Abstract

In this paper, a dual-parameter sensor for the measurement of temperature and strain with a double air-gaps structure based on graded-index few mode fiber (GI-FMF) is proposed and fabricated. Two sections of GI-FMF are used: one end of them is etched with HF acid to form an air-gaps, and the other end is cut flat. Next, the single-mode fiber and these two GI-FMFs are spliced successively to form a sensor with double air-gaps structure. A four-beam interferometer is formed and the sensing principle is established. The temperature and strain response characteristics of the sensor are analyzed in the experiment. The reflection spectrum is divided into a low-frequency band affected by the air-gap and a high-frequency band affected by the compound cavity. Experimental results show that the sensor in low-frequency band is insensitive to temperature, and the strain sensitivity is 2.72pm/µɛ. In high-frequency band, the temperature sensitivity of the sensor is 10.81pm/°C, and the strain sensitivity is 1.03pm/µɛ. Simultaneous measurement of temperature and strain is achieved by solving the matrix coefficient equation. The proposed four-beam interferometric sensor has the advantages of compact structure, easy fabrication, and high sensitivity; it can be used to measure the temperature and strain simultaneously.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sapphire derived fiber based Fabry-Perot interferometer with an etched micro air cavity for strain measurement at high temperatures

Penghao Zhang, Li Zhang, Zhongyu Wang, Xinying Zhang, and Zhendong Shang
Opt. Express 27(19) 27112-27123 (2019)

Simultaneous measurement of refractive index, strain, and temperature based on a Mach–Zehnder interferometer with hybrid structure optical fiber

Xuekai Gao, Tigang Ning, Jingjing Zheng, Jing Li, Li Pei, Chuanbiao Zhang, Ling Liu, and Xueqing He
Appl. Opt. 58(30) 8187-8193 (2019)

Simultaneous strain and temperature measurement by cascading few-mode fiber and single-mode fiber long-period fiber gratings

Li Wang, Weigang Zhang, Biao Wang, Lei Chen, Zhiyong Bai, Shecheng Gao, Jieliang Li, Yongji Liu, Liyu Zhang, Quan Zhou, and Tieyi Yan
Appl. Opt. 53(30) 7045-7049 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Murayama, D. Wada, and H. Igawa, “Structural health monitoring by using fiber-optic distributed strain sensors with high spatial resolution,” Photonic Sens. 3(4), 355–376 (2013).
    [Crossref]
  2. A. Wada, S. Tanaka, and N. Takahashi, “Fast interrogation using sinusoidally current modulated laser diodes for fiber Fabry-Perot interferometric sensor consisting of fiber Bragg gratings,” Opt. Rev. 25(5), 533–539 (2018).
    [Crossref]
  3. T. T. Wang, Y. X. Ge, H. B. Ni, J. H. Chang, J. H. Zhang, and W. Ke, “Miniature fiber pressure sensor based on an in-fiber confocal cavity,” Optik 171, 869–875 (2018).
    [Crossref]
  4. N. Liu, M. L. Hu, H. Sun, T. T. Gang, Z. H. Yang, Q. Z. Rong, and X. G. Qiao, “A fiber-optic refractometer for humidity measurements using an in-fiber Mach-Zehnder interferometer,” Opt. Commun. 367, 1–5 (2016).
    [Crossref]
  5. C. X. Yue, H. Ding, W. Ding, and C. W. Xu, “Weakly-coupled multicore optical fiber taper-based high-temperature sensor,” Sens. Actuators, A 280, 139–144 (2018).
    [Crossref]
  6. Y. Zhao, L. Cai, and X. G. Li, “In-fiber modal interferometer for simultaneous measurement of curvature and temperature based on hollow core fiber,” Opt. Laser Technol. 92, 138–141 (2017).
    [Crossref]
  7. Y. Sun, D. M. Liu, P. Lu, Q. Z. Sun, W. Yang, S. Wang, L. Liu, and J. S. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution usingtwisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
    [Crossref]
  8. B. Yin, Y. Li, Z. B. Liu, S. C. Feng, Y. L. Bai, Y. Xu, and S. S. Jian, “Investigation on a compact in-line multimode-single-mode-multimode fiber structure,” Opt. Laser Technol. 80, 16–21 (2016).
    [Crossref]
  9. X. Z. Ding, H. Z. Yang, X. G. Qiao, P. Zhang, O. Tian, Q. Z. Rong, N. A. M. Nazal, K. S. Lim, and H. Ahmad, “Mach-Zehnder interferometric magnetic field sensor based on a photonic crystal fiber and magnetic fluid,” Appl. Opt. 57(9), 2050–2056 (2018).
    [Crossref]
  10. Y. Luo, X. Q. Lei, F. Q. Shi, and B. J. Peng, “A novel optical fiber magnetic field sensor based on Mach-Zehnder interferometer integrated with magnetic fluid,” Optik 174, 252–258 (2018).
    [Crossref]
  11. K. Tian, G. Farrell, X. F. Wang, E. Lewis, and P. F. Wang, “Highly sensitive displacement sensor based on composite interference established within a balloon-shaped bent multimode fiber structure,” Appl. Opt. 57(32), 9662–9668 (2018).
    [Crossref]
  12. F. Xia, Y. Zhao, and M. Q. Chen, “Optimization of Mach-Zehnder interferometer with cascaded up-tapers and application for curvature sensing,” Sens. Actuators, A 263, 140–146 (2017).
    [Crossref]
  13. Y. Zhao, F. Xia, and M. Q. Chen, “Curvature sensor based on Mach-Zehnder interferometer with vase-shaped tapers,” Sens. Actuators, A 265, 275–279 (2017).
    [Crossref]
  14. T. T. Wang, Y. X. Ge, J. H. Chang, and M. Wang, “Wavelength-interrogation Fabry-Perot Refractive Index Sensor Based on a Sealed In-fiber Cavity,” IEEE Photonics Technol. Lett. 28(1), 3–6 (2016).
    [Crossref]
  15. P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Pérot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
    [Crossref]
  16. P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical Fiber Microcavity Strain Sensors Produced by the Catastrophic Fuse Effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
    [Crossref]
  17. B. Xu, Y. M. Liu, D. N. Wang, and J. Q. Li, “Fiber Fabry–Perot Interferometer for Measurement of Gas Pressure and Temperature,” J. Lightwave Technol. 34(21), 4920–4925 (2016).
    [Crossref]
  18. M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Measurement 77, 265–268 (2016).
    [Crossref]
  19. J. J. Tian, Y. Z. Jiao, S. B. Ji, X. L. Dong, and Y. Yao, “Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation,” Opt. Commun. 412, 121–126 (2018).
    [Crossref]
  20. Z. Zhang, J. He, B. Du, F. C. Zhang, K. K. Guo, and Y. P. Wang, “Measurement of high pressure and high temperature using a dual-cavity Fabry–Perot interferometer created in cascade hollow-core fibers,” Opt. Lett. 43(24), 6009–6012 (2018).
    [Crossref]
  21. Y. G. Liu, T. Zhang, Y. X. Wang, D. Q. Yang, X. Liu, H. W. Fu, and Z. N. Jia, “Simultaneous measurement of gas pressure and temperature with integrated optical fiber FPI sensor based on in-fiber micro-cavity and fiber-tip,” Opt. Fiber Technol. 46, 77–82 (2018).
    [Crossref]
  22. W. Zhang, Y. G. Liu, T. Zhang, X. Liu, H. W. Fu, and Z. A. Jia, “Dual micro-holes-based in-fiber Fabry-Perot interferometer sensor,” Acta Phys. Sin. 67(20), 204203 (2018).
    [Crossref]
  23. X. Z. Xu, J. He, M. X. Hou, S. H. Liu, Z. Y. Bai, Y. Wang, C. G. Liao, Z. B. Ouyang, and Y. P. Wang, “A Miniature Fiber Collimator for Highly Sensitive Bend Measurements,” J. Lightwave Technol. 36(14), 2827–2833 (2018).
    [Crossref]
  24. F. C. Zhang, X. Z. Xu, J. He, B. Du, and Y. P. Wang, “Highly sensitive temperature sensor based on a polymer-infiltrated Mach–Zehnder interferometer created in graded index fiber,” Opt. Lett. 44(10), 2466–2469 (2019).
    [Crossref]

2019 (1)

2018 (11)

Y. Luo, X. Q. Lei, F. Q. Shi, and B. J. Peng, “A novel optical fiber magnetic field sensor based on Mach-Zehnder interferometer integrated with magnetic fluid,” Optik 174, 252–258 (2018).
[Crossref]

X. Z. Ding, H. Z. Yang, X. G. Qiao, P. Zhang, O. Tian, Q. Z. Rong, N. A. M. Nazal, K. S. Lim, and H. Ahmad, “Mach-Zehnder interferometric magnetic field sensor based on a photonic crystal fiber and magnetic fluid,” Appl. Opt. 57(9), 2050–2056 (2018).
[Crossref]

X. Z. Xu, J. He, M. X. Hou, S. H. Liu, Z. Y. Bai, Y. Wang, C. G. Liao, Z. B. Ouyang, and Y. P. Wang, “A Miniature Fiber Collimator for Highly Sensitive Bend Measurements,” J. Lightwave Technol. 36(14), 2827–2833 (2018).
[Crossref]

K. Tian, G. Farrell, X. F. Wang, E. Lewis, and P. F. Wang, “Highly sensitive displacement sensor based on composite interference established within a balloon-shaped bent multimode fiber structure,” Appl. Opt. 57(32), 9662–9668 (2018).
[Crossref]

Z. Zhang, J. He, B. Du, F. C. Zhang, K. K. Guo, and Y. P. Wang, “Measurement of high pressure and high temperature using a dual-cavity Fabry–Perot interferometer created in cascade hollow-core fibers,” Opt. Lett. 43(24), 6009–6012 (2018).
[Crossref]

C. X. Yue, H. Ding, W. Ding, and C. W. Xu, “Weakly-coupled multicore optical fiber taper-based high-temperature sensor,” Sens. Actuators, A 280, 139–144 (2018).
[Crossref]

A. Wada, S. Tanaka, and N. Takahashi, “Fast interrogation using sinusoidally current modulated laser diodes for fiber Fabry-Perot interferometric sensor consisting of fiber Bragg gratings,” Opt. Rev. 25(5), 533–539 (2018).
[Crossref]

T. T. Wang, Y. X. Ge, H. B. Ni, J. H. Chang, J. H. Zhang, and W. Ke, “Miniature fiber pressure sensor based on an in-fiber confocal cavity,” Optik 171, 869–875 (2018).
[Crossref]

J. J. Tian, Y. Z. Jiao, S. B. Ji, X. L. Dong, and Y. Yao, “Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation,” Opt. Commun. 412, 121–126 (2018).
[Crossref]

Y. G. Liu, T. Zhang, Y. X. Wang, D. Q. Yang, X. Liu, H. W. Fu, and Z. N. Jia, “Simultaneous measurement of gas pressure and temperature with integrated optical fiber FPI sensor based on in-fiber micro-cavity and fiber-tip,” Opt. Fiber Technol. 46, 77–82 (2018).
[Crossref]

W. Zhang, Y. G. Liu, T. Zhang, X. Liu, H. W. Fu, and Z. A. Jia, “Dual micro-holes-based in-fiber Fabry-Perot interferometer sensor,” Acta Phys. Sin. 67(20), 204203 (2018).
[Crossref]

2017 (4)

Y. Zhao, L. Cai, and X. G. Li, “In-fiber modal interferometer for simultaneous measurement of curvature and temperature based on hollow core fiber,” Opt. Laser Technol. 92, 138–141 (2017).
[Crossref]

Y. Sun, D. M. Liu, P. Lu, Q. Z. Sun, W. Yang, S. Wang, L. Liu, and J. S. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution usingtwisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

F. Xia, Y. Zhao, and M. Q. Chen, “Optimization of Mach-Zehnder interferometer with cascaded up-tapers and application for curvature sensing,” Sens. Actuators, A 263, 140–146 (2017).
[Crossref]

Y. Zhao, F. Xia, and M. Q. Chen, “Curvature sensor based on Mach-Zehnder interferometer with vase-shaped tapers,” Sens. Actuators, A 265, 275–279 (2017).
[Crossref]

2016 (5)

T. T. Wang, Y. X. Ge, J. H. Chang, and M. Wang, “Wavelength-interrogation Fabry-Perot Refractive Index Sensor Based on a Sealed In-fiber Cavity,” IEEE Photonics Technol. Lett. 28(1), 3–6 (2016).
[Crossref]

B. Yin, Y. Li, Z. B. Liu, S. C. Feng, Y. L. Bai, Y. Xu, and S. S. Jian, “Investigation on a compact in-line multimode-single-mode-multimode fiber structure,” Opt. Laser Technol. 80, 16–21 (2016).
[Crossref]

B. Xu, Y. M. Liu, D. N. Wang, and J. Q. Li, “Fiber Fabry–Perot Interferometer for Measurement of Gas Pressure and Temperature,” J. Lightwave Technol. 34(21), 4920–4925 (2016).
[Crossref]

N. Liu, M. L. Hu, H. Sun, T. T. Gang, Z. H. Yang, Q. Z. Rong, and X. G. Qiao, “A fiber-optic refractometer for humidity measurements using an in-fiber Mach-Zehnder interferometer,” Opt. Commun. 367, 1–5 (2016).
[Crossref]

M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Measurement 77, 265–268 (2016).
[Crossref]

2014 (1)

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical Fiber Microcavity Strain Sensors Produced by the Catastrophic Fuse Effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

2013 (1)

H. Murayama, D. Wada, and H. Igawa, “Structural health monitoring by using fiber-optic distributed strain sensors with high spatial resolution,” Photonic Sens. 3(4), 355–376 (2013).
[Crossref]

2012 (1)

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Pérot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Ahmad, H.

Alberto, N.

M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Measurement 77, 265–268 (2016).
[Crossref]

Alberto, N. J.

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical Fiber Microcavity Strain Sensors Produced by the Catastrophic Fuse Effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

André, P.

M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Measurement 77, 265–268 (2016).
[Crossref]

André, P. S.

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical Fiber Microcavity Strain Sensors Produced by the Catastrophic Fuse Effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

Antunes, P.

M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Measurement 77, 265–268 (2016).
[Crossref]

Antunes, P. F. C.

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical Fiber Microcavity Strain Sensors Produced by the Catastrophic Fuse Effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

Araújo, F. M.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Pérot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Bai, Y. L.

B. Yin, Y. Li, Z. B. Liu, S. C. Feng, Y. L. Bai, Y. Xu, and S. S. Jian, “Investigation on a compact in-line multimode-single-mode-multimode fiber structure,” Opt. Laser Technol. 80, 16–21 (2016).
[Crossref]

Bai, Z. Y.

Cai, L.

Y. Zhao, L. Cai, and X. G. Li, “In-fiber modal interferometer for simultaneous measurement of curvature and temperature based on hollow core fiber,” Opt. Laser Technol. 92, 138–141 (2017).
[Crossref]

Chang, J. H.

T. T. Wang, Y. X. Ge, H. B. Ni, J. H. Chang, J. H. Zhang, and W. Ke, “Miniature fiber pressure sensor based on an in-fiber confocal cavity,” Optik 171, 869–875 (2018).
[Crossref]

T. T. Wang, Y. X. Ge, J. H. Chang, and M. Wang, “Wavelength-interrogation Fabry-Perot Refractive Index Sensor Based on a Sealed In-fiber Cavity,” IEEE Photonics Technol. Lett. 28(1), 3–6 (2016).
[Crossref]

Chen, M. Q.

F. Xia, Y. Zhao, and M. Q. Chen, “Optimization of Mach-Zehnder interferometer with cascaded up-tapers and application for curvature sensing,” Sens. Actuators, A 263, 140–146 (2017).
[Crossref]

Y. Zhao, F. Xia, and M. Q. Chen, “Curvature sensor based on Mach-Zehnder interferometer with vase-shaped tapers,” Sens. Actuators, A 265, 275–279 (2017).
[Crossref]

Ding, H.

C. X. Yue, H. Ding, W. Ding, and C. W. Xu, “Weakly-coupled multicore optical fiber taper-based high-temperature sensor,” Sens. Actuators, A 280, 139–144 (2018).
[Crossref]

Ding, W.

C. X. Yue, H. Ding, W. Ding, and C. W. Xu, “Weakly-coupled multicore optical fiber taper-based high-temperature sensor,” Sens. Actuators, A 280, 139–144 (2018).
[Crossref]

Ding, X. Z.

Domingues, M. F.

M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Measurement 77, 265–268 (2016).
[Crossref]

Domingues, M. F. F.

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical Fiber Microcavity Strain Sensors Produced by the Catastrophic Fuse Effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

Dong, X. L.

J. J. Tian, Y. Z. Jiao, S. B. Ji, X. L. Dong, and Y. Yao, “Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation,” Opt. Commun. 412, 121–126 (2018).
[Crossref]

Du, B.

Farrell, G.

Feng, S. C.

B. Yin, Y. Li, Z. B. Liu, S. C. Feng, Y. L. Bai, Y. Xu, and S. S. Jian, “Investigation on a compact in-line multimode-single-mode-multimode fiber structure,” Opt. Laser Technol. 80, 16–21 (2016).
[Crossref]

Ferreira, R. A. S.

M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Measurement 77, 265–268 (2016).
[Crossref]

Frazão, O.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Pérot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Frias, R.

M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Measurement 77, 265–268 (2016).
[Crossref]

Fu, H. W.

W. Zhang, Y. G. Liu, T. Zhang, X. Liu, H. W. Fu, and Z. A. Jia, “Dual micro-holes-based in-fiber Fabry-Perot interferometer sensor,” Acta Phys. Sin. 67(20), 204203 (2018).
[Crossref]

Y. G. Liu, T. Zhang, Y. X. Wang, D. Q. Yang, X. Liu, H. W. Fu, and Z. N. Jia, “Simultaneous measurement of gas pressure and temperature with integrated optical fiber FPI sensor based on in-fiber micro-cavity and fiber-tip,” Opt. Fiber Technol. 46, 77–82 (2018).
[Crossref]

Gang, T. T.

N. Liu, M. L. Hu, H. Sun, T. T. Gang, Z. H. Yang, Q. Z. Rong, and X. G. Qiao, “A fiber-optic refractometer for humidity measurements using an in-fiber Mach-Zehnder interferometer,” Opt. Commun. 367, 1–5 (2016).
[Crossref]

Ge, Y. X.

T. T. Wang, Y. X. Ge, H. B. Ni, J. H. Chang, J. H. Zhang, and W. Ke, “Miniature fiber pressure sensor based on an in-fiber confocal cavity,” Optik 171, 869–875 (2018).
[Crossref]

T. T. Wang, Y. X. Ge, J. H. Chang, and M. Wang, “Wavelength-interrogation Fabry-Perot Refractive Index Sensor Based on a Sealed In-fiber Cavity,” IEEE Photonics Technol. Lett. 28(1), 3–6 (2016).
[Crossref]

Guo, K. K.

He, J.

Hou, M. X.

Hu, M. L.

N. Liu, M. L. Hu, H. Sun, T. T. Gang, Z. H. Yang, Q. Z. Rong, and X. G. Qiao, “A fiber-optic refractometer for humidity measurements using an in-fiber Mach-Zehnder interferometer,” Opt. Commun. 367, 1–5 (2016).
[Crossref]

Igawa, H.

H. Murayama, D. Wada, and H. Igawa, “Structural health monitoring by using fiber-optic distributed strain sensors with high spatial resolution,” Photonic Sens. 3(4), 355–376 (2013).
[Crossref]

Ji, S. B.

J. J. Tian, Y. Z. Jiao, S. B. Ji, X. L. Dong, and Y. Yao, “Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation,” Opt. Commun. 412, 121–126 (2018).
[Crossref]

Jia, Z. A.

W. Zhang, Y. G. Liu, T. Zhang, X. Liu, H. W. Fu, and Z. A. Jia, “Dual micro-holes-based in-fiber Fabry-Perot interferometer sensor,” Acta Phys. Sin. 67(20), 204203 (2018).
[Crossref]

Jia, Z. N.

Y. G. Liu, T. Zhang, Y. X. Wang, D. Q. Yang, X. Liu, H. W. Fu, and Z. N. Jia, “Simultaneous measurement of gas pressure and temperature with integrated optical fiber FPI sensor based on in-fiber micro-cavity and fiber-tip,” Opt. Fiber Technol. 46, 77–82 (2018).
[Crossref]

Jian, S. S.

B. Yin, Y. Li, Z. B. Liu, S. C. Feng, Y. L. Bai, Y. Xu, and S. S. Jian, “Investigation on a compact in-line multimode-single-mode-multimode fiber structure,” Opt. Laser Technol. 80, 16–21 (2016).
[Crossref]

Jiao, Y. Z.

J. J. Tian, Y. Z. Jiao, S. B. Ji, X. L. Dong, and Y. Yao, “Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation,” Opt. Commun. 412, 121–126 (2018).
[Crossref]

Jorge, P. A. S.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Pérot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Ke, W.

T. T. Wang, Y. X. Ge, H. B. Ni, J. H. Chang, J. H. Zhang, and W. Ke, “Miniature fiber pressure sensor based on an in-fiber confocal cavity,” Optik 171, 869–875 (2018).
[Crossref]

Lei, X. Q.

Y. Luo, X. Q. Lei, F. Q. Shi, and B. J. Peng, “A novel optical fiber magnetic field sensor based on Mach-Zehnder interferometer integrated with magnetic fluid,” Optik 174, 252–258 (2018).
[Crossref]

Lewis, E.

Li, J. Q.

Li, X. G.

Y. Zhao, L. Cai, and X. G. Li, “In-fiber modal interferometer for simultaneous measurement of curvature and temperature based on hollow core fiber,” Opt. Laser Technol. 92, 138–141 (2017).
[Crossref]

Li, Y.

B. Yin, Y. Li, Z. B. Liu, S. C. Feng, Y. L. Bai, Y. Xu, and S. S. Jian, “Investigation on a compact in-line multimode-single-mode-multimode fiber structure,” Opt. Laser Technol. 80, 16–21 (2016).
[Crossref]

Liao, C. G.

Lim, K. S.

Liu, D. M.

Y. Sun, D. M. Liu, P. Lu, Q. Z. Sun, W. Yang, S. Wang, L. Liu, and J. S. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution usingtwisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

Liu, L.

Y. Sun, D. M. Liu, P. Lu, Q. Z. Sun, W. Yang, S. Wang, L. Liu, and J. S. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution usingtwisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

Liu, N.

N. Liu, M. L. Hu, H. Sun, T. T. Gang, Z. H. Yang, Q. Z. Rong, and X. G. Qiao, “A fiber-optic refractometer for humidity measurements using an in-fiber Mach-Zehnder interferometer,” Opt. Commun. 367, 1–5 (2016).
[Crossref]

Liu, S. H.

Liu, X.

Y. G. Liu, T. Zhang, Y. X. Wang, D. Q. Yang, X. Liu, H. W. Fu, and Z. N. Jia, “Simultaneous measurement of gas pressure and temperature with integrated optical fiber FPI sensor based on in-fiber micro-cavity and fiber-tip,” Opt. Fiber Technol. 46, 77–82 (2018).
[Crossref]

W. Zhang, Y. G. Liu, T. Zhang, X. Liu, H. W. Fu, and Z. A. Jia, “Dual micro-holes-based in-fiber Fabry-Perot interferometer sensor,” Acta Phys. Sin. 67(20), 204203 (2018).
[Crossref]

Liu, Y. G.

W. Zhang, Y. G. Liu, T. Zhang, X. Liu, H. W. Fu, and Z. A. Jia, “Dual micro-holes-based in-fiber Fabry-Perot interferometer sensor,” Acta Phys. Sin. 67(20), 204203 (2018).
[Crossref]

Y. G. Liu, T. Zhang, Y. X. Wang, D. Q. Yang, X. Liu, H. W. Fu, and Z. N. Jia, “Simultaneous measurement of gas pressure and temperature with integrated optical fiber FPI sensor based on in-fiber micro-cavity and fiber-tip,” Opt. Fiber Technol. 46, 77–82 (2018).
[Crossref]

Liu, Y. M.

Liu, Z. B.

B. Yin, Y. Li, Z. B. Liu, S. C. Feng, Y. L. Bai, Y. Xu, and S. S. Jian, “Investigation on a compact in-line multimode-single-mode-multimode fiber structure,” Opt. Laser Technol. 80, 16–21 (2016).
[Crossref]

Lu, P.

Y. Sun, D. M. Liu, P. Lu, Q. Z. Sun, W. Yang, S. Wang, L. Liu, and J. S. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution usingtwisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

Luo, Y.

Y. Luo, X. Q. Lei, F. Q. Shi, and B. J. Peng, “A novel optical fiber magnetic field sensor based on Mach-Zehnder interferometer integrated with magnetic fluid,” Optik 174, 252–258 (2018).
[Crossref]

Murayama, H.

H. Murayama, D. Wada, and H. Igawa, “Structural health monitoring by using fiber-optic distributed strain sensors with high spatial resolution,” Photonic Sens. 3(4), 355–376 (2013).
[Crossref]

Nazal, N. A. M.

Ni, H. B.

T. T. Wang, Y. X. Ge, H. B. Ni, J. H. Chang, J. H. Zhang, and W. Ke, “Miniature fiber pressure sensor based on an in-fiber confocal cavity,” Optik 171, 869–875 (2018).
[Crossref]

Ouyang, Z. B.

Peng, B. J.

Y. Luo, X. Q. Lei, F. Q. Shi, and B. J. Peng, “A novel optical fiber magnetic field sensor based on Mach-Zehnder interferometer integrated with magnetic fluid,” Optik 174, 252–258 (2018).
[Crossref]

Qiao, X. G.

X. Z. Ding, H. Z. Yang, X. G. Qiao, P. Zhang, O. Tian, Q. Z. Rong, N. A. M. Nazal, K. S. Lim, and H. Ahmad, “Mach-Zehnder interferometric magnetic field sensor based on a photonic crystal fiber and magnetic fluid,” Appl. Opt. 57(9), 2050–2056 (2018).
[Crossref]

N. Liu, M. L. Hu, H. Sun, T. T. Gang, Z. H. Yang, Q. Z. Rong, and X. G. Qiao, “A fiber-optic refractometer for humidity measurements using an in-fiber Mach-Zehnder interferometer,” Opt. Commun. 367, 1–5 (2016).
[Crossref]

Rong, Q. Z.

X. Z. Ding, H. Z. Yang, X. G. Qiao, P. Zhang, O. Tian, Q. Z. Rong, N. A. M. Nazal, K. S. Lim, and H. Ahmad, “Mach-Zehnder interferometric magnetic field sensor based on a photonic crystal fiber and magnetic fluid,” Appl. Opt. 57(9), 2050–2056 (2018).
[Crossref]

N. Liu, M. L. Hu, H. Sun, T. T. Gang, Z. H. Yang, Q. Z. Rong, and X. G. Qiao, “A fiber-optic refractometer for humidity measurements using an in-fiber Mach-Zehnder interferometer,” Opt. Commun. 367, 1–5 (2016).
[Crossref]

Santos, J. L.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Pérot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Shi, F. Q.

Y. Luo, X. Q. Lei, F. Q. Shi, and B. J. Peng, “A novel optical fiber magnetic field sensor based on Mach-Zehnder interferometer integrated with magnetic fluid,” Optik 174, 252–258 (2018).
[Crossref]

Sun, H.

N. Liu, M. L. Hu, H. Sun, T. T. Gang, Z. H. Yang, Q. Z. Rong, and X. G. Qiao, “A fiber-optic refractometer for humidity measurements using an in-fiber Mach-Zehnder interferometer,” Opt. Commun. 367, 1–5 (2016).
[Crossref]

Sun, Q. Z.

Y. Sun, D. M. Liu, P. Lu, Q. Z. Sun, W. Yang, S. Wang, L. Liu, and J. S. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution usingtwisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

Sun, Y.

Y. Sun, D. M. Liu, P. Lu, Q. Z. Sun, W. Yang, S. Wang, L. Liu, and J. S. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution usingtwisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

Tafulo, P. A. R.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Pérot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Takahashi, N.

A. Wada, S. Tanaka, and N. Takahashi, “Fast interrogation using sinusoidally current modulated laser diodes for fiber Fabry-Perot interferometric sensor consisting of fiber Bragg gratings,” Opt. Rev. 25(5), 533–539 (2018).
[Crossref]

Tanaka, S.

A. Wada, S. Tanaka, and N. Takahashi, “Fast interrogation using sinusoidally current modulated laser diodes for fiber Fabry-Perot interferometric sensor consisting of fiber Bragg gratings,” Opt. Rev. 25(5), 533–539 (2018).
[Crossref]

Tian, J. J.

J. J. Tian, Y. Z. Jiao, S. B. Ji, X. L. Dong, and Y. Yao, “Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation,” Opt. Commun. 412, 121–126 (2018).
[Crossref]

Tian, K.

Tian, O.

Wada, A.

A. Wada, S. Tanaka, and N. Takahashi, “Fast interrogation using sinusoidally current modulated laser diodes for fiber Fabry-Perot interferometric sensor consisting of fiber Bragg gratings,” Opt. Rev. 25(5), 533–539 (2018).
[Crossref]

Wada, D.

H. Murayama, D. Wada, and H. Igawa, “Structural health monitoring by using fiber-optic distributed strain sensors with high spatial resolution,” Photonic Sens. 3(4), 355–376 (2013).
[Crossref]

Wang, D. N.

Wang, M.

T. T. Wang, Y. X. Ge, J. H. Chang, and M. Wang, “Wavelength-interrogation Fabry-Perot Refractive Index Sensor Based on a Sealed In-fiber Cavity,” IEEE Photonics Technol. Lett. 28(1), 3–6 (2016).
[Crossref]

Wang, P. F.

Wang, S.

Y. Sun, D. M. Liu, P. Lu, Q. Z. Sun, W. Yang, S. Wang, L. Liu, and J. S. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution usingtwisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

Wang, T. T.

T. T. Wang, Y. X. Ge, H. B. Ni, J. H. Chang, J. H. Zhang, and W. Ke, “Miniature fiber pressure sensor based on an in-fiber confocal cavity,” Optik 171, 869–875 (2018).
[Crossref]

T. T. Wang, Y. X. Ge, J. H. Chang, and M. Wang, “Wavelength-interrogation Fabry-Perot Refractive Index Sensor Based on a Sealed In-fiber Cavity,” IEEE Photonics Technol. Lett. 28(1), 3–6 (2016).
[Crossref]

Wang, X. F.

Wang, Y.

Wang, Y. P.

Wang, Y. X.

Y. G. Liu, T. Zhang, Y. X. Wang, D. Q. Yang, X. Liu, H. W. Fu, and Z. N. Jia, “Simultaneous measurement of gas pressure and temperature with integrated optical fiber FPI sensor based on in-fiber micro-cavity and fiber-tip,” Opt. Fiber Technol. 46, 77–82 (2018).
[Crossref]

Xia, F.

Y. Zhao, F. Xia, and M. Q. Chen, “Curvature sensor based on Mach-Zehnder interferometer with vase-shaped tapers,” Sens. Actuators, A 265, 275–279 (2017).
[Crossref]

F. Xia, Y. Zhao, and M. Q. Chen, “Optimization of Mach-Zehnder interferometer with cascaded up-tapers and application for curvature sensing,” Sens. Actuators, A 263, 140–146 (2017).
[Crossref]

Xu, B.

Xu, C. W.

C. X. Yue, H. Ding, W. Ding, and C. W. Xu, “Weakly-coupled multicore optical fiber taper-based high-temperature sensor,” Sens. Actuators, A 280, 139–144 (2018).
[Crossref]

Xu, X. Z.

Xu, Y.

B. Yin, Y. Li, Z. B. Liu, S. C. Feng, Y. L. Bai, Y. Xu, and S. S. Jian, “Investigation on a compact in-line multimode-single-mode-multimode fiber structure,” Opt. Laser Technol. 80, 16–21 (2016).
[Crossref]

Yang, D. Q.

Y. G. Liu, T. Zhang, Y. X. Wang, D. Q. Yang, X. Liu, H. W. Fu, and Z. N. Jia, “Simultaneous measurement of gas pressure and temperature with integrated optical fiber FPI sensor based on in-fiber micro-cavity and fiber-tip,” Opt. Fiber Technol. 46, 77–82 (2018).
[Crossref]

Yang, H. Z.

Yang, W.

Y. Sun, D. M. Liu, P. Lu, Q. Z. Sun, W. Yang, S. Wang, L. Liu, and J. S. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution usingtwisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

Yang, Z. H.

N. Liu, M. L. Hu, H. Sun, T. T. Gang, Z. H. Yang, Q. Z. Rong, and X. G. Qiao, “A fiber-optic refractometer for humidity measurements using an in-fiber Mach-Zehnder interferometer,” Opt. Commun. 367, 1–5 (2016).
[Crossref]

Yao, Y.

J. J. Tian, Y. Z. Jiao, S. B. Ji, X. L. Dong, and Y. Yao, “Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation,” Opt. Commun. 412, 121–126 (2018).
[Crossref]

Yin, B.

B. Yin, Y. Li, Z. B. Liu, S. C. Feng, Y. L. Bai, Y. Xu, and S. S. Jian, “Investigation on a compact in-line multimode-single-mode-multimode fiber structure,” Opt. Laser Technol. 80, 16–21 (2016).
[Crossref]

Yue, C. X.

C. X. Yue, H. Ding, W. Ding, and C. W. Xu, “Weakly-coupled multicore optical fiber taper-based high-temperature sensor,” Sens. Actuators, A 280, 139–144 (2018).
[Crossref]

Zhang, F. C.

Zhang, J. H.

T. T. Wang, Y. X. Ge, H. B. Ni, J. H. Chang, J. H. Zhang, and W. Ke, “Miniature fiber pressure sensor based on an in-fiber confocal cavity,” Optik 171, 869–875 (2018).
[Crossref]

Zhang, J. S.

Y. Sun, D. M. Liu, P. Lu, Q. Z. Sun, W. Yang, S. Wang, L. Liu, and J. S. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution usingtwisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

Zhang, P.

Zhang, T.

Y. G. Liu, T. Zhang, Y. X. Wang, D. Q. Yang, X. Liu, H. W. Fu, and Z. N. Jia, “Simultaneous measurement of gas pressure and temperature with integrated optical fiber FPI sensor based on in-fiber micro-cavity and fiber-tip,” Opt. Fiber Technol. 46, 77–82 (2018).
[Crossref]

W. Zhang, Y. G. Liu, T. Zhang, X. Liu, H. W. Fu, and Z. A. Jia, “Dual micro-holes-based in-fiber Fabry-Perot interferometer sensor,” Acta Phys. Sin. 67(20), 204203 (2018).
[Crossref]

Zhang, W.

W. Zhang, Y. G. Liu, T. Zhang, X. Liu, H. W. Fu, and Z. A. Jia, “Dual micro-holes-based in-fiber Fabry-Perot interferometer sensor,” Acta Phys. Sin. 67(20), 204203 (2018).
[Crossref]

Zhang, Z.

Zhao, Y.

F. Xia, Y. Zhao, and M. Q. Chen, “Optimization of Mach-Zehnder interferometer with cascaded up-tapers and application for curvature sensing,” Sens. Actuators, A 263, 140–146 (2017).
[Crossref]

Y. Zhao, F. Xia, and M. Q. Chen, “Curvature sensor based on Mach-Zehnder interferometer with vase-shaped tapers,” Sens. Actuators, A 265, 275–279 (2017).
[Crossref]

Y. Zhao, L. Cai, and X. G. Li, “In-fiber modal interferometer for simultaneous measurement of curvature and temperature based on hollow core fiber,” Opt. Laser Technol. 92, 138–141 (2017).
[Crossref]

Acta Phys. Sin. (1)

W. Zhang, Y. G. Liu, T. Zhang, X. Liu, H. W. Fu, and Z. A. Jia, “Dual micro-holes-based in-fiber Fabry-Perot interferometer sensor,” Acta Phys. Sin. 67(20), 204203 (2018).
[Crossref]

Appl. Opt. (2)

IEEE Photonics Technol. Lett. (2)

P. F. C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André, “Optical Fiber Microcavity Strain Sensors Produced by the Catastrophic Fuse Effect,” IEEE Photonics Technol. Lett. 26(1), 78–81 (2014).
[Crossref]

T. T. Wang, Y. X. Ge, J. H. Chang, and M. Wang, “Wavelength-interrogation Fabry-Perot Refractive Index Sensor Based on a Sealed In-fiber Cavity,” IEEE Photonics Technol. Lett. 28(1), 3–6 (2016).
[Crossref]

IEEE Sens. J. (2)

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Pérot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Y. Sun, D. M. Liu, P. Lu, Q. Z. Sun, W. Yang, S. Wang, L. Liu, and J. S. Zhang, “Dual-parameters optical fiber sensor with enhanced resolution usingtwisted MMF based on SMS structure,” IEEE Sens. J. 17(10), 3045–3051 (2017).
[Crossref]

J. Lightwave Technol. (2)

Measurement (1)

M. F. Domingues, P. Antunes, N. Alberto, R. Frias, R. A. S. Ferreira, and P. André, “Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect,” Measurement 77, 265–268 (2016).
[Crossref]

Opt. Commun. (2)

J. J. Tian, Y. Z. Jiao, S. B. Ji, X. L. Dong, and Y. Yao, “Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation,” Opt. Commun. 412, 121–126 (2018).
[Crossref]

N. Liu, M. L. Hu, H. Sun, T. T. Gang, Z. H. Yang, Q. Z. Rong, and X. G. Qiao, “A fiber-optic refractometer for humidity measurements using an in-fiber Mach-Zehnder interferometer,” Opt. Commun. 367, 1–5 (2016).
[Crossref]

Opt. Fiber Technol. (1)

Y. G. Liu, T. Zhang, Y. X. Wang, D. Q. Yang, X. Liu, H. W. Fu, and Z. N. Jia, “Simultaneous measurement of gas pressure and temperature with integrated optical fiber FPI sensor based on in-fiber micro-cavity and fiber-tip,” Opt. Fiber Technol. 46, 77–82 (2018).
[Crossref]

Opt. Laser Technol. (2)

B. Yin, Y. Li, Z. B. Liu, S. C. Feng, Y. L. Bai, Y. Xu, and S. S. Jian, “Investigation on a compact in-line multimode-single-mode-multimode fiber structure,” Opt. Laser Technol. 80, 16–21 (2016).
[Crossref]

Y. Zhao, L. Cai, and X. G. Li, “In-fiber modal interferometer for simultaneous measurement of curvature and temperature based on hollow core fiber,” Opt. Laser Technol. 92, 138–141 (2017).
[Crossref]

Opt. Lett. (2)

Opt. Rev. (1)

A. Wada, S. Tanaka, and N. Takahashi, “Fast interrogation using sinusoidally current modulated laser diodes for fiber Fabry-Perot interferometric sensor consisting of fiber Bragg gratings,” Opt. Rev. 25(5), 533–539 (2018).
[Crossref]

Optik (2)

T. T. Wang, Y. X. Ge, H. B. Ni, J. H. Chang, J. H. Zhang, and W. Ke, “Miniature fiber pressure sensor based on an in-fiber confocal cavity,” Optik 171, 869–875 (2018).
[Crossref]

Y. Luo, X. Q. Lei, F. Q. Shi, and B. J. Peng, “A novel optical fiber magnetic field sensor based on Mach-Zehnder interferometer integrated with magnetic fluid,” Optik 174, 252–258 (2018).
[Crossref]

Photonic Sens. (1)

H. Murayama, D. Wada, and H. Igawa, “Structural health monitoring by using fiber-optic distributed strain sensors with high spatial resolution,” Photonic Sens. 3(4), 355–376 (2013).
[Crossref]

Sens. Actuators, A (3)

C. X. Yue, H. Ding, W. Ding, and C. W. Xu, “Weakly-coupled multicore optical fiber taper-based high-temperature sensor,” Sens. Actuators, A 280, 139–144 (2018).
[Crossref]

F. Xia, Y. Zhao, and M. Q. Chen, “Optimization of Mach-Zehnder interferometer with cascaded up-tapers and application for curvature sensing,” Sens. Actuators, A 263, 140–146 (2017).
[Crossref]

Y. Zhao, F. Xia, and M. Q. Chen, “Curvature sensor based on Mach-Zehnder interferometer with vase-shaped tapers,” Sens. Actuators, A 265, 275–279 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. GI-FMF parameters (a) cross section (b) refractive index profile
Fig. 2.
Fig. 2. Fabrication process of sensor: (a)endface cut flat (b)HF acid etch (c)cleaning (d)first discharge fusion splice (e)tip cutting (f)second discharge fusion splice
Fig. 3.
Fig. 3. Schematic diagram of double air-gaps structure
Fig. 4.
Fig. 4. Simulation interference fringe of four-beam interferometric sensor with double air-gaps structure
Fig. 5.
Fig. 5. Simulation results of the four-beam interferometric sensor: (a) temperature (b) strain
Fig. 6.
Fig. 6. The four-beam interferometric sensor with double air-gap structure: (a)photomicrograph, (b)reflection spectrum
Fig. 7.
Fig. 7. FFT of the reflection spectrum for the sensor
Fig. 8.
Fig. 8. The experimental setup for testing the temperature characteristics of the sensor
Fig. 9.
Fig. 9. Temperature experimental results: (a) low-frequency band (b) high-frequency band
Fig. 10.
Fig. 10. Temperature fitting results
Fig. 11.
Fig. 11. The experimental setup for testing the strain characteristics of the sensor
Fig. 12.
Fig. 12. Strain experimental spectrum: (a) low-frequency band (b) high-frequency band
Fig. 13.
Fig. 13. Strain fitting result: (a) low-frequency band (b) high-frequency band

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

{ E 1 = R 1 E 0 E 2 = ( 1 α 1 ) ( 1 R 1 ) R 2 E 0 E 3 = ( 1 α 1 ) ( 1 α 2 ) ( 1 R 1 ) ( 1 R 2 ) R 3 E 0 E 4 = ( 1 α 1 ) ( 1 α 2 ) ( 1 α 3 ) ( 1 R 1 ) ( 1 R 2 ) ( 1 R 3 ) R 4 E 0
I = | E 1 E 2 exp ( i Δ ϕ 21 ) + E 3 exp [ i ( Δ ϕ 21 + Δ ϕ 32 ) ] E 4 exp [ i ( Δ ϕ 21 + Δ ϕ 32 + Δ ϕ 43 ) ] | 2 = E 1 2 + E 2 2 + E 3 2 + E 4 2 2 E 1 E 2 cos ( Δ ϕ 21 ) 2 E 2 E 3 cos ( Δ ϕ 32 ) 2 E 3 E 4 cos ( Δ ϕ 43 ) + 2 E 1 E 3 cos ( Δ ϕ 21 + Δ ϕ 32 ) + 2 E 2 E 4 cos ( Δ ϕ 32 + Δ ϕ 43 ) 2 E 1 E 4 cos ( Δ ϕ 21 + Δ ϕ 32 + Δ ϕ 43 )
I = E 1 2 + E 2 2 + E 3 2 + E 4 2 2 ( E 1 E 2 + E 3 E 4 ) cos ( Δ ϕ 21 ) 2 E 2 E 3 cos ( Δ ϕ 32 ) + 2 ( E 1 E 3 + E 2 E 4 ) cos ( Δ ϕ 21 + Δ ϕ 32 ) 2 E 1 E 4 cos ( 2 Δ ϕ 21 + Δ ϕ 32 )
ε = Δ S S
Δ λ = k 1 Δ T + k 2 Δ ε
[ Δ λ l o w Δ λ h i g h ] = [ k 11 k 12 k 21 k 22 ] [ Δ T Δ ε ]
[ Δ T Δ ε ] = [ k 11 k 12 k 21 k 22 ] 1 [ Δ λ l o w Δ λ h i g h ]
[ Δ T Δ ε ] = [ 0 10.81 2.72 1.03 ] 1 [ Δ λ l o w Δ λ h i g h ]