing phenomenon in coupled cavities: Application to modal coupling in whispering-gallery-mode resonators,” Phys. Rev. A 81(4), 043828 (2010).
[Crossref]

Phys. Rev. Lett. (1)

M.-G. Suh, Q.-F. Yang, and K. J. Vahala, “Phonon-Limited-Linewidth of Brillouin Lasers at Cryogenic Temperatures,” Phys. Rev. Lett. 119(14), 143901 (2017).
[Crossref]

Sci. Rep. (1)

A. Rasoloniaina, V. Huet, T. K. N. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-q wgm microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Science (1)

K. Predehl, G. Grosche, S. M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref]

Other (3)

G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century, (Springer, 2000), pp. 195–211.

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, 1984).

“Corning smf-28 ultra optical fiber,” https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf , note = Accessed 24 May 2019.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. a) Experimental setup for Brillouin gain cavity ringdown determination. EDFA: Erbium-doped fiber amplifier, VA: variable attenuator, PC: polarization controller, BOSA: Brillouin optical spectrum analyzer, PM : Powermeter. b) Spectral overview of the CRDM method. Pump laser line (blue), Brillouin gain curve (green), probed cavity mode (red) and probing laser line (yellow). $\nu_B$ corresponds to the Brillouin shift, where $\Delta\nu_{FSR}$ stands for the spectral spacing between cavity modes.
Fig. 2.
Fig. 2. Transient responses of the probed cavity mode for various laser pump powers. From a) to d) the resonator-coupling regime shifts with increasing pump power from under coupling ($P_{in}=13.8$ mW), critical coupling ($P_{in}=39.1$ mW), over coupling ($P_{in}=41.7$ mW) and selective amplification regime ($P_{in}=58.5$ mW). The sweeping speed extracted from the theoretical fit gives $\tilde{V_s}= 2.8 MHz/\mu s$
Fig. 3.
Fig. 3. Brillouin gain coefficient extracted from the CRDM signal for various input pump power. The mean value is equal to $g_B=1.94 \times 10^{-11} \pm 1.5 \times 10^{-12} m/W$. This measure of $g_B$ value is compared to other works in Table 2

Tables (2)

Tables Icon

Table 1. Material values for pure and 3 % G e O 2 doped silica fibers.

Tables Icon

Table 2. Comparison of g B values obtained for single mode silica fiber [26] in various works. SH stands for Self-Heterodyne.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

g B = 2 π n 7 p 12 2 c ρ 0 λ p 2 Δ ν B V A
g B ( ν ) = g B ( Δ ν B / 2 ) 2 ( ν ν B ) 2 + ( Δ ν B / 2 ) 2
1 τ = 1 τ 0 + 1 τ e
a 2 = 1 2 τ L / τ 0
a 2 = β × e α L L e g B P c a v L eff / A eff = a op 2 e g B P c a v L eff / A eff
g B = A e f f P c a v L eff ln a 2 a op 2

Metrics