Abstract

A novel master-oscillator power-amplifier burst-mode laser system is reported for generating femtosecond (fs) pulse trains with high peak power and a broad spectral bandwidth of >10 nm without the use of nonlinear compression techniques. A mode-locked, 1064.6 nm fundamental-wavelength broadband master oscillator, a fiber amplifier/pulse stretcher, and four Nd:glass power amplifiers are used to generate a sequence of high-repetition-rate, transform-limited 234 fs pulses over a 1 ms burst duration at a 0.1 Hz burst repetition rate. Peak powers are 1.24 GW at 100 kHz and 500 MW at 1 MHz with M2∼1.5. Burst-mode fs laser design features, performance characteristics relevant to MHz-rate flow diagnostics, and prospects for scaling peak powers further by an order of magnitude are discussed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Third-generation megahertz-rate pulse burst laser system

Brian S. Thurow, Aman Satija, and Kyle Lynch
Appl. Opt. 48(11) 2086-2093 (2009)

Advances in generation of high-repetition-rate burst mode laser output

Naibo Jiang, Matthew C. Webster, and Walter R. Lempert
Appl. Opt. 48(4) B23-B31 (2009)

High power burst-mode optical parametric amplifier with arbitrary pulse selection

M. Pergament, M. Kellert, K. Kruse, J. Wang, G. Palmer, L. Wissmann, U. Wegner, and M. J. Lederer
Opt. Express 22(18) 22202-22210 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Wu, W. Lempert, and R. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction,” AIAA J. 38(4), 672–679 (2000).
    [Crossref]
  2. B. Thurow, N. Jiang, M. Samimy, and W. Lempert, “Narrow-linewidth megahertz-rate pulse-burst laser for high-speed flow diagnostics,” Appl. Opt. 43(26), 5064–5073 (2004).
    [Crossref]
  3. N. Jiang, M. Webster, W. Lempert, J. Miller, T. Meyer, C. Ivey, and P. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt. 50(4), A20–A28 (2011).
    [Crossref]
  4. B. Brock, R. H. Haynes, B. S. Thurow, G. Lyons, and N. E. Murray, “An examination of MHz rate PIV in a heated supersonic jet,” AIAA Paper 2014-1102, 52nd Aerospace Sciences Meeting, National Harbor, Maryland, Jan. 13-17, 2014.
  5. M. Smyser, K. Rahman, M. Slipchenko, S. Roy, and T. Meyer, “Compact burst-mode Nd: YAG laser for kHz-MHz bandwidth velocity and species measurements,” Opt. Lett. 43(4), 735–738 (2018).
    [Crossref]
  6. J. Miller, N. Jiang, M. Slipchenko, J. Mance, T. Meyer, S. Roy, and J. Gord, “Spatiotemporal analysis of turbulent jets enabled by 100-kHz, 100-ms burst-mode particle image velocimetry,” Exp. Fluids 57(12), 192 (2016).
    [Crossref]
  7. S. J. Beresh, J. F. Henfling, and R. W. Spillers, “Postage-stamp PIV:” small velocity fields at 400 kHz for turbulence spectra measurements,” AIAA Paper 2017-0024, 55th Aerospace Sciences Meeting, Grapevine, TX, Jan. 9-13, (2017).
  8. J. Michael, P. Venkateswaran, C. Shaddix, and T. Meyer, “Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames,” Appl. Opt. 54(11), 3331–3344 (2015).
    [Crossref]
  9. S. Roy, P. S. Hsu, N. Jiang, M. N. Slipchenko, and J. R. Gord, “100-kHz-rate gas-phase thermometry using 100-ps pulses from a burst-mode laser,” Opt. Lett. 40(21), 5125–5128 (2015).
    [Crossref]
  10. S. Roy, J. D. Miller, M. N. Slipchenko, P. S. Hsu, J. G. Mance, T. R. Meyer, and J. R. Gord, “100-ps-pulse-duration, 100-J burst-mode laser for kHz-MHz flow diagnostics,” Opt. Lett. 39(22), 6462–6465 (2014).
    [Crossref]
  11. www.ipgphotonics.com
  12. www.imra.com
  13. M. Kienel, M. Müller, A. Klenke, J. Limpert, and A. Tünnermann, “12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition,” Opt. Lett. 41(14), 3343–3346 (2016).
    [Crossref]
  14. M. Mueller, A. Klenke, H. Stark, J. Buldt, T. Gottschall, A. Tünnermann, and J. Limpert, “1.8-kW 16-channel ultrafast fiber laser system,” Proc. SPIE 10512, 1051208 (2018).
    [Crossref]
  15. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffman, and R. Poprawe, “400 W Yb: YAG Innoslab fs-amplifier,” Opt. Express 17(15), 12230–12245 (2009).
    [Crossref]
  16. M. Schulz, R. Riedel, A. Willner, S. Düsterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb:YAG thin-disk multipass amplifier,” Opt. Express 20(5), 5038–5043 (2012).
    [Crossref]
  17. S. Hädrich, M. Kienel, M. Müller, A. Klenke, J. Rothhardt, R. Klas, T. Gottschall, T. Eidam, A. Drozdy, P. Jójárt, Z. Várallyay, E. Cormier, K. Osvay, A. Tünnermann, and J. Limpert, “Energetic sub-2-cycle laser with 216 W average power,” Opt. Lett. 41(18), 4332–4335 (2016).
    [Crossref]
  18. W. R. Lempert, P. F. Wu, R. B. Miles, B. Zhang, J. L Lowrance, V. Mastrocola, and W. F. Kosonocky, “Pulse-burst laser system for high-speed flow diagnostics,” AIAA Paper 96-0179, 34th Aerospace Sciences Meeting, Reno, NV, Jan. 15-18, 1996.
  19. J. M. Fisher, M. E. Smyser, T. R. Meyer, M. N. Slipchenko, A. W. Caswell, J. R. Gord, and S. Roy, “Burst-Mode 100 kHz – 1 MHz FLEET Velocimetry in Supersonic and Hypersonic Flows,” AIAA Paper 2019-1822, AIAA Scitech 2019 Forum, San Diego, CA, Jan. 7-11, 2019.
  20. J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 135(20), 201104 (2011).
    [Crossref]
  21. M. E. Smyser, M. N. Slipchenko, T. R. Meyer, A. Caswell, J. R. Gord, and S. Roy, “MHz-Rate Ultrafast Laser for Nonlinear Spectroscopy in Transient and Nonequilibrium Hypersonic Flows,” AIAA Paper 2019-1088, AIAA Scitech 2019 Forum, San Diego, CA, Jan. 7-11, 2019.
  22. T. F. Johnston, “Beam propagation (M2) measurement made as easy as it gets: the four-cuts method,” Appl. Opt. 37(21), 4840–4850 (1998).
    [Crossref]
  23. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer, 1996).

2018 (2)

M. Smyser, K. Rahman, M. Slipchenko, S. Roy, and T. Meyer, “Compact burst-mode Nd: YAG laser for kHz-MHz bandwidth velocity and species measurements,” Opt. Lett. 43(4), 735–738 (2018).
[Crossref]

M. Mueller, A. Klenke, H. Stark, J. Buldt, T. Gottschall, A. Tünnermann, and J. Limpert, “1.8-kW 16-channel ultrafast fiber laser system,” Proc. SPIE 10512, 1051208 (2018).
[Crossref]

2016 (3)

2015 (2)

2014 (1)

2012 (1)

2011 (2)

J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 135(20), 201104 (2011).
[Crossref]

N. Jiang, M. Webster, W. Lempert, J. Miller, T. Meyer, C. Ivey, and P. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt. 50(4), A20–A28 (2011).
[Crossref]

2009 (1)

2004 (1)

2000 (1)

P. Wu, W. Lempert, and R. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction,” AIAA J. 38(4), 672–679 (2000).
[Crossref]

1998 (1)

Beresh, S. J.

S. J. Beresh, J. F. Henfling, and R. W. Spillers, “Postage-stamp PIV:” small velocity fields at 400 kHz for turbulence spectra measurements,” AIAA Paper 2017-0024, 55th Aerospace Sciences Meeting, Grapevine, TX, Jan. 9-13, (2017).

Brock, B.

B. Brock, R. H. Haynes, B. S. Thurow, G. Lyons, and N. E. Murray, “An examination of MHz rate PIV in a heated supersonic jet,” AIAA Paper 2014-1102, 52nd Aerospace Sciences Meeting, National Harbor, Maryland, Jan. 13-17, 2014.

Buldt, J.

M. Mueller, A. Klenke, H. Stark, J. Buldt, T. Gottschall, A. Tünnermann, and J. Limpert, “1.8-kW 16-channel ultrafast fiber laser system,” Proc. SPIE 10512, 1051208 (2018).
[Crossref]

Caswell, A.

M. E. Smyser, M. N. Slipchenko, T. R. Meyer, A. Caswell, J. R. Gord, and S. Roy, “MHz-Rate Ultrafast Laser for Nonlinear Spectroscopy in Transient and Nonequilibrium Hypersonic Flows,” AIAA Paper 2019-1088, AIAA Scitech 2019 Forum, San Diego, CA, Jan. 7-11, 2019.

Caswell, A. W.

J. M. Fisher, M. E. Smyser, T. R. Meyer, M. N. Slipchenko, A. W. Caswell, J. R. Gord, and S. Roy, “Burst-Mode 100 kHz – 1 MHz FLEET Velocimetry in Supersonic and Hypersonic Flows,” AIAA Paper 2019-1822, AIAA Scitech 2019 Forum, San Diego, CA, Jan. 7-11, 2019.

Cormier, E.

Danehy, P.

Drescher, M.

Drozdy, A.

Düsterer, S.

Eidam, T.

Faatz, B.

Feldhaus, J.

Fisher, J. M.

J. M. Fisher, M. E. Smyser, T. R. Meyer, M. N. Slipchenko, A. W. Caswell, J. R. Gord, and S. Roy, “Burst-Mode 100 kHz – 1 MHz FLEET Velocimetry in Supersonic and Hypersonic Flows,” AIAA Paper 2019-1822, AIAA Scitech 2019 Forum, San Diego, CA, Jan. 7-11, 2019.

Gord, J.

J. Miller, N. Jiang, M. Slipchenko, J. Mance, T. Meyer, S. Roy, and J. Gord, “Spatiotemporal analysis of turbulent jets enabled by 100-kHz, 100-ms burst-mode particle image velocimetry,” Exp. Fluids 57(12), 192 (2016).
[Crossref]

Gord, J. R.

S. Roy, P. S. Hsu, N. Jiang, M. N. Slipchenko, and J. R. Gord, “100-kHz-rate gas-phase thermometry using 100-ps pulses from a burst-mode laser,” Opt. Lett. 40(21), 5125–5128 (2015).
[Crossref]

S. Roy, J. D. Miller, M. N. Slipchenko, P. S. Hsu, J. G. Mance, T. R. Meyer, and J. R. Gord, “100-ps-pulse-duration, 100-J burst-mode laser for kHz-MHz flow diagnostics,” Opt. Lett. 39(22), 6462–6465 (2014).
[Crossref]

J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 135(20), 201104 (2011).
[Crossref]

J. M. Fisher, M. E. Smyser, T. R. Meyer, M. N. Slipchenko, A. W. Caswell, J. R. Gord, and S. Roy, “Burst-Mode 100 kHz – 1 MHz FLEET Velocimetry in Supersonic and Hypersonic Flows,” AIAA Paper 2019-1822, AIAA Scitech 2019 Forum, San Diego, CA, Jan. 7-11, 2019.

M. E. Smyser, M. N. Slipchenko, T. R. Meyer, A. Caswell, J. R. Gord, and S. Roy, “MHz-Rate Ultrafast Laser for Nonlinear Spectroscopy in Transient and Nonequilibrium Hypersonic Flows,” AIAA Paper 2019-1088, AIAA Scitech 2019 Forum, San Diego, CA, Jan. 7-11, 2019.

Gottschall, T.

Hädrich, S.

Haynes, R. H.

B. Brock, R. H. Haynes, B. S. Thurow, G. Lyons, and N. E. Murray, “An examination of MHz rate PIV in a heated supersonic jet,” AIAA Paper 2014-1102, 52nd Aerospace Sciences Meeting, National Harbor, Maryland, Jan. 13-17, 2014.

Henfling, J. F.

S. J. Beresh, J. F. Henfling, and R. W. Spillers, “Postage-stamp PIV:” small velocity fields at 400 kHz for turbulence spectra measurements,” AIAA Paper 2017-0024, 55th Aerospace Sciences Meeting, Grapevine, TX, Jan. 9-13, (2017).

Hoffman, H. D.

Hsu, P. S.

Ivey, C.

Jiang, N.

Johnston, T. F.

Jójárt, P.

Kienel, M.

Klas, R.

Klenke, A.

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer, 1996).

Kosonocky, W. F.

W. R. Lempert, P. F. Wu, R. B. Miles, B. Zhang, J. L Lowrance, V. Mastrocola, and W. F. Kosonocky, “Pulse-burst laser system for high-speed flow diagnostics,” AIAA Paper 96-0179, 34th Aerospace Sciences Meeting, Reno, NV, Jan. 15-18, 1996.

Lempert, W.

Lempert, W. R.

W. R. Lempert, P. F. Wu, R. B. Miles, B. Zhang, J. L Lowrance, V. Mastrocola, and W. F. Kosonocky, “Pulse-burst laser system for high-speed flow diagnostics,” AIAA Paper 96-0179, 34th Aerospace Sciences Meeting, Reno, NV, Jan. 15-18, 1996.

Limpert, J.

Lowrance, J. L

W. R. Lempert, P. F. Wu, R. B. Miles, B. Zhang, J. L Lowrance, V. Mastrocola, and W. F. Kosonocky, “Pulse-burst laser system for high-speed flow diagnostics,” AIAA Paper 96-0179, 34th Aerospace Sciences Meeting, Reno, NV, Jan. 15-18, 1996.

Lyons, G.

B. Brock, R. H. Haynes, B. S. Thurow, G. Lyons, and N. E. Murray, “An examination of MHz rate PIV in a heated supersonic jet,” AIAA Paper 2014-1102, 52nd Aerospace Sciences Meeting, National Harbor, Maryland, Jan. 13-17, 2014.

Mance, J.

J. Miller, N. Jiang, M. Slipchenko, J. Mance, T. Meyer, S. Roy, and J. Gord, “Spatiotemporal analysis of turbulent jets enabled by 100-kHz, 100-ms burst-mode particle image velocimetry,” Exp. Fluids 57(12), 192 (2016).
[Crossref]

Mance, J. G.

Mans, T.

Mastrocola, V.

W. R. Lempert, P. F. Wu, R. B. Miles, B. Zhang, J. L Lowrance, V. Mastrocola, and W. F. Kosonocky, “Pulse-burst laser system for high-speed flow diagnostics,” AIAA Paper 96-0179, 34th Aerospace Sciences Meeting, Reno, NV, Jan. 15-18, 1996.

Meyer, T.

Meyer, T. R.

S. Roy, J. D. Miller, M. N. Slipchenko, P. S. Hsu, J. G. Mance, T. R. Meyer, and J. R. Gord, “100-ps-pulse-duration, 100-J burst-mode laser for kHz-MHz flow diagnostics,” Opt. Lett. 39(22), 6462–6465 (2014).
[Crossref]

J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 135(20), 201104 (2011).
[Crossref]

J. M. Fisher, M. E. Smyser, T. R. Meyer, M. N. Slipchenko, A. W. Caswell, J. R. Gord, and S. Roy, “Burst-Mode 100 kHz – 1 MHz FLEET Velocimetry in Supersonic and Hypersonic Flows,” AIAA Paper 2019-1822, AIAA Scitech 2019 Forum, San Diego, CA, Jan. 7-11, 2019.

M. E. Smyser, M. N. Slipchenko, T. R. Meyer, A. Caswell, J. R. Gord, and S. Roy, “MHz-Rate Ultrafast Laser for Nonlinear Spectroscopy in Transient and Nonequilibrium Hypersonic Flows,” AIAA Paper 2019-1088, AIAA Scitech 2019 Forum, San Diego, CA, Jan. 7-11, 2019.

Michael, J.

Miles, R.

P. Wu, W. Lempert, and R. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction,” AIAA J. 38(4), 672–679 (2000).
[Crossref]

Miles, R. B.

W. R. Lempert, P. F. Wu, R. B. Miles, B. Zhang, J. L Lowrance, V. Mastrocola, and W. F. Kosonocky, “Pulse-burst laser system for high-speed flow diagnostics,” AIAA Paper 96-0179, 34th Aerospace Sciences Meeting, Reno, NV, Jan. 15-18, 1996.

Miller, J.

J. Miller, N. Jiang, M. Slipchenko, J. Mance, T. Meyer, S. Roy, and J. Gord, “Spatiotemporal analysis of turbulent jets enabled by 100-kHz, 100-ms burst-mode particle image velocimetry,” Exp. Fluids 57(12), 192 (2016).
[Crossref]

N. Jiang, M. Webster, W. Lempert, J. Miller, T. Meyer, C. Ivey, and P. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt. 50(4), A20–A28 (2011).
[Crossref]

Miller, J. D.

S. Roy, J. D. Miller, M. N. Slipchenko, P. S. Hsu, J. G. Mance, T. R. Meyer, and J. R. Gord, “100-ps-pulse-duration, 100-J burst-mode laser for kHz-MHz flow diagnostics,” Opt. Lett. 39(22), 6462–6465 (2014).
[Crossref]

J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 135(20), 201104 (2011).
[Crossref]

Mueller, M.

M. Mueller, A. Klenke, H. Stark, J. Buldt, T. Gottschall, A. Tünnermann, and J. Limpert, “1.8-kW 16-channel ultrafast fiber laser system,” Proc. SPIE 10512, 1051208 (2018).
[Crossref]

Müller, M.

Murray, N. E.

B. Brock, R. H. Haynes, B. S. Thurow, G. Lyons, and N. E. Murray, “An examination of MHz rate PIV in a heated supersonic jet,” AIAA Paper 2014-1102, 52nd Aerospace Sciences Meeting, National Harbor, Maryland, Jan. 13-17, 2014.

Osvay, K.

Poprawe, R.

Prandolini, M. J.

Rahman, K.

Riedel, R.

Rossbach, J.

Rotarius, G.

Rothhardt, J.

Roy, S.

M. Smyser, K. Rahman, M. Slipchenko, S. Roy, and T. Meyer, “Compact burst-mode Nd: YAG laser for kHz-MHz bandwidth velocity and species measurements,” Opt. Lett. 43(4), 735–738 (2018).
[Crossref]

J. Miller, N. Jiang, M. Slipchenko, J. Mance, T. Meyer, S. Roy, and J. Gord, “Spatiotemporal analysis of turbulent jets enabled by 100-kHz, 100-ms burst-mode particle image velocimetry,” Exp. Fluids 57(12), 192 (2016).
[Crossref]

S. Roy, P. S. Hsu, N. Jiang, M. N. Slipchenko, and J. R. Gord, “100-kHz-rate gas-phase thermometry using 100-ps pulses from a burst-mode laser,” Opt. Lett. 40(21), 5125–5128 (2015).
[Crossref]

S. Roy, J. D. Miller, M. N. Slipchenko, P. S. Hsu, J. G. Mance, T. R. Meyer, and J. R. Gord, “100-ps-pulse-duration, 100-J burst-mode laser for kHz-MHz flow diagnostics,” Opt. Lett. 39(22), 6462–6465 (2014).
[Crossref]

J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 135(20), 201104 (2011).
[Crossref]

J. M. Fisher, M. E. Smyser, T. R. Meyer, M. N. Slipchenko, A. W. Caswell, J. R. Gord, and S. Roy, “Burst-Mode 100 kHz – 1 MHz FLEET Velocimetry in Supersonic and Hypersonic Flows,” AIAA Paper 2019-1822, AIAA Scitech 2019 Forum, San Diego, CA, Jan. 7-11, 2019.

M. E. Smyser, M. N. Slipchenko, T. R. Meyer, A. Caswell, J. R. Gord, and S. Roy, “MHz-Rate Ultrafast Laser for Nonlinear Spectroscopy in Transient and Nonequilibrium Hypersonic Flows,” AIAA Paper 2019-1088, AIAA Scitech 2019 Forum, San Diego, CA, Jan. 7-11, 2019.

Russbueldt, P.

Samimy, M.

Schulz, M.

Shaddix, C.

Slipchenko, M.

M. Smyser, K. Rahman, M. Slipchenko, S. Roy, and T. Meyer, “Compact burst-mode Nd: YAG laser for kHz-MHz bandwidth velocity and species measurements,” Opt. Lett. 43(4), 735–738 (2018).
[Crossref]

J. Miller, N. Jiang, M. Slipchenko, J. Mance, T. Meyer, S. Roy, and J. Gord, “Spatiotemporal analysis of turbulent jets enabled by 100-kHz, 100-ms burst-mode particle image velocimetry,” Exp. Fluids 57(12), 192 (2016).
[Crossref]

Slipchenko, M. N.

S. Roy, P. S. Hsu, N. Jiang, M. N. Slipchenko, and J. R. Gord, “100-kHz-rate gas-phase thermometry using 100-ps pulses from a burst-mode laser,” Opt. Lett. 40(21), 5125–5128 (2015).
[Crossref]

S. Roy, J. D. Miller, M. N. Slipchenko, P. S. Hsu, J. G. Mance, T. R. Meyer, and J. R. Gord, “100-ps-pulse-duration, 100-J burst-mode laser for kHz-MHz flow diagnostics,” Opt. Lett. 39(22), 6462–6465 (2014).
[Crossref]

M. E. Smyser, M. N. Slipchenko, T. R. Meyer, A. Caswell, J. R. Gord, and S. Roy, “MHz-Rate Ultrafast Laser for Nonlinear Spectroscopy in Transient and Nonequilibrium Hypersonic Flows,” AIAA Paper 2019-1088, AIAA Scitech 2019 Forum, San Diego, CA, Jan. 7-11, 2019.

J. M. Fisher, M. E. Smyser, T. R. Meyer, M. N. Slipchenko, A. W. Caswell, J. R. Gord, and S. Roy, “Burst-Mode 100 kHz – 1 MHz FLEET Velocimetry in Supersonic and Hypersonic Flows,” AIAA Paper 2019-1822, AIAA Scitech 2019 Forum, San Diego, CA, Jan. 7-11, 2019.

Smyser, M.

Smyser, M. E.

J. M. Fisher, M. E. Smyser, T. R. Meyer, M. N. Slipchenko, A. W. Caswell, J. R. Gord, and S. Roy, “Burst-Mode 100 kHz – 1 MHz FLEET Velocimetry in Supersonic and Hypersonic Flows,” AIAA Paper 2019-1822, AIAA Scitech 2019 Forum, San Diego, CA, Jan. 7-11, 2019.

M. E. Smyser, M. N. Slipchenko, T. R. Meyer, A. Caswell, J. R. Gord, and S. Roy, “MHz-Rate Ultrafast Laser for Nonlinear Spectroscopy in Transient and Nonequilibrium Hypersonic Flows,” AIAA Paper 2019-1088, AIAA Scitech 2019 Forum, San Diego, CA, Jan. 7-11, 2019.

Spillers, R. W.

S. J. Beresh, J. F. Henfling, and R. W. Spillers, “Postage-stamp PIV:” small velocity fields at 400 kHz for turbulence spectra measurements,” AIAA Paper 2017-0024, 55th Aerospace Sciences Meeting, Grapevine, TX, Jan. 9-13, (2017).

Stark, H.

M. Mueller, A. Klenke, H. Stark, J. Buldt, T. Gottschall, A. Tünnermann, and J. Limpert, “1.8-kW 16-channel ultrafast fiber laser system,” Proc. SPIE 10512, 1051208 (2018).
[Crossref]

Tavella, F.

Thurow, B.

Thurow, B. S.

B. Brock, R. H. Haynes, B. S. Thurow, G. Lyons, and N. E. Murray, “An examination of MHz rate PIV in a heated supersonic jet,” AIAA Paper 2014-1102, 52nd Aerospace Sciences Meeting, National Harbor, Maryland, Jan. 13-17, 2014.

Tünnermann, A.

Várallyay, Z.

Venkateswaran, P.

Webster, M.

Weitenberg, J.

Willner, A.

Wu, P.

P. Wu, W. Lempert, and R. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction,” AIAA J. 38(4), 672–679 (2000).
[Crossref]

Wu, P. F.

W. R. Lempert, P. F. Wu, R. B. Miles, B. Zhang, J. L Lowrance, V. Mastrocola, and W. F. Kosonocky, “Pulse-burst laser system for high-speed flow diagnostics,” AIAA Paper 96-0179, 34th Aerospace Sciences Meeting, Reno, NV, Jan. 15-18, 1996.

Zhang, B.

W. R. Lempert, P. F. Wu, R. B. Miles, B. Zhang, J. L Lowrance, V. Mastrocola, and W. F. Kosonocky, “Pulse-burst laser system for high-speed flow diagnostics,” AIAA Paper 96-0179, 34th Aerospace Sciences Meeting, Reno, NV, Jan. 15-18, 1996.

AIAA J. (1)

P. Wu, W. Lempert, and R. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction,” AIAA J. 38(4), 672–679 (2000).
[Crossref]

Appl. Opt. (4)

Exp. Fluids (1)

J. Miller, N. Jiang, M. Slipchenko, J. Mance, T. Meyer, S. Roy, and J. Gord, “Spatiotemporal analysis of turbulent jets enabled by 100-kHz, 100-ms burst-mode particle image velocimetry,” Exp. Fluids 57(12), 192 (2016).
[Crossref]

J. Chem. Phys. (1)

J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 135(20), 201104 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Proc. SPIE (1)

M. Mueller, A. Klenke, H. Stark, J. Buldt, T. Gottschall, A. Tünnermann, and J. Limpert, “1.8-kW 16-channel ultrafast fiber laser system,” Proc. SPIE 10512, 1051208 (2018).
[Crossref]

Other (8)

S. J. Beresh, J. F. Henfling, and R. W. Spillers, “Postage-stamp PIV:” small velocity fields at 400 kHz for turbulence spectra measurements,” AIAA Paper 2017-0024, 55th Aerospace Sciences Meeting, Grapevine, TX, Jan. 9-13, (2017).

W. R. Lempert, P. F. Wu, R. B. Miles, B. Zhang, J. L Lowrance, V. Mastrocola, and W. F. Kosonocky, “Pulse-burst laser system for high-speed flow diagnostics,” AIAA Paper 96-0179, 34th Aerospace Sciences Meeting, Reno, NV, Jan. 15-18, 1996.

J. M. Fisher, M. E. Smyser, T. R. Meyer, M. N. Slipchenko, A. W. Caswell, J. R. Gord, and S. Roy, “Burst-Mode 100 kHz – 1 MHz FLEET Velocimetry in Supersonic and Hypersonic Flows,” AIAA Paper 2019-1822, AIAA Scitech 2019 Forum, San Diego, CA, Jan. 7-11, 2019.

www.ipgphotonics.com

www.imra.com

B. Brock, R. H. Haynes, B. S. Thurow, G. Lyons, and N. E. Murray, “An examination of MHz rate PIV in a heated supersonic jet,” AIAA Paper 2014-1102, 52nd Aerospace Sciences Meeting, National Harbor, Maryland, Jan. 13-17, 2014.

M. E. Smyser, M. N. Slipchenko, T. R. Meyer, A. Caswell, J. R. Gord, and S. Roy, “MHz-Rate Ultrafast Laser for Nonlinear Spectroscopy in Transient and Nonequilibrium Hypersonic Flows,” AIAA Paper 2019-1088, AIAA Scitech 2019 Forum, San Diego, CA, Jan. 7-11, 2019.

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Electro-optic logic diagram. DG, delay generator; AOM, acousto-optic modulator; FA, fiber amplifier; FC, fiber collimator.
Fig. 2.
Fig. 2. Free-space optical layout with f = 100 and 200 mm lenses. OI, optical isolator; HWP, half-wave plate; PBS, polarizing beam splitter; 0th, zeroth order beam; 1st, first order beam; PH, pinhole; QWP, quarter-wave plate. System size is 30 × 120 cm2.
Fig. 3.
Fig. 3. Single-pass small-signal gain measurements for different combinations of flashlamp diameters and rod diameters for Q-246 Nd:glass. Exponential growth fits are shown with R2 = 0.998 for 5 mm flashlamps and 0.996 for 6 mm flashlamps.
Fig. 4.
Fig. 4. Dependence of power amplifier pulse energy output on the energy inputs at 100 kHz and 1 MHz repetition rates. HWP angle rotations from 0-45 degrees in increments of 5 degrees are used to generate different energy inputs.
Fig. 5.
Fig. 5. Burst profiles over a 1.5 ms duration for 100 kHz and 1 MHz.
Fig. 6.
Fig. 6. (a) Near field and (b) far field spatial beam profiles. (c) Divergence profiles of the burst-mode laser in the x and y directions before compression with M2 = 1.53 and 1.45, respectively.
Fig. 7.
Fig. 7. Time-bandwidth beam characteristics: (a) frequency domain and (b) time domain.

Metrics