Abstract

We present a study of computational through-wall imaging using a dynamically reconfigurable metasurface antenna (DMA). The DMA consists of a single-feed, electrically-large microstrip line, loaded with individually addressable metamaterial radiators. Each metamaterial resonator is integrated with a diode, enabling it to be switched on (radiating) or off (non-radiating) by an externally applied voltage. By switching subsets of the array of elements on or off, spatially diverse radiation patterns are formed that are scattered by the wall and structures beyond the wall. Images can be reconstructed from these measurements, using a combination of range migration algorithms and wall compensation algorithms, with minimal frequency bandwidth requirements; even single frequency measurements are possible in conjunction with the DMA. We investigate imaging through a variety of wall materials at K-band frequencies (18-26.5 GHz), including homogeneous media with known properties and inhomogeneous materials such as plywood. We further investigate single-frequency performance against full-bandwidth measurements. The DMA used here is electrically large in one dimension, over which many spatially diverse measurements can be taken. By scanning the DMA in the perpendicular direction, full two-dimensional scans can be acquired with minimal cost and time, making the one-dimensional DMA attractive as the basis for future through-wall scanning systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements

Aaron V. Diebold, Laura Pulido-Mancera, Timothy Sleasman, Michael Boyarsky, Mohammadreza F. Imani, and David R. Smith
J. Opt. Soc. Am. B 34(12) 2610-2623 (2017)

Single-frequency 3D synthetic aperture imaging with dynamic metasurface antennas

Michael Boyarsky, Timothy Sleasman, Laura Pulido-Mancera, Aaron V. Diebold, Mohammadreza F. Imani, and David R. Smith
Appl. Opt. 57(15) 4123-4134 (2018)

Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture

Aaron V. Diebold, Mohammadreza F. Imani, Timothy Sleasman, and David R. Smith
Appl. Opt. 57(9) 2142-2149 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
    [Crossref]
  2. E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51(8), 1690–1705 (2003).
    [Crossref]
  3. R. P. Dooley, “X-band holography,” Proc. IEEE 53(11), 1733–1735 (1965).
    [Crossref]
  4. T. Jin and A. Yarovoy, “A through-the-wall radar imaging method based on a realistic model,” Int. J. Antennas Propag. 2015, 1–8 (2015).
    [Crossref]
  5. M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,” IEEE Trans. Geosci. Remote. Sens. 46(6), 1589–1599 (2008).
    [Crossref]
  6. Y. S. Yoon and M. G. Amin, “High-resolution through-the-wall radar imaging using beamspace music,” IEEE Trans. Antennas Propag. 56(6), 1763–1774 (2008).
    [Crossref]
  7. Q. Huang, L. Qu, B. Wu, and G. Fang, “Uwb through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote. Sens. 48(3), 1408–1415 (2010).
    [Crossref]
  8. J. Peabody, G. L. Charvat, J. Goodwin, and M. Tobias, “Through-wall imaging radar, Tech. rep.,” Massachusetts Institute of Technology-Lincoln Laboratory Lexington United States (2012).
  9. W. Zhang and A. Hoorfar, “Three-dimensional synthetic aperture radar imaging through multilayered walls,” IEEE Trans. Antennas Propag. 62(1), 459–462 (2014).
    [Crossref]
  10. M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. on Image Process. 1(1), 64–76 (1992).
    [Crossref]
  11. M. Soumekh, Fourier Array Imaging (Prentice-Hall, Inc., 1994).
  12. M. Soumekh, Synthetic Aperture Radar Signal Processing (John Wiley & Sons, 1999).
  13. J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
    [Crossref]
  14. J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
    [Crossref]
  15. T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
    [Crossref]
  16. T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
    [Crossref]
  17. T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6(5), 054019 (2016).
    [Crossref]
  18. T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34(8), 1713–1726 (2017).
    [Crossref]
  19. A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57(9), 2142–2149 (2018).
    [Crossref]
  20. A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures,” Optica 5(12), 1529–1541 (2018).
    [Crossref]
  21. A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34(12), 2610–2623 (2017).
    [Crossref]
  22. T. Sleasman, M. Boyarsky, M. F. Imani, J. Gollub, and D. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33(6), 1098–1111 (2016).
    [Crossref]
  23. T. Fromenteze, E. L. Kpre, D. Carsenat, C. Decroze, and T. Sakamoto, “Single-shot compressive multiple-inputs multiple-outputs radar imaging using a two-port passive device,” IEEE Access 4, 1050–1060 (2016).
    [Crossref]
  24. L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33(10), 2082–2092 (2016).
    [Crossref]
  25. A. D. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. 34(1), 30–45 (1986).
    [Crossref]
  26. M. Boyarsky, T. Sleasman, L. Pulido-Mancera, A. V. Diebold, M. F. Imani, and D. R. Smith, “Single-frequency 3d synthetic aperture imaging with dynamic metasurface antennas,” Appl. Opt. 57(15), 4123–4134 (2018).
    [Crossref]
  27. M. F. Imani, T. Sleasman, and D. R. Smith, “Two-dimensional dynamic metasurface apertures for computational microwave imaging,” IEEE Antennas Wirel. Propag. Lett. 17(12), 2299–2303 (2018).
    [Crossref]
  28. R. Solimene, I. Catapano, G. Gennarelli, A. Cuccaro, A. Dell’Aversano, and F. Soldovieri, “Sar imaging algorithms and some unconventional applications: A unified mathematical overview,” IEEE Signal Process. Mag. 31(4), 90–98 (2014).
    [Crossref]
  29. J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-d radar imaging using range migration techniques,” IEEE Trans. Antennas Propag. 48(5), 728–737 (2000).
    [Crossref]
  30. R. Bamler, “A comparison of range-doppler and wavenumber domain sar focusing algorithms,” IEEE Trans. Geosci. Remote. Sens. 30(4), 706–713 (1992).
    [Crossref]
  31. T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. F. Imani, and D. R. Smith, “Single-frequency near-field mimo imaging,” in 2017 11th European Conference on Antennas and Propagation (EUCAP), (IEEE, 2017), pp. 1415–1418.
  32. P. C. Hansen, “Analysis of discrete ill-posed problems by means of the l-curve,” SIAM Rev. 34(4), 561–580 (1992).
    [Crossref]
  33. P. C. Hansen and D. P. O’Leary, “The use of the l-curve in the regularization of discrete ill-posed problems,” SIAM J. on Sci. Comput. 14(6), 1487–1503 (1993).
    [Crossref]
  34. G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
    [Crossref]
  35. K. A. Michalski and J. R. Mosig, “Multilayered media green’s functions in integral equation formulations,” IEEE Trans. Antennas Propag. 45(3), 508–519 (1997).
    [Crossref]
  36. W. C. Chew, Waves and fields in Inhomogeneous Media (IEEE, 1995).
  37. T. J. Cui and W. C. Chew, “Fast evaluation of sommerfeld integrals for em scattering and radiation by three-dimensional buried objects,” IEEE Trans. Geosci. Remote. Sens. 37(2), 887–900 (1999).
    [Crossref]
  38. M. Leigsnering, F. Ahmad, M. Amin, and A. Zoubir, “Multipath exploitation in through-the-wall radar imaging using sparse reconstruction,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 920–939 (2014).
    [Crossref]
  39. Y. S. Yoon and M. G. Amin, “Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging,” IEEE Trans. Geosci. Remote. Sens. 47(9), 3192–3208 (2009).
    [Crossref]
  40. M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential sar,” IEEE Trans. Geosci. Remote. Sens. 47(5), 1289–1296 (2009).
    [Crossref]
  41. H. Brunzell, “Detection of shallowly buried objects using impulse radar,” IEEE Trans. Geosci. Remote. Sens. 37(2), 875–886 (1999).
    [Crossref]
  42. T. M. Habashy, R. W. Groom, and B. R. Spies, “Beyond the born and rytov approximations: A nonlinear approach to electromagnetic scattering,” J. Geophys. Res.: Solid Earth 98(B2), 1759–1775 (1993).
    [Crossref]
  43. L.-P. Song, C. Yu, and Q. H. Liu, “Through-wall imaging (twi) by radar: 2-d tomographic results and analyses,” IEEE Trans. Geosci. Remote. Sens. 43(12), 2793–2798 (2005).
    [Crossref]
  44. F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41(1), 271–283 (2005).
    [Crossref]
  45. C. Thajudeen and A. Hoorfar, “A comparative study of wall parameter estimation and mitigation techniques,” in 2010 USNC/URSI Meeting, (2010).
  46. L. Li, W. Zhang, and F. Li, “A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics,” IEEE Trans. Geosci. Remote. Sens. 48(1), 423–431 (2010).
    [Crossref]
  47. C. A. Balanis, Advanced Engineering Eectromagnetics (John Wiley & Sons, 1999).
  48. F. Ahmad, M. G. Amin, and G. Mandapati, “Autofocusing of through-the-wall radar imagery under unknown wall characteristics,” IEEE Trans. on Image Process. 16(7), 1785–1795 (2007).
    [Crossref]
  49. V. H. Tang, A. Bouzerdoum, and S. L. Phung, “Multipolarization through-wall radar imaging using low-rank and jointly-sparse representations,” IEEE Trans. on Image Process. 27(4), 1763–1776 (2018).
    [Crossref]
  50. D. L. Marks, O. Yurduseven, and D. R. Smith, “Sparse blind deconvolution for imaging through layered media,” Optica 4(12), 1514–1521 (2017).
    [Crossref]
  51. G. Wang and M. G. Amin, “Imaging through unknown walls using different standoff distances,” IEEE Trans. Signal Process. 54(10), 4015–4025 (2006).
    [Crossref]
  52. K. M. Yemelyanov, N. Engheta, A. Hoorfar, and J. A. McVay, “Adaptive polarization contrast techniques for through-wall microwave imaging applications,” IEEE Trans. Geosci. Remote. Sens. 47(5), 1362–1374 (2009).
    [Crossref]

2018 (5)

2017 (4)

2016 (5)

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6(5), 054019 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. Gollub, and D. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33(6), 1098–1111 (2016).
[Crossref]

T. Fromenteze, E. L. Kpre, D. Carsenat, C. Decroze, and T. Sakamoto, “Single-shot compressive multiple-inputs multiple-outputs radar imaging using a two-port passive device,” IEEE Access 4, 1050–1060 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33(10), 2082–2092 (2016).
[Crossref]

2015 (3)

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

T. Jin and A. Yarovoy, “A through-the-wall radar imaging method based on a realistic model,” Int. J. Antennas Propag. 2015, 1–8 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref]

2014 (4)

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref]

R. Solimene, I. Catapano, G. Gennarelli, A. Cuccaro, A. Dell’Aversano, and F. Soldovieri, “Sar imaging algorithms and some unconventional applications: A unified mathematical overview,” IEEE Signal Process. Mag. 31(4), 90–98 (2014).
[Crossref]

M. Leigsnering, F. Ahmad, M. Amin, and A. Zoubir, “Multipath exploitation in through-the-wall radar imaging using sparse reconstruction,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 920–939 (2014).
[Crossref]

W. Zhang and A. Hoorfar, “Three-dimensional synthetic aperture radar imaging through multilayered walls,” IEEE Trans. Antennas Propag. 62(1), 459–462 (2014).
[Crossref]

2010 (2)

Q. Huang, L. Qu, B. Wu, and G. Fang, “Uwb through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote. Sens. 48(3), 1408–1415 (2010).
[Crossref]

L. Li, W. Zhang, and F. Li, “A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics,” IEEE Trans. Geosci. Remote. Sens. 48(1), 423–431 (2010).
[Crossref]

2009 (3)

K. M. Yemelyanov, N. Engheta, A. Hoorfar, and J. A. McVay, “Adaptive polarization contrast techniques for through-wall microwave imaging applications,” IEEE Trans. Geosci. Remote. Sens. 47(5), 1362–1374 (2009).
[Crossref]

Y. S. Yoon and M. G. Amin, “Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging,” IEEE Trans. Geosci. Remote. Sens. 47(9), 3192–3208 (2009).
[Crossref]

M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential sar,” IEEE Trans. Geosci. Remote. Sens. 47(5), 1289–1296 (2009).
[Crossref]

2008 (2)

M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,” IEEE Trans. Geosci. Remote. Sens. 46(6), 1589–1599 (2008).
[Crossref]

Y. S. Yoon and M. G. Amin, “High-resolution through-the-wall radar imaging using beamspace music,” IEEE Trans. Antennas Propag. 56(6), 1763–1774 (2008).
[Crossref]

2007 (1)

F. Ahmad, M. G. Amin, and G. Mandapati, “Autofocusing of through-the-wall radar imagery under unknown wall characteristics,” IEEE Trans. on Image Process. 16(7), 1785–1795 (2007).
[Crossref]

2006 (1)

G. Wang and M. G. Amin, “Imaging through unknown walls using different standoff distances,” IEEE Trans. Signal Process. 54(10), 4015–4025 (2006).
[Crossref]

2005 (2)

L.-P. Song, C. Yu, and Q. H. Liu, “Through-wall imaging (twi) by radar: 2-d tomographic results and analyses,” IEEE Trans. Geosci. Remote. Sens. 43(12), 2793–2798 (2005).
[Crossref]

F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41(1), 271–283 (2005).
[Crossref]

2003 (1)

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51(8), 1690–1705 (2003).
[Crossref]

2001 (1)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

2000 (1)

J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-d radar imaging using range migration techniques,” IEEE Trans. Antennas Propag. 48(5), 728–737 (2000).
[Crossref]

1999 (2)

T. J. Cui and W. C. Chew, “Fast evaluation of sommerfeld integrals for em scattering and radiation by three-dimensional buried objects,” IEEE Trans. Geosci. Remote. Sens. 37(2), 887–900 (1999).
[Crossref]

H. Brunzell, “Detection of shallowly buried objects using impulse radar,” IEEE Trans. Geosci. Remote. Sens. 37(2), 875–886 (1999).
[Crossref]

1997 (1)

K. A. Michalski and J. R. Mosig, “Multilayered media green’s functions in integral equation formulations,” IEEE Trans. Antennas Propag. 45(3), 508–519 (1997).
[Crossref]

1993 (2)

T. M. Habashy, R. W. Groom, and B. R. Spies, “Beyond the born and rytov approximations: A nonlinear approach to electromagnetic scattering,” J. Geophys. Res.: Solid Earth 98(B2), 1759–1775 (1993).
[Crossref]

P. C. Hansen and D. P. O’Leary, “The use of the l-curve in the regularization of discrete ill-posed problems,” SIAM J. on Sci. Comput. 14(6), 1487–1503 (1993).
[Crossref]

1992 (3)

R. Bamler, “A comparison of range-doppler and wavenumber domain sar focusing algorithms,” IEEE Trans. Geosci. Remote. Sens. 30(4), 706–713 (1992).
[Crossref]

P. C. Hansen, “Analysis of discrete ill-posed problems by means of the l-curve,” SIAM Rev. 34(4), 561–580 (1992).
[Crossref]

M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. on Image Process. 1(1), 64–76 (1992).
[Crossref]

1986 (1)

A. D. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. 34(1), 30–45 (1986).
[Crossref]

1965 (1)

R. P. Dooley, “X-band holography,” Proc. IEEE 53(11), 1733–1735 (1965).
[Crossref]

Ahmad, F.

M. Leigsnering, F. Ahmad, M. Amin, and A. Zoubir, “Multipath exploitation in through-the-wall radar imaging using sparse reconstruction,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 920–939 (2014).
[Crossref]

F. Ahmad, M. G. Amin, and G. Mandapati, “Autofocusing of through-the-wall radar imagery under unknown wall characteristics,” IEEE Trans. on Image Process. 16(7), 1785–1795 (2007).
[Crossref]

F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41(1), 271–283 (2005).
[Crossref]

Amin, M.

M. Leigsnering, F. Ahmad, M. Amin, and A. Zoubir, “Multipath exploitation in through-the-wall radar imaging using sparse reconstruction,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 920–939 (2014).
[Crossref]

Amin, M. G.

Y. S. Yoon and M. G. Amin, “Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging,” IEEE Trans. Geosci. Remote. Sens. 47(9), 3192–3208 (2009).
[Crossref]

Y. S. Yoon and M. G. Amin, “High-resolution through-the-wall radar imaging using beamspace music,” IEEE Trans. Antennas Propag. 56(6), 1763–1774 (2008).
[Crossref]

F. Ahmad, M. G. Amin, and G. Mandapati, “Autofocusing of through-the-wall radar imagery under unknown wall characteristics,” IEEE Trans. on Image Process. 16(7), 1785–1795 (2007).
[Crossref]

G. Wang and M. G. Amin, “Imaging through unknown walls using different standoff distances,” IEEE Trans. Signal Process. 54(10), 4015–4025 (2006).
[Crossref]

F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41(1), 271–283 (2005).
[Crossref]

Arnitz, D.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

Balanis, C. A.

C. A. Balanis, Advanced Engineering Eectromagnetics (John Wiley & Sons, 1999).

Bamler, R.

R. Bamler, “A comparison of range-doppler and wavenumber domain sar focusing algorithms,” IEEE Trans. Geosci. Remote. Sens. 30(4), 706–713 (1992).
[Crossref]

Bond, E. J.

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51(8), 1690–1705 (2003).
[Crossref]

Bouzerdoum, A.

V. H. Tang, A. Bouzerdoum, and S. L. Phung, “Multipolarization through-wall radar imaging using low-rank and jointly-sparse representations,” IEEE Trans. on Image Process. 27(4), 1763–1776 (2018).
[Crossref]

Boyarsky, M.

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, A. V. Diebold, M. F. Imani, and D. R. Smith, “Single-frequency 3d synthetic aperture imaging with dynamic metasurface antennas,” Appl. Opt. 57(15), 4123–4134 (2018).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34(8), 1713–1726 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34(12), 2610–2623 (2017).
[Crossref]

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. Gollub, and D. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33(6), 1098–1111 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33(10), 2082–2092 (2016).
[Crossref]

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. F. Imani, and D. R. Smith, “Single-frequency near-field mimo imaging,” in 2017 11th European Conference on Antennas and Propagation (EUCAP), (IEEE, 2017), pp. 1415–1418.

Brady, D.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

Brady, D. J.

Brunzell, H.

H. Brunzell, “Detection of shallowly buried objects using impulse radar,” IEEE Trans. Geosci. Remote. Sens. 37(2), 875–886 (1999).
[Crossref]

Carsenat, D.

T. Fromenteze, E. L. Kpre, D. Carsenat, C. Decroze, and T. Sakamoto, “Single-shot compressive multiple-inputs multiple-outputs radar imaging using a two-port passive device,” IEEE Access 4, 1050–1060 (2016).
[Crossref]

Catapano, I.

R. Solimene, I. Catapano, G. Gennarelli, A. Cuccaro, A. Dell’Aversano, and F. Soldovieri, “Sar imaging algorithms and some unconventional applications: A unified mathematical overview,” IEEE Signal Process. Mag. 31(4), 90–98 (2014).
[Crossref]

Charvat, G. L.

J. Peabody, G. L. Charvat, J. Goodwin, and M. Tobias, “Through-wall imaging radar, Tech. rep.,” Massachusetts Institute of Technology-Lincoln Laboratory Lexington United States (2012).

Chew, W. C.

T. J. Cui and W. C. Chew, “Fast evaluation of sommerfeld integrals for em scattering and radiation by three-dimensional buried objects,” IEEE Trans. Geosci. Remote. Sens. 37(2), 887–900 (1999).
[Crossref]

W. C. Chew, Waves and fields in Inhomogeneous Media (IEEE, 1995).

Cuccaro, A.

R. Solimene, I. Catapano, G. Gennarelli, A. Cuccaro, A. Dell’Aversano, and F. Soldovieri, “Sar imaging algorithms and some unconventional applications: A unified mathematical overview,” IEEE Signal Process. Mag. 31(4), 90–98 (2014).
[Crossref]

Cui, T. J.

T. J. Cui and W. C. Chew, “Fast evaluation of sommerfeld integrals for em scattering and radiation by three-dimensional buried objects,” IEEE Trans. Geosci. Remote. Sens. 37(2), 887–900 (1999).
[Crossref]

Decroze, C.

T. Fromenteze, E. L. Kpre, D. Carsenat, C. Decroze, and T. Sakamoto, “Single-shot compressive multiple-inputs multiple-outputs radar imaging using a two-port passive device,” IEEE Access 4, 1050–1060 (2016).
[Crossref]

Dehmollaian, M.

M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential sar,” IEEE Trans. Geosci. Remote. Sens. 47(5), 1289–1296 (2009).
[Crossref]

M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,” IEEE Trans. Geosci. Remote. Sens. 46(6), 1589–1599 (2008).
[Crossref]

Dell’Aversano, A.

R. Solimene, I. Catapano, G. Gennarelli, A. Cuccaro, A. Dell’Aversano, and F. Soldovieri, “Sar imaging algorithms and some unconventional applications: A unified mathematical overview,” IEEE Signal Process. Mag. 31(4), 90–98 (2014).
[Crossref]

Diebold, A. V.

Dooley, R. P.

R. P. Dooley, “X-band holography,” Proc. IEEE 53(11), 1733–1735 (1965).
[Crossref]

Driscoll, T.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref]

Engheta, N.

K. M. Yemelyanov, N. Engheta, A. Hoorfar, and J. A. McVay, “Adaptive polarization contrast techniques for through-wall microwave imaging applications,” IEEE Trans. Geosci. Remote. Sens. 47(5), 1362–1374 (2009).
[Crossref]

Fang, G.

Q. Huang, L. Qu, B. Wu, and G. Fang, “Uwb through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote. Sens. 48(3), 1408–1415 (2010).
[Crossref]

Fortuny-Guasch, J.

J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-d radar imaging using range migration techniques,” IEEE Trans. Antennas Propag. 48(5), 728–737 (2000).
[Crossref]

Fromenteze, T.

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34(8), 1713–1726 (2017).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33(10), 2082–2092 (2016).
[Crossref]

T. Fromenteze, E. L. Kpre, D. Carsenat, C. Decroze, and T. Sakamoto, “Single-shot compressive multiple-inputs multiple-outputs radar imaging using a two-port passive device,” IEEE Access 4, 1050–1060 (2016).
[Crossref]

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. F. Imani, and D. R. Smith, “Single-frequency near-field mimo imaging,” in 2017 11th European Conference on Antennas and Propagation (EUCAP), (IEEE, 2017), pp. 1415–1418.

Gennarelli, G.

R. Solimene, I. Catapano, G. Gennarelli, A. Cuccaro, A. Dell’Aversano, and F. Soldovieri, “Sar imaging algorithms and some unconventional applications: A unified mathematical overview,” IEEE Signal Process. Mag. 31(4), 90–98 (2014).
[Crossref]

Gollub, J.

Gollub, J. N.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34(8), 1713–1726 (2017).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6(5), 054019 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

Goodwin, J.

J. Peabody, G. L. Charvat, J. Goodwin, and M. Tobias, “Through-wall imaging radar, Tech. rep.,” Massachusetts Institute of Technology-Lincoln Laboratory Lexington United States (2012).

Gowda, V. R.

Groom, R. W.

T. M. Habashy, R. W. Groom, and B. R. Spies, “Beyond the born and rytov approximations: A nonlinear approach to electromagnetic scattering,” J. Geophys. Res.: Solid Earth 98(B2), 1759–1775 (1993).
[Crossref]

Habashy, T. M.

T. M. Habashy, R. W. Groom, and B. R. Spies, “Beyond the born and rytov approximations: A nonlinear approach to electromagnetic scattering,” J. Geophys. Res.: Solid Earth 98(B2), 1759–1775 (1993).
[Crossref]

Hagness, S. C.

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51(8), 1690–1705 (2003).
[Crossref]

Hall, T. E.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Hansen, P. C.

P. C. Hansen and D. P. O’Leary, “The use of the l-curve in the regularization of discrete ill-posed problems,” SIAM J. on Sci. Comput. 14(6), 1487–1503 (1993).
[Crossref]

P. C. Hansen, “Analysis of discrete ill-posed problems by means of the l-curve,” SIAM Rev. 34(4), 561–580 (1992).
[Crossref]

Hoorfar, A.

W. Zhang and A. Hoorfar, “Three-dimensional synthetic aperture radar imaging through multilayered walls,” IEEE Trans. Antennas Propag. 62(1), 459–462 (2014).
[Crossref]

K. M. Yemelyanov, N. Engheta, A. Hoorfar, and J. A. McVay, “Adaptive polarization contrast techniques for through-wall microwave imaging applications,” IEEE Trans. Geosci. Remote. Sens. 47(5), 1362–1374 (2009).
[Crossref]

C. Thajudeen and A. Hoorfar, “A comparative study of wall parameter estimation and mitigation techniques,” in 2010 USNC/URSI Meeting, (2010).

Huang, Q.

Q. Huang, L. Qu, B. Wu, and G. Fang, “Uwb through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote. Sens. 48(3), 1408–1415 (2010).
[Crossref]

Hunt, J.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref]

Imani, M. F.

M. F. Imani, T. Sleasman, and D. R. Smith, “Two-dimensional dynamic metasurface apertures for computational microwave imaging,” IEEE Antennas Wirel. Propag. Lett. 17(12), 2299–2303 (2018).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57(9), 2142–2149 (2018).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures,” Optica 5(12), 1529–1541 (2018).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, A. V. Diebold, M. F. Imani, and D. R. Smith, “Single-frequency 3d synthetic aperture imaging with dynamic metasurface antennas,” Appl. Opt. 57(15), 4123–4134 (2018).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34(8), 1713–1726 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34(12), 2610–2623 (2017).
[Crossref]

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6(5), 054019 (2016).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. Gollub, and D. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33(6), 1098–1111 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33(10), 2082–2092 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref]

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. F. Imani, and D. R. Smith, “Single-frequency near-field mimo imaging,” in 2017 11th European Conference on Antennas and Propagation (EUCAP), (IEEE, 2017), pp. 1415–1418.

Jin, T.

T. Jin and A. Yarovoy, “A through-the-wall radar imaging method based on a realistic model,” Int. J. Antennas Propag. 2015, 1–8 (2015).
[Crossref]

Kassam, S. A.

F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41(1), 271–283 (2005).
[Crossref]

Kpre, E. L.

T. Fromenteze, E. L. Kpre, D. Carsenat, C. Decroze, and T. Sakamoto, “Single-shot compressive multiple-inputs multiple-outputs radar imaging using a two-port passive device,” IEEE Access 4, 1050–1060 (2016).
[Crossref]

Leigsnering, M.

M. Leigsnering, F. Ahmad, M. Amin, and A. Zoubir, “Multipath exploitation in through-the-wall radar imaging using sparse reconstruction,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 920–939 (2014).
[Crossref]

Li, F.

L. Li, W. Zhang, and F. Li, “A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics,” IEEE Trans. Geosci. Remote. Sens. 48(1), 423–431 (2010).
[Crossref]

Li, L.

L. Li, W. Zhang, and F. Li, “A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics,” IEEE Trans. Geosci. Remote. Sens. 48(1), 423–431 (2010).
[Crossref]

Li, X.

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51(8), 1690–1705 (2003).
[Crossref]

Lipworth, G.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref]

Liu, Q. H.

L.-P. Song, C. Yu, and Q. H. Liu, “Through-wall imaging (twi) by radar: 2-d tomographic results and analyses,” IEEE Trans. Geosci. Remote. Sens. 43(12), 2793–2798 (2005).
[Crossref]

Lopez-Sanchez, J. M.

J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-d radar imaging using range migration techniques,” IEEE Trans. Antennas Propag. 48(5), 728–737 (2000).
[Crossref]

Mandapati, G.

F. Ahmad, M. G. Amin, and G. Mandapati, “Autofocusing of through-the-wall radar imagery under unknown wall characteristics,” IEEE Trans. on Image Process. 16(7), 1785–1795 (2007).
[Crossref]

Marks, D. L.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Sparse blind deconvolution for imaging through layered media,” Optica 4(12), 1514–1521 (2017).
[Crossref]

McMakin, D. L.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

McVay, J. A.

K. M. Yemelyanov, N. Engheta, A. Hoorfar, and J. A. McVay, “Adaptive polarization contrast techniques for through-wall microwave imaging applications,” IEEE Trans. Geosci. Remote. Sens. 47(5), 1362–1374 (2009).
[Crossref]

Michalski, K. A.

K. A. Michalski and J. R. Mosig, “Multilayered media green’s functions in integral equation formulations,” IEEE Trans. Antennas Propag. 45(3), 508–519 (1997).
[Crossref]

Mosig, J. R.

K. A. Michalski and J. R. Mosig, “Multilayered media green’s functions in integral equation formulations,” IEEE Trans. Antennas Propag. 45(3), 508–519 (1997).
[Crossref]

Mrozack, A.

O’Leary, D. P.

P. C. Hansen and D. P. O’Leary, “The use of the l-curve in the regularization of discrete ill-posed problems,” SIAM J. on Sci. Comput. 14(6), 1487–1503 (1993).
[Crossref]

Odabasi, H.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref]

Peabody, J.

J. Peabody, G. L. Charvat, J. Goodwin, and M. Tobias, “Through-wall imaging radar, Tech. rep.,” Massachusetts Institute of Technology-Lincoln Laboratory Lexington United States (2012).

Pedross-Engel, A.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

Phung, S. L.

V. H. Tang, A. Bouzerdoum, and S. L. Phung, “Multipolarization through-wall radar imaging using low-rank and jointly-sparse representations,” IEEE Trans. on Image Process. 27(4), 1763–1776 (2018).
[Crossref]

Pulido-Mancera, L.

Qu, L.

Q. Huang, L. Qu, B. Wu, and G. Fang, “Uwb through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote. Sens. 48(3), 1408–1415 (2010).
[Crossref]

Reynolds, M.

Reynolds, M. S.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref]

Rose, A.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref]

Sakamoto, T.

T. Fromenteze, E. L. Kpre, D. Carsenat, C. Decroze, and T. Sakamoto, “Single-shot compressive multiple-inputs multiple-outputs radar imaging using a two-port passive device,” IEEE Access 4, 1050–1060 (2016).
[Crossref]

Sarabandi, K.

M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential sar,” IEEE Trans. Geosci. Remote. Sens. 47(5), 1289–1296 (2009).
[Crossref]

M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,” IEEE Trans. Geosci. Remote. Sens. 46(6), 1589–1599 (2008).
[Crossref]

Sheen, D. M.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Sleasman, T.

M. F. Imani, T. Sleasman, and D. R. Smith, “Two-dimensional dynamic metasurface apertures for computational microwave imaging,” IEEE Antennas Wirel. Propag. Lett. 17(12), 2299–2303 (2018).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, A. V. Diebold, M. F. Imani, and D. R. Smith, “Single-frequency 3d synthetic aperture imaging with dynamic metasurface antennas,” Appl. Opt. 57(15), 4123–4134 (2018).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57(9), 2142–2149 (2018).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures,” Optica 5(12), 1529–1541 (2018).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34(12), 2610–2623 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34(8), 1713–1726 (2017).
[Crossref]

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6(5), 054019 (2016).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33(10), 2082–2092 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. Gollub, and D. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33(6), 1098–1111 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. F. Imani, and D. R. Smith, “Single-frequency near-field mimo imaging,” in 2017 11th European Conference on Antennas and Propagation (EUCAP), (IEEE, 2017), pp. 1415–1418.

Smith, D.

Smith, D. R.

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57(9), 2142–2149 (2018).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures,” Optica 5(12), 1529–1541 (2018).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, A. V. Diebold, M. F. Imani, and D. R. Smith, “Single-frequency 3d synthetic aperture imaging with dynamic metasurface antennas,” Appl. Opt. 57(15), 4123–4134 (2018).
[Crossref]

M. F. Imani, T. Sleasman, and D. R. Smith, “Two-dimensional dynamic metasurface apertures for computational microwave imaging,” IEEE Antennas Wirel. Propag. Lett. 17(12), 2299–2303 (2018).
[Crossref]

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Sparse blind deconvolution for imaging through layered media,” Optica 4(12), 1514–1521 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34(12), 2610–2623 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34(8), 1713–1726 (2017).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. R. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33(10), 2082–2092 (2016).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6(5), 054019 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref]

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. F. Imani, and D. R. Smith, “Single-frequency near-field mimo imaging,” in 2017 11th European Conference on Antennas and Propagation (EUCAP), (IEEE, 2017), pp. 1415–1418.

Soldovieri, F.

R. Solimene, I. Catapano, G. Gennarelli, A. Cuccaro, A. Dell’Aversano, and F. Soldovieri, “Sar imaging algorithms and some unconventional applications: A unified mathematical overview,” IEEE Signal Process. Mag. 31(4), 90–98 (2014).
[Crossref]

Solimene, R.

R. Solimene, I. Catapano, G. Gennarelli, A. Cuccaro, A. Dell’Aversano, and F. Soldovieri, “Sar imaging algorithms and some unconventional applications: A unified mathematical overview,” IEEE Signal Process. Mag. 31(4), 90–98 (2014).
[Crossref]

Song, L.-P.

L.-P. Song, C. Yu, and Q. H. Liu, “Through-wall imaging (twi) by radar: 2-d tomographic results and analyses,” IEEE Trans. Geosci. Remote. Sens. 43(12), 2793–2798 (2005).
[Crossref]

Soumekh, M.

M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. on Image Process. 1(1), 64–76 (1992).
[Crossref]

M. Soumekh, Fourier Array Imaging (Prentice-Hall, Inc., 1994).

M. Soumekh, Synthetic Aperture Radar Signal Processing (John Wiley & Sons, 1999).

Spies, B. R.

T. M. Habashy, R. W. Groom, and B. R. Spies, “Beyond the born and rytov approximations: A nonlinear approach to electromagnetic scattering,” J. Geophys. Res.: Solid Earth 98(B2), 1759–1775 (1993).
[Crossref]

Tang, V. H.

V. H. Tang, A. Bouzerdoum, and S. L. Phung, “Multipolarization through-wall radar imaging using low-rank and jointly-sparse representations,” IEEE Trans. on Image Process. 27(4), 1763–1776 (2018).
[Crossref]

Thajudeen, C.

C. Thajudeen and A. Hoorfar, “A comparative study of wall parameter estimation and mitigation techniques,” in 2010 USNC/URSI Meeting, (2010).

Thiel, M.

M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential sar,” IEEE Trans. Geosci. Remote. Sens. 47(5), 1289–1296 (2009).
[Crossref]

Tobias, M.

J. Peabody, G. L. Charvat, J. Goodwin, and M. Tobias, “Through-wall imaging radar, Tech. rep.,” Massachusetts Institute of Technology-Lincoln Laboratory Lexington United States (2012).

Trofatter, K. P.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

Trofatter, P.

Van Veen, B. D.

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51(8), 1690–1705 (2003).
[Crossref]

Wang, G.

G. Wang and M. G. Amin, “Imaging through unknown walls using different standoff distances,” IEEE Trans. Signal Process. 54(10), 4015–4025 (2006).
[Crossref]

Wu, B.

Q. Huang, L. Qu, B. Wu, and G. Fang, “Uwb through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote. Sens. 48(3), 1408–1415 (2010).
[Crossref]

Xu, W.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

Yaghjian, A. D.

A. D. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. 34(1), 30–45 (1986).
[Crossref]

Yarovoy, A.

T. Jin and A. Yarovoy, “A through-the-wall radar imaging method based on a realistic model,” Int. J. Antennas Propag. 2015, 1–8 (2015).
[Crossref]

Yemelyanov, K. M.

K. M. Yemelyanov, N. Engheta, A. Hoorfar, and J. A. McVay, “Adaptive polarization contrast techniques for through-wall microwave imaging applications,” IEEE Trans. Geosci. Remote. Sens. 47(5), 1362–1374 (2009).
[Crossref]

Yoon, Y. S.

Y. S. Yoon and M. G. Amin, “Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging,” IEEE Trans. Geosci. Remote. Sens. 47(9), 3192–3208 (2009).
[Crossref]

Y. S. Yoon and M. G. Amin, “High-resolution through-the-wall radar imaging using beamspace music,” IEEE Trans. Antennas Propag. 56(6), 1763–1774 (2008).
[Crossref]

Yu, C.

L.-P. Song, C. Yu, and Q. H. Liu, “Through-wall imaging (twi) by radar: 2-d tomographic results and analyses,” IEEE Trans. Geosci. Remote. Sens. 43(12), 2793–2798 (2005).
[Crossref]

Yurduseven, O.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Sparse blind deconvolution for imaging through layered media,” Optica 4(12), 1514–1521 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref]

Zhang, W.

W. Zhang and A. Hoorfar, “Three-dimensional synthetic aperture radar imaging through multilayered walls,” IEEE Trans. Antennas Propag. 62(1), 459–462 (2014).
[Crossref]

L. Li, W. Zhang, and F. Li, “A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics,” IEEE Trans. Geosci. Remote. Sens. 48(1), 423–431 (2010).
[Crossref]

Zoubir, A.

M. Leigsnering, F. Ahmad, M. Amin, and A. Zoubir, “Multipath exploitation in through-the-wall radar imaging using sparse reconstruction,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 920–939 (2014).
[Crossref]

Zvolensky, T.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

IEEE Access (1)

T. Fromenteze, E. L. Kpre, D. Carsenat, C. Decroze, and T. Sakamoto, “Single-shot compressive multiple-inputs multiple-outputs radar imaging using a two-port passive device,” IEEE Access 4, 1050–1060 (2016).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

M. F. Imani, T. Sleasman, and D. R. Smith, “Two-dimensional dynamic metasurface apertures for computational microwave imaging,” IEEE Antennas Wirel. Propag. Lett. 17(12), 2299–2303 (2018).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wirel. Propag. Lett. 15, 606–609 (2016).
[Crossref]

IEEE Signal Process. Mag. (1)

R. Solimene, I. Catapano, G. Gennarelli, A. Cuccaro, A. Dell’Aversano, and F. Soldovieri, “Sar imaging algorithms and some unconventional applications: A unified mathematical overview,” IEEE Signal Process. Mag. 31(4), 90–98 (2014).
[Crossref]

IEEE Trans. Aerosp. Electron. Syst. (2)

M. Leigsnering, F. Ahmad, M. Amin, and A. Zoubir, “Multipath exploitation in through-the-wall radar imaging using sparse reconstruction,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 920–939 (2014).
[Crossref]

F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41(1), 271–283 (2005).
[Crossref]

IEEE Trans. Antennas Propag. (6)

J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-d radar imaging using range migration techniques,” IEEE Trans. Antennas Propag. 48(5), 728–737 (2000).
[Crossref]

A. D. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. 34(1), 30–45 (1986).
[Crossref]

K. A. Michalski and J. R. Mosig, “Multilayered media green’s functions in integral equation formulations,” IEEE Trans. Antennas Propag. 45(3), 508–519 (1997).
[Crossref]

Y. S. Yoon and M. G. Amin, “High-resolution through-the-wall radar imaging using beamspace music,” IEEE Trans. Antennas Propag. 56(6), 1763–1774 (2008).
[Crossref]

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51(8), 1690–1705 (2003).
[Crossref]

W. Zhang and A. Hoorfar, “Three-dimensional synthetic aperture radar imaging through multilayered walls,” IEEE Trans. Antennas Propag. 62(1), 459–462 (2014).
[Crossref]

IEEE Trans. Geosci. Remote. Sens. (10)

Q. Huang, L. Qu, B. Wu, and G. Fang, “Uwb through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote. Sens. 48(3), 1408–1415 (2010).
[Crossref]

M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,” IEEE Trans. Geosci. Remote. Sens. 46(6), 1589–1599 (2008).
[Crossref]

T. J. Cui and W. C. Chew, “Fast evaluation of sommerfeld integrals for em scattering and radiation by three-dimensional buried objects,” IEEE Trans. Geosci. Remote. Sens. 37(2), 887–900 (1999).
[Crossref]

R. Bamler, “A comparison of range-doppler and wavenumber domain sar focusing algorithms,” IEEE Trans. Geosci. Remote. Sens. 30(4), 706–713 (1992).
[Crossref]

L. Li, W. Zhang, and F. Li, “A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics,” IEEE Trans. Geosci. Remote. Sens. 48(1), 423–431 (2010).
[Crossref]

Y. S. Yoon and M. G. Amin, “Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging,” IEEE Trans. Geosci. Remote. Sens. 47(9), 3192–3208 (2009).
[Crossref]

M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential sar,” IEEE Trans. Geosci. Remote. Sens. 47(5), 1289–1296 (2009).
[Crossref]

H. Brunzell, “Detection of shallowly buried objects using impulse radar,” IEEE Trans. Geosci. Remote. Sens. 37(2), 875–886 (1999).
[Crossref]

L.-P. Song, C. Yu, and Q. H. Liu, “Through-wall imaging (twi) by radar: 2-d tomographic results and analyses,” IEEE Trans. Geosci. Remote. Sens. 43(12), 2793–2798 (2005).
[Crossref]

K. M. Yemelyanov, N. Engheta, A. Hoorfar, and J. A. McVay, “Adaptive polarization contrast techniques for through-wall microwave imaging applications,” IEEE Trans. Geosci. Remote. Sens. 47(5), 1362–1374 (2009).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

IEEE Trans. on Image Process. (3)

M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. on Image Process. 1(1), 64–76 (1992).
[Crossref]

F. Ahmad, M. G. Amin, and G. Mandapati, “Autofocusing of through-the-wall radar imagery under unknown wall characteristics,” IEEE Trans. on Image Process. 16(7), 1785–1795 (2007).
[Crossref]

V. H. Tang, A. Bouzerdoum, and S. L. Phung, “Multipolarization through-wall radar imaging using low-rank and jointly-sparse representations,” IEEE Trans. on Image Process. 27(4), 1763–1776 (2018).
[Crossref]

IEEE Trans. Signal Process. (1)

G. Wang and M. G. Amin, “Imaging through unknown walls using different standoff distances,” IEEE Trans. Signal Process. 54(10), 4015–4025 (2006).
[Crossref]

Int. J. Antennas Propag. (1)

T. Jin and A. Yarovoy, “A through-the-wall radar imaging method based on a realistic model,” Int. J. Antennas Propag. 2015, 1–8 (2015).
[Crossref]

J. Geophys. Res.: Solid Earth (1)

T. M. Habashy, R. W. Groom, and B. R. Spies, “Beyond the born and rytov approximations: A nonlinear approach to electromagnetic scattering,” J. Geophys. Res.: Solid Earth 98(B2), 1759–1775 (1993).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

Optica (2)

Phys. Rev. Appl. (1)

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Microwave imaging using a disordered cavity with a dynamically tunable impedance surface,” Phys. Rev. Appl. 6(5), 054019 (2016).
[Crossref]

Proc. IEEE (1)

R. P. Dooley, “X-band holography,” Proc. IEEE 53(11), 1733–1735 (1965).
[Crossref]

Sci. Rep. (1)

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

SIAM J. on Sci. Comput. (1)

P. C. Hansen and D. P. O’Leary, “The use of the l-curve in the regularization of discrete ill-posed problems,” SIAM J. on Sci. Comput. 14(6), 1487–1503 (1993).
[Crossref]

SIAM Rev. (1)

P. C. Hansen, “Analysis of discrete ill-posed problems by means of the l-curve,” SIAM Rev. 34(4), 561–580 (1992).
[Crossref]

Other (7)

W. C. Chew, Waves and fields in Inhomogeneous Media (IEEE, 1995).

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. F. Imani, and D. R. Smith, “Single-frequency near-field mimo imaging,” in 2017 11th European Conference on Antennas and Propagation (EUCAP), (IEEE, 2017), pp. 1415–1418.

J. Peabody, G. L. Charvat, J. Goodwin, and M. Tobias, “Through-wall imaging radar, Tech. rep.,” Massachusetts Institute of Technology-Lincoln Laboratory Lexington United States (2012).

M. Soumekh, Fourier Array Imaging (Prentice-Hall, Inc., 1994).

M. Soumekh, Synthetic Aperture Radar Signal Processing (John Wiley & Sons, 1999).

C. A. Balanis, Advanced Engineering Eectromagnetics (John Wiley & Sons, 1999).

C. Thajudeen and A. Hoorfar, “A comparative study of wall parameter estimation and mitigation techniques,” in 2010 USNC/URSI Meeting, (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) A schematic of a microstrip-based dynamic metasurface antenna and (b) a close up view of its constituent resonant elements. A via connects the central region of the cELC to the bias line, which lies below the ground plane. The red and green diodes show the binary behavior by which the metamaterial elements can tune their interactions with the guided mode. (c) Employing two antennas allows for the creation of complex electric fields in the scene, as depicted by the multiplication of the Tx and Rx fields shown in blue-green. A wall is also depicted in (c) and can be seen to distort the fields.
Fig. 2.
Fig. 2. The imaging system with two dynamic metasurface apertures, a polystyrene wall, and objects arranged in a 2D scene.
Fig. 3.
Fig. 3. Imaging results of a pair of cylindrical objects, shown in (a), for the cases when there (b) no wall, (c) a wall but no clutter mitigation, and (d) the wall alone.
Fig. 4.
Fig. 4. Imaging results of a pair of scatterers after completing clutter mitigation with (a) method 1, traditional background subtraction, and (b) method 2, ensemble averaging.
Fig. 5.
Fig. 5. The geometry and parameters of the planar stratified TWI problem, used to calculate effective sources $\boldsymbol {\Psi }$ from the original sources $\boldsymbol {\Phi }$.
Fig. 6.
Fig. 6. Imaging results for the bandwidth case (a-c) and monotone case (d-f). The images in (a) and (d) show the results without any wall; (b) and (e) show the results after clutter mitigation only; and (c) and (f) show the results after both clutter mitigation and wall compensation. The objects are shown schematically in (g).
Fig. 7.
Fig. 7. Point spread functions for the various cases are shown in (a-d), and cross sections through the objects location are shown in (e) and (f) for cross-range and range, respectively. (a) shows bandwidth with no compensation, (b) shows bandwidth with compensation, (c) shows monotone with no compensation, and (d) shows bandwidth with compensation.
Fig. 8.
Fig. 8. Imaging results for walls made of medium density fiberboard (a-b) and plywood (c-d). Bandwidth results are shown in (a) and (c), and monotone results are shown in (b) and (d). Objects for (a-b) and (c-d) are shown schematically in (e) and (f), respectively. Clutter mitigation is used in all cases, but no compensation for propagation through the wall is employed.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

s 0 , f = ( Φ T , f + ) T G f Φ R , f +
σ ^ ( x , y ) = | F 2 D 1 ( f B S I , f ( k x , k y ) ) | .
Ψ T / R , f = Γ T / R , f Φ T / R , f .
γ ( Δ y , f ) E ( Δ y , f )
T 12 = 2 ϵ wall k 0 x ϵ wall k 0 x + k wall , x
E = cos ( θ ) T 12 T 23 e j ( k 0 p 1 + k wall p 2 + k 0 p 3 )

Metrics