Abstract

We propose and numerically demonstrate a security-enhanced chaotic communication system by introducing optical temporal encryption (OTE) into the modulated chaotic carrier (chaos + message). In the proposed scheme, the message is firstly embedded into the original chaotic carrier generated by a conventional external-cavity semiconductor laser (ECSL), and before being transmitted to the receiver end, the modulated chaotic carrier propagates through an OTE module that consists of one phase modulator driven by a secret sinusoidal signal and one dispersive component. Our numerical results indicate that, as a direct result of the spectral expansion effect of the sinusoidal phase modulation and the phase-to-intensity conversion effect of the dispersive component, the original chaotic carrier can be encrypted as an uncorrelated chaotic signal with a flat spectrum and an efficiently-suppressed time delay signature, this greatly enhances the privacy of the modulated chaotic carrier. Moreover, comparing with the conventional ECSL-based chaotic communication systems without OTE, the proposed scheme not only shows significantly higher security against attacks including direct linear filtering and synchronization utilization, but also provides additional physical key space to further enhance the system security. In addition, by making use of the transmission dispersion for decryption, the proposed encryption scheme supports dispersion-compensation-free secure fiber communication, and it also supports centralized encryption/decryption in wavelength division multiplexing secure chaotic communication systems. The proposed scheme explores a novel encryption method for implementation in high-security chaotic communication systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Chaos synchronization and communication in closed-loop semiconductor lasers subject to common chaotic phase-modulated feedback

Ning Jiang, Anke Zhao, Shiqin Liu, Chenpeng Xue, and Kun Qiu
Opt. Express 26(25) 32404-32416 (2018)

Maximizing the security of chaotic optical communications

T. T. Hou, L. L. Yi, X. L. Yang, J. X. Ke, Y. Hu, Q. Yang, P. Zhou, and W. S. Hu
Opt. Express 24(20) 23439-23449 (2016)

Physical secure optical communication based on private chaotic spectral phase encryption/decryption

Ning Jiang, Anke Zhao, Chenpeng Xue, Jianming Tang, and Kun Qiu
Opt. Lett. 44(7) 1536-1539 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64(8), 821–824 (1990).
    [Crossref]
  2. M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
    [Crossref]
  3. N. Q. Li, H. Susanto, B. Cemlyn, I. D. Henning, and M. J. Adams, “Secure communication systems based on chaos in optically pumped spin-VCSELs,” Opt. Lett. 42(17), 3494–3497 (2017).
    [Crossref]
  4. T. Deng, G. Q. Xia, and Z. M. Wu, “Broadband chaos synchronization and communication based on mutually coupled VCSELs subject to a bandwidth-enhanced chaotic signal injection,” Nonlinear Dyn. 76(1), 399–407 (2014).
    [Crossref]
  5. Y. Fu, M. Cheng, X. Jiang, L. Deng, C. Ke, S. Fu, M. Tang, M. Zhang, P. Shum, and D. Liu, “Wavelength division multiplexing secure communication scheme based on an optically coupled phase chaos system and PM-to-IM conversion mechanism,” Nonlinear Dyn. 94(3), 1949–1959 (2018).
    [Crossref]
  6. P. Li, K. Li, X. Guo, Y. Guo, Y. Liu, B. Xu, A. Bogris, K. A. Shore, and Y. Wang, “Parallel optical random bit generator,” Opt. Lett. 44(10), 2446–2449 (2019).
    [Crossref]
  7. N. Q. Li, B. Kim, V. N. Chizhevsky, A. Locquet, M. Bloch, D. S. Citrin, and W. Pan, “Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser,” Opt. Express 22(6), 6634–6646 (2014).
    [Crossref]
  8. N. Q. Li, W. Pan, S. Xiang, B. Luo, L. Yan, and X. Zou, “Hybrid chaos-based communication system consisting of three chaotic semiconductor ring lasers,” Appl. Opt. 52(7), 1523–1530 (2013).
    [Crossref]
  9. C. Xue, N. Jiang, Y. Lv, and K. Qiu, “Secure key distribution based on dynamic chaos synchronization of cascaded semiconductor laser systems,” IEEE Trans. on Commun. 65(1), 312–317 (2016).
    [Crossref]
  10. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
    [Crossref]
  11. Y. H. Hong and K. A. Shore, “Power loss resilience in laser diode-based optical chaotic communications systems,” J. Lightwave Technol. 28(3), 270–276 (2010).
    [Crossref]
  12. D. Kanakidis, A. Argyris, A. Bogris, and D. Syvridis, “Influence of the decoding process on the performance of chaos encrypted optical communication systems,” J. Lightwave Technol. 24(1), 335–341 (2006).
    [Crossref]
  13. A. Bogris, A. Argyris, and D. Syvridis, “Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits,” IEEE J. Quantum Electron. 46(10), 1421–1429 (2010).
    [Crossref]
  14. N. Jiang, C. Zhang, and K. Qiu, “Secure passive optical network based on chaos synchronization,” Opt. Lett. 37(21), 4501–4503 (2012).
    [Crossref]
  15. D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
    [Crossref]
  16. A. Wang, Y. Yang, B. Wang, B. Zhang, L. Li, and Y. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
    [Crossref]
  17. M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47(2), 252–261 (2011).
    [Crossref]
  18. D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
    [Crossref]
  19. J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
    [Crossref]
  20. S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
    [Crossref]
  21. N. Jiang, A. Zhao, S. Liu, C. Xue, B. Wang, and K. Qiu, “Generation of broadband chaos with perfect time delay signature suppression by using self-phase-modulated feedback and a microsphere resonator,” Opt. Lett. 43(21), 5359–5362 (2018).
    [Crossref]
  22. S. Xiang, A. Wen, W. Pan, L. Lin, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lightwave Technol. 34(18), 4221–4227 (2016).
    [Crossref]
  23. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
    [Crossref]
  24. N. Jiang, C. Wang, C. Xue, G. Li, S. Lin, and K. Qiu, “Generation of flat wideband chaos with suppressed time delay signature by using optical time lens,” Opt. Express 25(13), 14359–14367 (2017).
    [Crossref]
  25. N. Q. Li, R. M. Nguimdo, A. Locquet, and D. S. Citrin, “Enhancing optical-feedback-induced chaotic dynamics in semiconductor ring lasers via optical injection,” Nonlinear Dyn. 92(2), 315–324 (2018).
    [Crossref]
  26. T. Heil, I. Fischer, W. Elsasser, J. Mulet, and C. R. Mirasso, “Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers,” Phys. Rev. Lett. 86(5), 795–798 (2001).
    [Crossref]
  27. M. Cheng, L. Deng, H. Li, and D. Liu, “Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation,” Opt. Express 22(5), 5241–5251 (2014).
    [Crossref]
  28. F. Zhang and P. L. Chu, “Effect of transmission fiber on chaotic communication system based on erbium-doped fiber ring laser,” J. Lightwave Technol. 21(12), 3334–3343 (2003).
    [Crossref]
  29. N. Jiang, C. Xue, Y. Lv, and K. Qiu, “Physical enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers,” Nonlinear Dyn. 86(3), 1937–1949 (2016).
    [Crossref]
  30. J. G. Wu, Z. M. Wu, Y. R. Liu, L. Fan, X. Tang, and G. Q. Xia, “Simulation of bidirectional long-distance chaos communication performance in a novel fiber-optic chaos synchronization system,” J. Lightwave Technol. 31(3), 461–467 (2013).
    [Crossref]
  31. S. Xiang, W. Pan, L. Yan, B. Luo, X. Zou, N. Jiang, and L. Yang, “Impact of unpredictability on chaos synchronization of vertical-cavity surface-emitting lasers with variable-polarization optical feedback,” Opt. Lett. 36(17), 3497–3499 (2011).
    [Crossref]
  32. Y. H. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(4), 236–242 (2014).
    [Crossref]
  33. Y. Gao, Q. Zhuge, W. Wang, X. Xu, J. M. Nuset, M. Morsy-Osman, M. Chagnon, F. Li, L. Wang, C. Lu, A. P. T. Lau, and D. V. Plant, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
    [Crossref]
  34. N. Jiang, A. K. Zhao, S. Q. Liu, C. P. Xue, and K. Qiu, “Chaos synchronization and communication in closed-loop semiconductor lasers subject to common chaotic phase-modulated feedback,” Opt. Express 26(25), 32404–32416 (2018).
    [Crossref]
  35. A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic application,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
    [Crossref]
  36. T. T. Hou, L. L. Yi, X. L. Yang, J. X. Ke, Y. Hu, Q. Yang, P. Zhou, and W. S. Hu, “Maximizing the security of chaotic optical communications,” Opt. Express 24(20), 23439–023449 (2016).
    [Crossref]
  37. L. Zhang, X. Xing, B. Liu, and X. Yin, “Physical secure enhancement in optical OFDMA-PON based on two-dimensional scrambling,” Opt. Express 20(26), B32–B37 (2012).
    [Crossref]
  38. L. Deng, M. Cheng, X. Wang, H. Li, M. Tang, S. Fu, P. Shum, and D. M. Liu, “Secure OFDM-PON system based on chaos and fractional Fourier transform techniques,” J. Lightwave Technol. 32(15), 2629–2635 (2014).
    [Crossref]
  39. C. Zhang, W. Zhang, C. Chen, X. He, and K. Qiu, “Physical-enhanced secure strategy for OFDMA-PON using chaos and deoxyribonucleic acid encoding,” J. Lightwave Technol. 36(9), 1706–1712 (2018).
    [Crossref]

2019 (1)

2018 (5)

Y. Fu, M. Cheng, X. Jiang, L. Deng, C. Ke, S. Fu, M. Tang, M. Zhang, P. Shum, and D. Liu, “Wavelength division multiplexing secure communication scheme based on an optically coupled phase chaos system and PM-to-IM conversion mechanism,” Nonlinear Dyn. 94(3), 1949–1959 (2018).
[Crossref]

N. Jiang, A. Zhao, S. Liu, C. Xue, B. Wang, and K. Qiu, “Generation of broadband chaos with perfect time delay signature suppression by using self-phase-modulated feedback and a microsphere resonator,” Opt. Lett. 43(21), 5359–5362 (2018).
[Crossref]

N. Q. Li, R. M. Nguimdo, A. Locquet, and D. S. Citrin, “Enhancing optical-feedback-induced chaotic dynamics in semiconductor ring lasers via optical injection,” Nonlinear Dyn. 92(2), 315–324 (2018).
[Crossref]

N. Jiang, A. K. Zhao, S. Q. Liu, C. P. Xue, and K. Qiu, “Chaos synchronization and communication in closed-loop semiconductor lasers subject to common chaotic phase-modulated feedback,” Opt. Express 26(25), 32404–32416 (2018).
[Crossref]

C. Zhang, W. Zhang, C. Chen, X. He, and K. Qiu, “Physical-enhanced secure strategy for OFDMA-PON using chaos and deoxyribonucleic acid encoding,” J. Lightwave Technol. 36(9), 1706–1712 (2018).
[Crossref]

2017 (2)

2016 (4)

C. Xue, N. Jiang, Y. Lv, and K. Qiu, “Secure key distribution based on dynamic chaos synchronization of cascaded semiconductor laser systems,” IEEE Trans. on Commun. 65(1), 312–317 (2016).
[Crossref]

S. Xiang, A. Wen, W. Pan, L. Lin, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lightwave Technol. 34(18), 4221–4227 (2016).
[Crossref]

N. Jiang, C. Xue, Y. Lv, and K. Qiu, “Physical enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers,” Nonlinear Dyn. 86(3), 1937–1949 (2016).
[Crossref]

T. T. Hou, L. L. Yi, X. L. Yang, J. X. Ke, Y. Hu, Q. Yang, P. Zhou, and W. S. Hu, “Maximizing the security of chaotic optical communications,” Opt. Express 24(20), 23439–023449 (2016).
[Crossref]

2015 (1)

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

2014 (5)

2013 (3)

2012 (3)

2011 (2)

S. Xiang, W. Pan, L. Yan, B. Luo, X. Zou, N. Jiang, and L. Yang, “Impact of unpredictability on chaos synchronization of vertical-cavity surface-emitting lasers with variable-polarization optical feedback,” Opt. Lett. 36(17), 3497–3499 (2011).
[Crossref]

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47(2), 252–261 (2011).
[Crossref]

2010 (2)

A. Bogris, A. Argyris, and D. Syvridis, “Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits,” IEEE J. Quantum Electron. 46(10), 1421–1429 (2010).
[Crossref]

Y. H. Hong and K. A. Shore, “Power loss resilience in laser diode-based optical chaotic communications systems,” J. Lightwave Technol. 28(3), 270–276 (2010).
[Crossref]

2009 (2)

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
[Crossref]

2008 (1)

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic application,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

2003 (2)

Y. Gao, Q. Zhuge, W. Wang, X. Xu, J. M. Nuset, M. Morsy-Osman, M. Chagnon, F. Li, L. Wang, C. Lu, A. P. T. Lau, and D. V. Plant, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

F. Zhang and P. L. Chu, “Effect of transmission fiber on chaotic communication system based on erbium-doped fiber ring laser,” J. Lightwave Technol. 21(12), 3334–3343 (2003).
[Crossref]

2001 (1)

T. Heil, I. Fischer, W. Elsasser, J. Mulet, and C. R. Mirasso, “Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers,” Phys. Rev. Lett. 86(5), 795–798 (2001).
[Crossref]

1990 (1)

L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64(8), 821–824 (1990).
[Crossref]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Adams, M. J.

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Argyris, A.

A. Bogris, A. Argyris, and D. Syvridis, “Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits,” IEEE J. Quantum Electron. 46(10), 1421–1429 (2010).
[Crossref]

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic application,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

D. Kanakidis, A. Argyris, A. Bogris, and D. Syvridis, “Influence of the decoding process on the performance of chaos encrypted optical communication systems,” J. Lightwave Technol. 24(1), 335–341 (2006).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Bloch, M.

Bogris, A.

P. Li, K. Li, X. Guo, Y. Guo, Y. Liu, B. Xu, A. Bogris, K. A. Shore, and Y. Wang, “Parallel optical random bit generator,” Opt. Lett. 44(10), 2446–2449 (2019).
[Crossref]

A. Bogris, A. Argyris, and D. Syvridis, “Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits,” IEEE J. Quantum Electron. 46(10), 1421–1429 (2010).
[Crossref]

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic application,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

D. Kanakidis, A. Argyris, A. Bogris, and D. Syvridis, “Influence of the decoding process on the performance of chaos encrypted optical communication systems,” J. Lightwave Technol. 24(1), 335–341 (2006).
[Crossref]

Carroll, T. L.

L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64(8), 821–824 (1990).
[Crossref]

Cemlyn, B.

Chagnon, M.

Y. Gao, Q. Zhuge, W. Wang, X. Xu, J. M. Nuset, M. Morsy-Osman, M. Chagnon, F. Li, L. Wang, C. Lu, A. P. T. Lau, and D. V. Plant, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

Chan, S. C.

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

Chen, C.

Cheng, M.

Chizhevsky, V. N.

Chlouverakis, K. E.

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic application,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

Chu, P. L.

Citrin, D. S.

N. Q. Li, R. M. Nguimdo, A. Locquet, and D. S. Citrin, “Enhancing optical-feedback-induced chaotic dynamics in semiconductor ring lasers via optical injection,” Nonlinear Dyn. 92(2), 315–324 (2018).
[Crossref]

N. Q. Li, B. Kim, V. N. Chizhevsky, A. Locquet, M. Bloch, D. S. Citrin, and W. Pan, “Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser,” Opt. Express 22(6), 6634–6646 (2014).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
[Crossref]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Deng, L.

Deng, T.

T. Deng, G. Q. Xia, and Z. M. Wu, “Broadband chaos synchronization and communication based on mutually coupled VCSELs subject to a bandwidth-enhanced chaotic signal injection,” Nonlinear Dyn. 76(1), 399–407 (2014).
[Crossref]

Elsasser, W.

T. Heil, I. Fischer, W. Elsasser, J. Mulet, and C. R. Mirasso, “Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers,” Phys. Rev. Lett. 86(5), 795–798 (2001).
[Crossref]

Fan, L.

Fischer, I.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47(2), 252–261 (2011).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

T. Heil, I. Fischer, W. Elsasser, J. Mulet, and C. R. Mirasso, “Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers,” Phys. Rev. Lett. 86(5), 795–798 (2001).
[Crossref]

Fu, S.

Y. Fu, M. Cheng, X. Jiang, L. Deng, C. Ke, S. Fu, M. Tang, M. Zhang, P. Shum, and D. Liu, “Wavelength division multiplexing secure communication scheme based on an optically coupled phase chaos system and PM-to-IM conversion mechanism,” Nonlinear Dyn. 94(3), 1949–1959 (2018).
[Crossref]

L. Deng, M. Cheng, X. Wang, H. Li, M. Tang, S. Fu, P. Shum, and D. M. Liu, “Secure OFDM-PON system based on chaos and fractional Fourier transform techniques,” J. Lightwave Technol. 32(15), 2629–2635 (2014).
[Crossref]

Fu, Y.

Y. Fu, M. Cheng, X. Jiang, L. Deng, C. Ke, S. Fu, M. Tang, M. Zhang, P. Shum, and D. Liu, “Wavelength division multiplexing secure communication scheme based on an optically coupled phase chaos system and PM-to-IM conversion mechanism,” Nonlinear Dyn. 94(3), 1949–1959 (2018).
[Crossref]

Gao, Y.

Y. Gao, Q. Zhuge, W. Wang, X. Xu, J. M. Nuset, M. Morsy-Osman, M. Chagnon, F. Li, L. Wang, C. Lu, A. P. T. Lau, and D. V. Plant, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Guo, X.

Guo, Y.

He, X.

Heil, T.

T. Heil, I. Fischer, W. Elsasser, J. Mulet, and C. R. Mirasso, “Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers,” Phys. Rev. Lett. 86(5), 795–798 (2001).
[Crossref]

Henning, I. D.

Hong, Y. H.

Y. H. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(4), 236–242 (2014).
[Crossref]

Y. H. Hong and K. A. Shore, “Power loss resilience in laser diode-based optical chaotic communications systems,” J. Lightwave Technol. 28(3), 270–276 (2010).
[Crossref]

Hou, T. T.

Hu, W. S.

Hu, Y.

Jiang, N.

N. Jiang, A. Zhao, S. Liu, C. Xue, B. Wang, and K. Qiu, “Generation of broadband chaos with perfect time delay signature suppression by using self-phase-modulated feedback and a microsphere resonator,” Opt. Lett. 43(21), 5359–5362 (2018).
[Crossref]

N. Jiang, A. K. Zhao, S. Q. Liu, C. P. Xue, and K. Qiu, “Chaos synchronization and communication in closed-loop semiconductor lasers subject to common chaotic phase-modulated feedback,” Opt. Express 26(25), 32404–32416 (2018).
[Crossref]

N. Jiang, C. Wang, C. Xue, G. Li, S. Lin, and K. Qiu, “Generation of flat wideband chaos with suppressed time delay signature by using optical time lens,” Opt. Express 25(13), 14359–14367 (2017).
[Crossref]

N. Jiang, C. Xue, Y. Lv, and K. Qiu, “Physical enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers,” Nonlinear Dyn. 86(3), 1937–1949 (2016).
[Crossref]

C. Xue, N. Jiang, Y. Lv, and K. Qiu, “Secure key distribution based on dynamic chaos synchronization of cascaded semiconductor laser systems,” IEEE Trans. on Commun. 65(1), 312–317 (2016).
[Crossref]

N. Jiang, C. Zhang, and K. Qiu, “Secure passive optical network based on chaos synchronization,” Opt. Lett. 37(21), 4501–4503 (2012).
[Crossref]

S. Xiang, W. Pan, L. Yan, B. Luo, X. Zou, N. Jiang, and L. Yang, “Impact of unpredictability on chaos synchronization of vertical-cavity surface-emitting lasers with variable-polarization optical feedback,” Opt. Lett. 36(17), 3497–3499 (2011).
[Crossref]

Jiang, X.

Y. Fu, M. Cheng, X. Jiang, L. Deng, C. Ke, S. Fu, M. Tang, M. Zhang, P. Shum, and D. Liu, “Wavelength division multiplexing secure communication scheme based on an optically coupled phase chaos system and PM-to-IM conversion mechanism,” Nonlinear Dyn. 94(3), 1949–1959 (2018).
[Crossref]

Kanakidis, D.

Ke, C.

Y. Fu, M. Cheng, X. Jiang, L. Deng, C. Ke, S. Fu, M. Tang, M. Zhang, P. Shum, and D. Liu, “Wavelength division multiplexing secure communication scheme based on an optically coupled phase chaos system and PM-to-IM conversion mechanism,” Nonlinear Dyn. 94(3), 1949–1959 (2018).
[Crossref]

Ke, J. X.

Kim, B.

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Lau, A. P. T.

Y. Gao, Q. Zhuge, W. Wang, X. Xu, J. M. Nuset, M. Morsy-Osman, M. Chagnon, F. Li, L. Wang, C. Lu, A. P. T. Lau, and D. V. Plant, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

Li, F.

Y. Gao, Q. Zhuge, W. Wang, X. Xu, J. M. Nuset, M. Morsy-Osman, M. Chagnon, F. Li, L. Wang, C. Lu, A. P. T. Lau, and D. V. Plant, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

Li, G.

Li, H.

Li, J.

Li, K.

Li, L.

Li, N. Q.

Li, P.

Li, S. S.

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

Lin, L.

Lin, S.

Liu, B.

Liu, D.

Y. Fu, M. Cheng, X. Jiang, L. Deng, C. Ke, S. Fu, M. Tang, M. Zhang, P. Shum, and D. Liu, “Wavelength division multiplexing secure communication scheme based on an optically coupled phase chaos system and PM-to-IM conversion mechanism,” Nonlinear Dyn. 94(3), 1949–1959 (2018).
[Crossref]

M. Cheng, L. Deng, H. Li, and D. Liu, “Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation,” Opt. Express 22(5), 5241–5251 (2014).
[Crossref]

Liu, D. M.

Liu, Q.

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

Liu, S.

Liu, S. Q.

Liu, Y.

Liu, Y. R.

Locquet, A.

N. Q. Li, R. M. Nguimdo, A. Locquet, and D. S. Citrin, “Enhancing optical-feedback-induced chaotic dynamics in semiconductor ring lasers via optical injection,” Nonlinear Dyn. 92(2), 315–324 (2018).
[Crossref]

N. Q. Li, B. Kim, V. N. Chizhevsky, A. Locquet, M. Bloch, D. S. Citrin, and W. Pan, “Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser,” Opt. Express 22(6), 6634–6646 (2014).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
[Crossref]

Lu, C.

Y. Gao, Q. Zhuge, W. Wang, X. Xu, J. M. Nuset, M. Morsy-Osman, M. Chagnon, F. Li, L. Wang, C. Lu, A. P. T. Lau, and D. V. Plant, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

Luo, B.

Lv, Y.

N. Jiang, C. Xue, Y. Lv, and K. Qiu, “Physical enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers,” Nonlinear Dyn. 86(3), 1937–1949 (2016).
[Crossref]

C. Xue, N. Jiang, Y. Lv, and K. Qiu, “Secure key distribution based on dynamic chaos synchronization of cascaded semiconductor laser systems,” IEEE Trans. on Commun. 65(1), 312–317 (2016).
[Crossref]

Mirasso, C. R.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47(2), 252–261 (2011).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

T. Heil, I. Fischer, W. Elsasser, J. Mulet, and C. R. Mirasso, “Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers,” Phys. Rev. Lett. 86(5), 795–798 (2001).
[Crossref]

Morsy-Osman, M.

Y. Gao, Q. Zhuge, W. Wang, X. Xu, J. M. Nuset, M. Morsy-Osman, M. Chagnon, F. Li, L. Wang, C. Lu, A. P. T. Lau, and D. V. Plant, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

Mulet, J.

T. Heil, I. Fischer, W. Elsasser, J. Mulet, and C. R. Mirasso, “Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers,” Phys. Rev. Lett. 86(5), 795–798 (2001).
[Crossref]

Nguimdo, R. M.

N. Q. Li, R. M. Nguimdo, A. Locquet, and D. S. Citrin, “Enhancing optical-feedback-induced chaotic dynamics in semiconductor ring lasers via optical injection,” Nonlinear Dyn. 92(2), 315–324 (2018).
[Crossref]

Nuset, J. M.

Y. Gao, Q. Zhuge, W. Wang, X. Xu, J. M. Nuset, M. Morsy-Osman, M. Chagnon, F. Li, L. Wang, C. Lu, A. P. T. Lau, and D. V. Plant, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

Ortin, S.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

Pan, W.

Pecora, L. M.

L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64(8), 821–824 (1990).
[Crossref]

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Plant, D. V.

Y. Gao, Q. Zhuge, W. Wang, X. Xu, J. M. Nuset, M. Morsy-Osman, M. Chagnon, F. Li, L. Wang, C. Lu, A. P. T. Lau, and D. V. Plant, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

Qiu, K.

Rizomiliotis, P.

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic application,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

Rontani, D.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
[Crossref]

Rosso, O. A.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47(2), 252–261 (2011).
[Crossref]

Sciamanna, M.

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
[Crossref]

Shore, K. A.

P. Li, K. Li, X. Guo, Y. Guo, Y. Liu, B. Xu, A. Bogris, K. A. Shore, and Y. Wang, “Parallel optical random bit generator,” Opt. Lett. 44(10), 2446–2449 (2019).
[Crossref]

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

Y. H. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(4), 236–242 (2014).
[Crossref]

Y. H. Hong and K. A. Shore, “Power loss resilience in laser diode-based optical chaotic communications systems,” J. Lightwave Technol. 28(3), 270–276 (2010).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Shum, P.

Y. Fu, M. Cheng, X. Jiang, L. Deng, C. Ke, S. Fu, M. Tang, M. Zhang, P. Shum, and D. Liu, “Wavelength division multiplexing secure communication scheme based on an optically coupled phase chaos system and PM-to-IM conversion mechanism,” Nonlinear Dyn. 94(3), 1949–1959 (2018).
[Crossref]

L. Deng, M. Cheng, X. Wang, H. Li, M. Tang, S. Fu, P. Shum, and D. M. Liu, “Secure OFDM-PON system based on chaos and fractional Fourier transform techniques,” J. Lightwave Technol. 32(15), 2629–2635 (2014).
[Crossref]

Soriano, M. C.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47(2), 252–261 (2011).
[Crossref]

Spencer, P. S.

Y. H. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(4), 236–242 (2014).
[Crossref]

Susanto, H.

Syvridis, D.

A. Bogris, A. Argyris, and D. Syvridis, “Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits,” IEEE J. Quantum Electron. 46(10), 1421–1429 (2010).
[Crossref]

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic application,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

D. Kanakidis, A. Argyris, A. Bogris, and D. Syvridis, “Influence of the decoding process on the performance of chaos encrypted optical communication systems,” J. Lightwave Technol. 24(1), 335–341 (2006).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Tang, M.

Y. Fu, M. Cheng, X. Jiang, L. Deng, C. Ke, S. Fu, M. Tang, M. Zhang, P. Shum, and D. Liu, “Wavelength division multiplexing secure communication scheme based on an optically coupled phase chaos system and PM-to-IM conversion mechanism,” Nonlinear Dyn. 94(3), 1949–1959 (2018).
[Crossref]

L. Deng, M. Cheng, X. Wang, H. Li, M. Tang, S. Fu, P. Shum, and D. M. Liu, “Secure OFDM-PON system based on chaos and fractional Fourier transform techniques,” J. Lightwave Technol. 32(15), 2629–2635 (2014).
[Crossref]

Tang, X.

Wang, A.

Wang, B.

Wang, C.

Wang, L.

Y. Gao, Q. Zhuge, W. Wang, X. Xu, J. M. Nuset, M. Morsy-Osman, M. Chagnon, F. Li, L. Wang, C. Lu, A. P. T. Lau, and D. V. Plant, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

Wang, W.

Y. Gao, Q. Zhuge, W. Wang, X. Xu, J. M. Nuset, M. Morsy-Osman, M. Chagnon, F. Li, L. Wang, C. Lu, A. P. T. Lau, and D. V. Plant, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

Wang, X.

Wang, Y.

Wen, A.

Wu, J. G.

Wu, Z. M.

Xia, G. Q.

Xiang, S.

Xing, X.

Xu, B.

Xu, X.

Y. Gao, Q. Zhuge, W. Wang, X. Xu, J. M. Nuset, M. Morsy-Osman, M. Chagnon, F. Li, L. Wang, C. Lu, A. P. T. Lau, and D. V. Plant, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

Xue, C.

N. Jiang, A. Zhao, S. Liu, C. Xue, B. Wang, and K. Qiu, “Generation of broadband chaos with perfect time delay signature suppression by using self-phase-modulated feedback and a microsphere resonator,” Opt. Lett. 43(21), 5359–5362 (2018).
[Crossref]

N. Jiang, C. Wang, C. Xue, G. Li, S. Lin, and K. Qiu, “Generation of flat wideband chaos with suppressed time delay signature by using optical time lens,” Opt. Express 25(13), 14359–14367 (2017).
[Crossref]

N. Jiang, C. Xue, Y. Lv, and K. Qiu, “Physical enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers,” Nonlinear Dyn. 86(3), 1937–1949 (2016).
[Crossref]

C. Xue, N. Jiang, Y. Lv, and K. Qiu, “Secure key distribution based on dynamic chaos synchronization of cascaded semiconductor laser systems,” IEEE Trans. on Commun. 65(1), 312–317 (2016).
[Crossref]

Xue, C. P.

Yan, L.

Yang, L.

Yang, Q.

Yang, X. L.

Yang, Y.

Yi, L. L.

Yin, X.

Zhang, B.

Zhang, C.

Zhang, F.

Zhang, H.

Zhang, L.

Zhang, M.

Y. Fu, M. Cheng, X. Jiang, L. Deng, C. Ke, S. Fu, M. Tang, M. Zhang, P. Shum, and D. Liu, “Wavelength division multiplexing secure communication scheme based on an optically coupled phase chaos system and PM-to-IM conversion mechanism,” Nonlinear Dyn. 94(3), 1949–1959 (2018).
[Crossref]

Zhang, W.

Zhao, A.

Zhao, A. K.

Zhou, P.

Zhuge, Q.

Y. Gao, Q. Zhuge, W. Wang, X. Xu, J. M. Nuset, M. Morsy-Osman, M. Chagnon, F. Li, L. Wang, C. Lu, A. P. T. Lau, and D. V. Plant, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

Zou, X.

Zunino, L.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47(2), 252–261 (2011).
[Crossref]

Appl. Opt. (1)

IEEE J. Quantum Electron. (6)

A. Bogris, A. Argyris, and D. Syvridis, “Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits,” IEEE J. Quantum Electron. 46(10), 1421–1429 (2010).
[Crossref]

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47(2), 252–261 (2011).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Y. H. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(4), 236–242 (2014).
[Crossref]

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic application,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

IEEE Photonics J. (1)

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

IEEE Trans. on Commun. (1)

C. Xue, N. Jiang, Y. Lv, and K. Qiu, “Secure key distribution based on dynamic chaos synchronization of cascaded semiconductor laser systems,” IEEE Trans. on Commun. 65(1), 312–317 (2016).
[Crossref]

J. Lightwave Technol. (7)

Y. H. Hong and K. A. Shore, “Power loss resilience in laser diode-based optical chaotic communications systems,” J. Lightwave Technol. 28(3), 270–276 (2010).
[Crossref]

D. Kanakidis, A. Argyris, A. Bogris, and D. Syvridis, “Influence of the decoding process on the performance of chaos encrypted optical communication systems,” J. Lightwave Technol. 24(1), 335–341 (2006).
[Crossref]

L. Deng, M. Cheng, X. Wang, H. Li, M. Tang, S. Fu, P. Shum, and D. M. Liu, “Secure OFDM-PON system based on chaos and fractional Fourier transform techniques,” J. Lightwave Technol. 32(15), 2629–2635 (2014).
[Crossref]

C. Zhang, W. Zhang, C. Chen, X. He, and K. Qiu, “Physical-enhanced secure strategy for OFDMA-PON using chaos and deoxyribonucleic acid encoding,” J. Lightwave Technol. 36(9), 1706–1712 (2018).
[Crossref]

J. G. Wu, Z. M. Wu, Y. R. Liu, L. Fan, X. Tang, and G. Q. Xia, “Simulation of bidirectional long-distance chaos communication performance in a novel fiber-optic chaos synchronization system,” J. Lightwave Technol. 31(3), 461–467 (2013).
[Crossref]

S. Xiang, A. Wen, W. Pan, L. Lin, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lightwave Technol. 34(18), 4221–4227 (2016).
[Crossref]

F. Zhang and P. L. Chu, “Effect of transmission fiber on chaotic communication system based on erbium-doped fiber ring laser,” J. Lightwave Technol. 21(12), 3334–3343 (2003).
[Crossref]

Nat. Photonics (1)

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Nonlinear Dyn. (4)

T. Deng, G. Q. Xia, and Z. M. Wu, “Broadband chaos synchronization and communication based on mutually coupled VCSELs subject to a bandwidth-enhanced chaotic signal injection,” Nonlinear Dyn. 76(1), 399–407 (2014).
[Crossref]

Y. Fu, M. Cheng, X. Jiang, L. Deng, C. Ke, S. Fu, M. Tang, M. Zhang, P. Shum, and D. Liu, “Wavelength division multiplexing secure communication scheme based on an optically coupled phase chaos system and PM-to-IM conversion mechanism,” Nonlinear Dyn. 94(3), 1949–1959 (2018).
[Crossref]

N. Jiang, C. Xue, Y. Lv, and K. Qiu, “Physical enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers,” Nonlinear Dyn. 86(3), 1937–1949 (2016).
[Crossref]

N. Q. Li, R. M. Nguimdo, A. Locquet, and D. S. Citrin, “Enhancing optical-feedback-induced chaotic dynamics in semiconductor ring lasers via optical injection,” Nonlinear Dyn. 92(2), 315–324 (2018).
[Crossref]

Opt. Commun. (1)

Y. Gao, Q. Zhuge, W. Wang, X. Xu, J. M. Nuset, M. Morsy-Osman, M. Chagnon, F. Li, L. Wang, C. Lu, A. P. T. Lau, and D. V. Plant, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

Opt. Express (8)

N. Jiang, A. K. Zhao, S. Q. Liu, C. P. Xue, and K. Qiu, “Chaos synchronization and communication in closed-loop semiconductor lasers subject to common chaotic phase-modulated feedback,” Opt. Express 26(25), 32404–32416 (2018).
[Crossref]

T. T. Hou, L. L. Yi, X. L. Yang, J. X. Ke, Y. Hu, Q. Yang, P. Zhou, and W. S. Hu, “Maximizing the security of chaotic optical communications,” Opt. Express 24(20), 23439–023449 (2016).
[Crossref]

L. Zhang, X. Xing, B. Liu, and X. Yin, “Physical secure enhancement in optical OFDMA-PON based on two-dimensional scrambling,” Opt. Express 20(26), B32–B37 (2012).
[Crossref]

A. Wang, Y. Yang, B. Wang, B. Zhang, L. Li, and Y. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
[Crossref]

N. Jiang, C. Wang, C. Xue, G. Li, S. Lin, and K. Qiu, “Generation of flat wideband chaos with suppressed time delay signature by using optical time lens,” Opt. Express 25(13), 14359–14367 (2017).
[Crossref]

N. Q. Li, B. Kim, V. N. Chizhevsky, A. Locquet, M. Bloch, D. S. Citrin, and W. Pan, “Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser,” Opt. Express 22(6), 6634–6646 (2014).
[Crossref]

J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
[Crossref]

M. Cheng, L. Deng, H. Li, and D. Liu, “Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation,” Opt. Express 22(5), 5241–5251 (2014).
[Crossref]

Opt. Lett. (6)

Phys. Rev. Lett. (2)

T. Heil, I. Fischer, W. Elsasser, J. Mulet, and C. R. Mirasso, “Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers,” Phys. Rev. Lett. 86(5), 795–798 (2001).
[Crossref]

L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64(8), 821–824 (1990).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic of the proposed secure chaotic communication system with optical temporal encryption/decryption (OTE/D). MSL(SSL), master (slave) semiconductor laser; OC, optical coupler; R, reflector; M, intensity modulator; D, Dispersion component; PM, phase modulator; OI, optical isolator; PD, photodiode; m(t), message; m’(t), recovery message.
Fig. 2.
Fig. 2. Temporal waveform (first column), RF spectrum (second column), and ACF (third column) of the original (first row) and encrypted chaotic carrier (second row).
Fig. 3.
Fig. 3. (a) Efficient bandwidth EB (GHz) of OTE chaotic carrier versus the index A0 and frequency f0 of phase modulation; (b) EB (GHz) of OTE chaotic carrier in the space of the dispersion coefficient D and the PM frequency f0, for the case of A0=Vπ.
Fig. 4.
Fig. 4. (a) TDS value in ACF of OTE chaotic carrier versus the PM index A0 and frequency f0; (b) TDS value in ACF of OTE chaotic carrier in the space of the dispersion coefficient D and the PM frequency f0, for the case of A0=Vπ.
Fig. 5.
Fig. 5. Temporal intensities of (a) original chaotic carrier, (b) OTFE chaotic carrier, (c) OTFD chaotic carrier, and (d) local chaotic carrier generated by SSL. (e)–(g) the cross-correlations between original chaos and the other three chaotic signals.
Fig. 6.
Fig. 6. Comparison of chaos synchronization quality versus (a) injection strength and (b) parameter mismatch in the proposed system (triangle) and conventional system without OTE/OTD (circle).
Fig. 7.
Fig. 7. Illustration of WDM message encryption/decryption processes. (a), (b), (c) show the original messages (dashed) and recovery messages (solid) on the three channels of λ-1=1549.2 nm, λ0=1550 nm, λ+1=1550.8 nm, for the cases with bit rates of 2 Gbit/s, respectively, while (a1), (b1), (c1) show the corresponding eye diagrams.
Fig. 8.
Fig. 8. Performance (Log(BER)) of the legal decryption (solid), the illegal interception from the original modulated chaotic carrier by DLF (dashed-diamond), the interception from the OTE chaotic carrier by DLF (dashed-triangle), and the interception by the synchronization utilization method (dashed-circle)
Fig. 9.
Fig. 9. Sensitivity of BER to the mismatches of (a) PM index A0 and (b) PM frequency f0. Here the message bit rate is chosen as R = 5Gbit/s.
Fig. 10.
Fig. 10. Sensitivity of BER to the mismatch of dispersion coefficient D. here the parameters are identical to those in Fig. 9.
Fig. 11.
Fig. 11. Optical spectrum of WDM transmission signal in (a) conventional ECSL-based chaotic communication system and (b) the proposed system.

Tables (1)

Tables Icon

Table 1. Values of parameters used in the simulations [13,14,24]

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

d E m ( t ) d t = 1 2 ( 1 + i α ) [ G m ( t ) 1 τ p ] E m ( t ) + k E m ( t τ f ) exp ( ω m τ f ) + 2 β N m ( t ) χ m ( t )
d N m ( t ) d t = I q N m ( t ) τ e G m ( t ) | E m ( t ) | 2
d E s ( t ) d t = 1 2 ( 1 + i α ) [ G s ( t ) 1 τ p ] E s ( t ) + k E s ( t τ f ) exp ( ω s τ f ) + σ E i n j ( t ) + 2 β N s ( t ) χ s ( t )
d N s ( t ) d t = I q N s ( t ) τ e G s ( t ) | E s ( t ) | 2
G m , s ( t ) = g [ N m , s ( t ) N 0 ] 1 + ε | E m , s ( t ) | 2
E o u t ( t ) = E i n ( t ) exp ( i π V k e y ( t ) V π )
H D E ( ω ) = K 1 exp ( i 1 2 β 2 E L E ω 2 )
h D E ( t ) = F 1 [ H D E ( ω ) ] = K 2 exp ( i ω 0 2 λ 0 D E L E t 2 ) ,
i E t z = i 2 α F E t γ | E i | 2 E t + 1 2 β 2 F 2 E t t 2 + i 6 β 3 F 3 E t t 3
D E L E + D F L F + D D L D = 0
C X Y ( Δ t ) = [ I X ( t ) I X ( t ) ] [ I Y ( t Δ t ) I Y ( t ) Δ t ] [ I X ( t ) I X ( t ) ] 2 [ I Y ( t Δ t ) I Y ( t ) Δ t ] 2
Δ f P M ( t ) = A 0 f 0 sin ( 2 π f 0 t )
| Δ f P M | max = A 0 f 0
B E R = exp ( Q 2 / 2 ) 2 π Q
Q = I 1 I 0 σ 1 + σ 0