Abstract

In this paper, we report the formation of resonance cavities within graded photonic super-crystals (GPSCs) with unit cells formed via a near-uniform central region with eight side graded regions. The graded regions in the GPSCs have several photonic band gaps, whereas the uniform region has one photonic band gap. The different locations of the photonic band gaps form a central cavity and eight surrounding side cavities with more cavities at the boundary of the corresponding uniform and graded regions. The quality-factor of the cavities in the boundary regions has been calculated to be as high as 5.8×105. The central and side cavities have a relatively low-quality factor. Broadband light-matter interaction has been observed in the simulation of transmission through the GPSC. When the thickness of the GPSC is out of resonance with the central cavity mode, the dip in the transmission through the GPSC is shallow and narrow. When the thickness of the GPSC is in-resonance with the central cavity mode, a wide and deep transmission dip is observed in the wavelength range in the photonic band gap of the graded regions. This indicated that the coupling of in-plane resonance in the central region with the Fabry-Perot resonance in the GPSC is occurring.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Holographic fabrication of graded photonic super-quasi-crystals with multiple-level gradients

David Lowell, Safaa Hassan, Oliver Sale, Murthada Adewole, Noah Hurley, Usha Philipose, Banglin Chen, and Yuankun Lin
Appl. Opt. 57(22) 6598-6604 (2018)

Refractive index dependence of L3 photonic crystal nano-cavities

A. M. Adawi, A. R. A. Chalcraft, D. M. Whittaker, and D. G. Lidzey
Opt. Express 15(22) 14299-14305 (2007)

Optimized light–matter interaction and defect hole placement in photonic crystal cavity sensors

Christopher Kang, Sharon M. Weiss, Yurii A. Vlasov, and Solomon Assefa
Opt. Lett. 37(14) 2850-2852 (2012)

References

  • View by:
  • |
  • |
  • |

  1. John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, and Robert D. Meade, Photonic Crystals: Molding the Flow of Light (2 edition) (Princeton University Press).
  2. T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (∼ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
    [Crossref]
  3. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref]
  4. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
    [Crossref]
  5. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
    [Crossref]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [Crossref]
  7. M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
    [Crossref]
  8. S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, and J. Vuckovic, “Arka Majumdar9 & Xiaodong Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
    [Crossref]
  9. J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
    [Crossref]
  10. S. H. Kim, H. Y. Ryu, H. G. Park, G. H. Kim, Y. S. Choi, Y. H. Lee, and J. S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
    [Crossref]
  11. H. Altug and J. Vuckovic, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett. 84(2), 161–163 (2004).
    [Crossref]
  12. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett. 80(5), 960–963 (1998).
    [Crossref]
  13. S.-H. Kwon, S.-H. Kim, S.-K. Kim, Y.-H. Lee, and S.-B. Kim, “Small, low-loss heterogeneous photonic bandedge laser,” Opt. Express 12(22), 5356 (2004).
    [Crossref]
  14. F. Bordas, M. Steel, C. Seassal, and A. Rahmani, “Confinement of band-edge modes in a photonic crystal slab,” Opt. Express 15(17), 10890 (2007).
    [Crossref]
  15. L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letartre, and P. Viktorovitch, “Slow Bloch mode confinement in 2D photonic crystals for surface operating devices,” Opt. Express 16(5), 3136 (2008).
    [Crossref]
  16. P. Nedel, X. Letartre, C. Seassal, A. Auffèves, L. Ferrier, E. Drouard, A. Rahmani, and P. Viktorovitch, “Design and investigation of surface addressable photonic crystal cavity confined band edge modes for quantum photonic devices,” Opt. Express 19(6), 5014 (2011).
    [Crossref]
  17. A. V. Giannopoulos, Y.-J. Li, C. M. Long, J.-M. Jin, and K. D. Choquette, “Optical properties of photonic crystal heterostructure cavity lasers,” Opt. Express 17(7), 5379 (2009).
    [Crossref]
  18. X. Ge, M. Minkov, S. Fan, X. Li, and W. Zhou, “Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling,” Appl. Phys. Lett. 112(14), 141105 (2018).
    [Crossref]
  19. D. Lowell, J. Lutkenhaus, D. George, U. Philipose, B. Chen, and Y. Lin, “Simultaneous direct holographic fabrication of photonic cavity and graded photonic lattice with dual periodicity, dual basis, and dual symmetry,” Opt. Express 25(13), 14444 (2017).
    [Crossref]
  20. D. Lowell, S. Hassan, O. Sale, M. Adewole, N. Hurley, U. Philipose, B. Chen, and Y. Lin, “Holographic fabrication of graded photonic super-quasi-crystal with multiple level gradients,” Appl. Opt. 57(22), 6598 (2018).
    [Crossref]
  21. D. Lowell, S. Hassan, M. Adewole, U. Philipose, B. Chen, and Y. Lin, “Holographic fabrication of graded photonic super-crystals using an integrated spatial light modulator and reflective optical element laser projection system,” Appl. Opt. 56(36), 9888 (2017).
    [Crossref]
  22. S. Hassan, O. Sale, D. Lowell, N. Hurley, and Y. Lin, “Holographic fabrication and optical property of graded photonic super-crystals with a rectangular unit super-cell,” Photonics 5(4), 34 (2018).
    [Crossref]
  23. S. Hassan, D. Lowell, and Y. Lin, “High light extraction efficiency in organic light-emitting diodes by patterning the cathode in graded superlattice with dual periodicity and dual basis,” J. Appl. Phys. 121(23), 233104 (2017).
    [Crossref]
  24. C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdré, R. De La Rue, and C. Weisbuch, “Near-infrared microcavities confined by two dimensional photonic bandgap crystals,” Electron. Lett. 35(3), 228 (1999).
    [Crossref]
  25. M. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. Christodoulides, and M. Khajavikha, “Topological insulator laser: Experiments,” Science 359(6381), eaar4005 (2018).
    [Crossref]
  26. Oliver Sale, Safaa Hassan, Noah Hurley, Khadijah Alnasser, Usha Philipose, Hualiang Zhang, and Yuankun Lin, “Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics,” Frontiers of Optoelectronics (in press).
  27. C. Hsu, B. Zhen, A. Stone, J. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
    [Crossref]
  28. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37(3), 371–373 (2012).
    [Crossref]
  29. C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17(19), 16745–16749 (2009).
    [Crossref]
  30. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
    [Crossref]
  31. V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys. 107(17), 6756–6769 (1997).
    [Crossref]
  32. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  33. S. Hassan, K. Alnasser, and Y. Lin, “Effects of Photonic Band Structure and Unit Super-Cell Size in Graded Photonic Super-Crystal on Broadband Light Absorption in Silicon,” Photonics 6(2), 50 (2019).
    [Crossref]
  34. W. Zhou, S. Liu, X. Ge, D. Zhao, H. Yang, C. Reuterskiöld-Hedlund, and M. Hammar, “On-Chip Photonic Crystal Surface-Emitting Membrane Lasers (Invited),” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
    [Crossref]
  35. W. Zhou, D. Zhao, Y. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. Seo, K. Wang, L. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
    [Crossref]
  36. M. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
    [Crossref]

2019 (2)

S. Hassan, K. Alnasser, and Y. Lin, “Effects of Photonic Band Structure and Unit Super-Cell Size in Graded Photonic Super-Crystal on Broadband Light Absorption in Silicon,” Photonics 6(2), 50 (2019).
[Crossref]

W. Zhou, S. Liu, X. Ge, D. Zhao, H. Yang, C. Reuterskiöld-Hedlund, and M. Hammar, “On-Chip Photonic Crystal Surface-Emitting Membrane Lasers (Invited),” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

2018 (4)

D. Lowell, S. Hassan, O. Sale, M. Adewole, N. Hurley, U. Philipose, B. Chen, and Y. Lin, “Holographic fabrication of graded photonic super-quasi-crystal with multiple level gradients,” Appl. Opt. 57(22), 6598 (2018).
[Crossref]

X. Ge, M. Minkov, S. Fan, X. Li, and W. Zhou, “Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling,” Appl. Phys. Lett. 112(14), 141105 (2018).
[Crossref]

S. Hassan, O. Sale, D. Lowell, N. Hurley, and Y. Lin, “Holographic fabrication and optical property of graded photonic super-crystals with a rectangular unit super-cell,” Photonics 5(4), 34 (2018).
[Crossref]

M. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. Christodoulides, and M. Khajavikha, “Topological insulator laser: Experiments,” Science 359(6381), eaar4005 (2018).
[Crossref]

2017 (3)

2016 (1)

C. Hsu, B. Zhen, A. Stone, J. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

2015 (1)

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, and J. Vuckovic, “Arka Majumdar9 & Xiaodong Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

2014 (1)

W. Zhou, D. Zhao, Y. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. Seo, K. Wang, L. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

2012 (1)

2011 (2)

P. Nedel, X. Letartre, C. Seassal, A. Auffèves, L. Ferrier, E. Drouard, A. Rahmani, and P. Viktorovitch, “Design and investigation of surface addressable photonic crystal cavity confined band edge modes for quantum photonic devices,” Opt. Express 19(6), 5014 (2011).
[Crossref]

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

2009 (2)

2008 (2)

M. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letartre, and P. Viktorovitch, “Slow Bloch mode confinement in 2D photonic crystals for surface operating devices,” Opt. Express 16(5), 3136 (2008).
[Crossref]

2007 (1)

2006 (1)

2004 (3)

S.-H. Kwon, S.-H. Kim, S.-K. Kim, Y.-H. Lee, and S.-B. Kim, “Small, low-loss heterogeneous photonic bandedge laser,” Opt. Express 12(22), 5356 (2004).
[Crossref]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref]

H. Altug and J. Vuckovic, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett. 84(2), 161–163 (2004).
[Crossref]

2003 (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

2002 (2)

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[Crossref]

S. H. Kim, H. Y. Ryu, H. G. Park, G. H. Kim, Y. S. Choi, Y. H. Lee, and J. S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[Crossref]

2001 (1)

1999 (2)

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdré, R. De La Rue, and C. Weisbuch, “Near-infrared microcavities confined by two dimensional photonic bandgap crystals,” Electron. Lett. 35(3), 228 (1999).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref]

1998 (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett. 80(5), 960–963 (1998).
[Crossref]

1997 (2)

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys. 107(17), 6756–6769 (1997).
[Crossref]

Adewole, M.

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

Alnasser, K.

S. Hassan, K. Alnasser, and Y. Lin, “Effects of Photonic Band Structure and Unit Super-Cell Size in Graded Photonic Super-Crystal on Broadband Light Absorption in Silicon,” Photonics 6(2), 50 (2019).
[Crossref]

Alnasser, Khadijah

Oliver Sale, Safaa Hassan, Noah Hurley, Khadijah Alnasser, Usha Philipose, Hualiang Zhang, and Yuankun Lin, “Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics,” Frontiers of Optoelectronics (in press).

Altug, H.

H. Altug and J. Vuckovic, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett. 84(2), 161–163 (2004).
[Crossref]

Arakawa, Y.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Asano, T.

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (∼ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

Auffèves, A.

Bandres, M.

M. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. Christodoulides, and M. Khajavikha, “Topological insulator laser: Experiments,” Science 359(6381), eaar4005 (2018).
[Crossref]

Benisty, H.

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdré, R. De La Rue, and C. Weisbuch, “Near-infrared microcavities confined by two dimensional photonic bandgap crystals,” Electron. Lett. 35(3), 228 (1999).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Bordas, F.

Buchwald, W.

Buckley, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, and J. Vuckovic, “Arka Majumdar9 & Xiaodong Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Chadha, A.

W. Zhou, D. Zhao, Y. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. Seo, K. Wang, L. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Chen, B.

Chen, X.

Choi, Y. S.

S. H. Kim, H. Y. Ryu, H. G. Park, G. H. Kim, Y. S. Choi, Y. H. Lee, and J. S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[Crossref]

Choquette, K. D.

Christodoulides, D.

M. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. Christodoulides, and M. Khajavikha, “Topological insulator laser: Experiments,” Science 359(6381), eaar4005 (2018).
[Crossref]

Chuwongin, S.

W. Zhou, D. Zhao, Y. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. Seo, K. Wang, L. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref]

De La Rue, R.

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdré, R. De La Rue, and C. Weisbuch, “Near-infrared microcavities confined by two dimensional photonic bandgap crystals,” Electron. Lett. 35(3), 228 (1999).
[Crossref]

Drouard, E.

Fan, S.

X. Ge, M. Minkov, S. Fan, X. Li, and W. Zhou, “Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling,” Appl. Phys. Lett. 112(14), 141105 (2018).
[Crossref]

W. Zhou, D. Zhao, Y. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. Seo, K. Wang, L. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett. 80(5), 960–963 (1998).
[Crossref]

Fan, S. H.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Feng, L.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, and J. Vuckovic, “Arka Majumdar9 & Xiaodong Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Ferrier, L.

Ge, X.

W. Zhou, S. Liu, X. Ge, D. Zhao, H. Yang, C. Reuterskiöld-Hedlund, and M. Hammar, “On-Chip Photonic Crystal Surface-Emitting Membrane Lasers (Invited),” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

X. Ge, M. Minkov, S. Fan, X. Li, and W. Zhou, “Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling,” Appl. Phys. Lett. 112(14), 141105 (2018).
[Crossref]

George, D.

Giannopoulos, A. V.

Gogna, P.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[Crossref]

Green, M.

M. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Guimard, D.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Guo, J.

Hammar, M.

W. Zhou, S. Liu, X. Ge, D. Zhao, H. Yang, C. Reuterskiöld-Hedlund, and M. Hammar, “On-Chip Photonic Crystal Surface-Emitting Membrane Lasers (Invited),” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

Harari, G.

M. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. Christodoulides, and M. Khajavikha, “Topological insulator laser: Experiments,” Science 359(6381), eaar4005 (2018).
[Crossref]

Hassan, S.

S. Hassan, K. Alnasser, and Y. Lin, “Effects of Photonic Band Structure and Unit Super-Cell Size in Graded Photonic Super-Crystal on Broadband Light Absorption in Silicon,” Photonics 6(2), 50 (2019).
[Crossref]

S. Hassan, O. Sale, D. Lowell, N. Hurley, and Y. Lin, “Holographic fabrication and optical property of graded photonic super-crystals with a rectangular unit super-cell,” Photonics 5(4), 34 (2018).
[Crossref]

D. Lowell, S. Hassan, O. Sale, M. Adewole, N. Hurley, U. Philipose, B. Chen, and Y. Lin, “Holographic fabrication of graded photonic super-quasi-crystal with multiple level gradients,” Appl. Opt. 57(22), 6598 (2018).
[Crossref]

D. Lowell, S. Hassan, M. Adewole, U. Philipose, B. Chen, and Y. Lin, “Holographic fabrication of graded photonic super-crystals using an integrated spatial light modulator and reflective optical element laser projection system,” Appl. Opt. 56(36), 9888 (2017).
[Crossref]

S. Hassan, D. Lowell, and Y. Lin, “High light extraction efficiency in organic light-emitting diodes by patterning the cathode in graded superlattice with dual periodicity and dual basis,” J. Appl. Phys. 121(23), 233104 (2017).
[Crossref]

Hassan, Safaa

Oliver Sale, Safaa Hassan, Noah Hurley, Khadijah Alnasser, Usha Philipose, Hualiang Zhang, and Yuankun Lin, “Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics,” Frontiers of Optoelectronics (in press).

Hatami, F.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, and J. Vuckovic, “Arka Majumdar9 & Xiaodong Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Haus, H. A.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett. 80(5), 960–963 (1998).
[Crossref]

Hendrickson, J.

Houdré, R.

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdré, R. De La Rue, and C. Weisbuch, “Near-infrared microcavities confined by two dimensional photonic bandgap crystals,” Electron. Lett. 35(3), 228 (1999).
[Crossref]

Hsu, C.

C. Hsu, B. Zhen, A. Stone, J. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Hu, C.

Hurley, N.

D. Lowell, S. Hassan, O. Sale, M. Adewole, N. Hurley, U. Philipose, B. Chen, and Y. Lin, “Holographic fabrication of graded photonic super-quasi-crystal with multiple level gradients,” Appl. Opt. 57(22), 6598 (2018).
[Crossref]

S. Hassan, O. Sale, D. Lowell, N. Hurley, and Y. Lin, “Holographic fabrication and optical property of graded photonic super-crystals with a rectangular unit super-cell,” Photonics 5(4), 34 (2018).
[Crossref]

Hurley, Noah

Oliver Sale, Safaa Hassan, Noah Hurley, Khadijah Alnasser, Usha Philipose, Hualiang Zhang, and Yuankun Lin, “Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics,” Frontiers of Optoelectronics (in press).

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Ippen, E. P.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref]

Ishida, S.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Iwamoto, S.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Jin, J.-M.

Joannopoulos, J.

C. Hsu, B. Zhen, A. Stone, J. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett. 80(5), 960–963 (1998).
[Crossref]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Joannopoulos, John D.

John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, and Robert D. Meade, Photonic Crystals: Molding the Flow of Light (2 edition) (Princeton University Press).

Johnson, S.

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref]

Johnson, Steven G.

John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, and Robert D. Meade, Photonic Crystals: Molding the Flow of Light (2 edition) (Princeton University Press).

Khajavikha, M.

M. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. Christodoulides, and M. Khajavikha, “Topological insulator laser: Experiments,” Science 359(6381), eaar4005 (2018).
[Crossref]

Kim, G. H.

S. H. Kim, H. Y. Ryu, H. G. Park, G. H. Kim, Y. S. Choi, Y. H. Lee, and J. S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[Crossref]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref]

Kim, J. S.

S. H. Kim, H. Y. Ryu, H. G. Park, G. H. Kim, Y. S. Choi, Y. H. Lee, and J. S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[Crossref]

Kim, S. H.

S. H. Kim, H. Y. Ryu, H. G. Park, G. H. Kim, Y. S. Choi, Y. H. Lee, and J. S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[Crossref]

Kim, S.-B.

Kim, S.-H.

Kim, S.-K.

Kwon, S.-H.

Labilloy, D.

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdré, R. De La Rue, and C. Weisbuch, “Near-infrared microcavities confined by two dimensional photonic bandgap crystals,” Electron. Lett. 35(3), 228 (1999).
[Crossref]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref]

Lee, Y. H.

S. H. Kim, H. Y. Ryu, H. G. Park, G. H. Kim, Y. S. Choi, Y. H. Lee, and J. S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[Crossref]

Lee, Y.-H.

Letartre, X.

Li, X.

X. Ge, M. Minkov, S. Fan, X. Li, and W. Zhou, “Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling,” Appl. Phys. Lett. 112(14), 141105 (2018).
[Crossref]

Li, Y.-J.

Lidorikis, E.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref]

Lin, Y.

S. Hassan, K. Alnasser, and Y. Lin, “Effects of Photonic Band Structure and Unit Super-Cell Size in Graded Photonic Super-Crystal on Broadband Light Absorption in Silicon,” Photonics 6(2), 50 (2019).
[Crossref]

S. Hassan, O. Sale, D. Lowell, N. Hurley, and Y. Lin, “Holographic fabrication and optical property of graded photonic super-crystals with a rectangular unit super-cell,” Photonics 5(4), 34 (2018).
[Crossref]

D. Lowell, S. Hassan, O. Sale, M. Adewole, N. Hurley, U. Philipose, B. Chen, and Y. Lin, “Holographic fabrication of graded photonic super-quasi-crystal with multiple level gradients,” Appl. Opt. 57(22), 6598 (2018).
[Crossref]

D. Lowell, S. Hassan, M. Adewole, U. Philipose, B. Chen, and Y. Lin, “Holographic fabrication of graded photonic super-crystals using an integrated spatial light modulator and reflective optical element laser projection system,” Appl. Opt. 56(36), 9888 (2017).
[Crossref]

D. Lowell, J. Lutkenhaus, D. George, U. Philipose, B. Chen, and Y. Lin, “Simultaneous direct holographic fabrication of photonic cavity and graded photonic lattice with dual periodicity, dual basis, and dual symmetry,” Opt. Express 25(13), 14444 (2017).
[Crossref]

S. Hassan, D. Lowell, and Y. Lin, “High light extraction efficiency in organic light-emitting diodes by patterning the cathode in graded superlattice with dual periodicity and dual basis,” J. Appl. Phys. 121(23), 233104 (2017).
[Crossref]

Lin, Yuankun

Oliver Sale, Safaa Hassan, Noah Hurley, Khadijah Alnasser, Usha Philipose, Hualiang Zhang, and Yuankun Lin, “Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics,” Frontiers of Optoelectronics (in press).

Liu, L.

W. Zhou, D. Zhao, Y. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. Seo, K. Wang, L. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17(19), 16745–16749 (2009).
[Crossref]

Liu, S.

W. Zhou, S. Liu, X. Ge, D. Zhao, H. Yang, C. Reuterskiöld-Hedlund, and M. Hammar, “On-Chip Photonic Crystal Surface-Emitting Membrane Lasers (Invited),” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

Loncar, M.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[Crossref]

Long, C. M.

Lowell, D.

Luo, X.

Lutkenhaus, J.

Ma, Z.

W. Zhou, D. Zhao, Y. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. Seo, K. Wang, L. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Mandelshtam, V. A.

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys. 107(17), 6756–6769 (1997).
[Crossref]

Mandrus, D. G.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, and J. Vuckovic, “Arka Majumdar9 & Xiaodong Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Meade, Robert D.

John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, and Robert D. Meade, Photonic Crystals: Molding the Flow of Light (2 edition) (Princeton University Press).

Minkov, M.

X. Ge, M. Minkov, S. Fan, X. Li, and W. Zhou, “Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling,” Appl. Phys. Lett. 112(14), 141105 (2018).
[Crossref]

Nedel, P.

Noda, S.

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (∼ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

Nomura, M.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref]

Oesterle, U.

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdré, R. De La Rue, and C. Weisbuch, “Near-infrared microcavities confined by two dimensional photonic bandgap crystals,” Electron. Lett. 35(3), 228 (1999).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref]

Park, H. G.

S. H. Kim, H. Y. Ryu, H. G. Park, G. H. Kim, Y. S. Choi, Y. H. Lee, and J. S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[Crossref]

Parto, M.

M. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. Christodoulides, and M. Khajavikha, “Topological insulator laser: Experiments,” Science 359(6381), eaar4005 (2018).
[Crossref]

Philipose, U.

Philipose, Usha

Oliver Sale, Safaa Hassan, Noah Hurley, Khadijah Alnasser, Usha Philipose, Hualiang Zhang, and Yuankun Lin, “Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics,” Frontiers of Optoelectronics (in press).

Qi, M.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref]

Qiu, Y.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[Crossref]

Rahmani, A.

Rakich, P. T.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref]

Ren, J.

M. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. Christodoulides, and M. Khajavikha, “Topological insulator laser: Experiments,” Science 359(6381), eaar4005 (2018).
[Crossref]

Reuterskiöld-Hedlund, C.

W. Zhou, S. Liu, X. Ge, D. Zhao, H. Yang, C. Reuterskiöld-Hedlund, and M. Hammar, “On-Chip Photonic Crystal Surface-Emitting Membrane Lasers (Invited),” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

Rojo-Romeo, P.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Ryu, H. Y.

S. H. Kim, H. Y. Ryu, H. G. Park, G. H. Kim, Y. S. Choi, Y. H. Lee, and J. S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[Crossref]

Sale, O.

S. Hassan, O. Sale, D. Lowell, N. Hurley, and Y. Lin, “Holographic fabrication and optical property of graded photonic super-crystals with a rectangular unit super-cell,” Photonics 5(4), 34 (2018).
[Crossref]

D. Lowell, S. Hassan, O. Sale, M. Adewole, N. Hurley, U. Philipose, B. Chen, and Y. Lin, “Holographic fabrication of graded photonic super-quasi-crystal with multiple level gradients,” Appl. Opt. 57(22), 6598 (2018).
[Crossref]

Sale, Oliver

Oliver Sale, Safaa Hassan, Noah Hurley, Khadijah Alnasser, Usha Philipose, Hualiang Zhang, and Yuankun Lin, “Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics,” Frontiers of Optoelectronics (in press).

Schaibley, J. R.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, and J. Vuckovic, “Arka Majumdar9 & Xiaodong Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Scherer, A.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref]

Seassal, C.

Segev, M.

M. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. Christodoulides, and M. Khajavikha, “Topological insulator laser: Experiments,” Science 359(6381), eaar4005 (2018).
[Crossref]

Seo, J.

W. Zhou, D. Zhao, Y. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. Seo, K. Wang, L. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Shuai, Y.

W. Zhou, D. Zhao, Y. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. Seo, K. Wang, L. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Smith, C.

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdré, R. De La Rue, and C. Weisbuch, “Near-infrared microcavities confined by two dimensional photonic bandgap crystals,” Electron. Lett. 35(3), 228 (1999).
[Crossref]

Smith, H. I.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref]

Soljacic, M.

C. Hsu, B. Zhen, A. Stone, J. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Song, B. S.

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (∼ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

Soref, R.

Steel, M.

Stone, A.

C. Hsu, B. Zhen, A. Stone, J. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Tandaechanurat, A.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Taylor, H. S.

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys. 107(17), 6756–6769 (1997).
[Crossref]

Viktorovitch, P.

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett. 80(5), 960–963 (1998).
[Crossref]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Vuckovic, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, and J. Vuckovic, “Arka Majumdar9 & Xiaodong Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

H. Altug and J. Vuckovic, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett. 84(2), 161–163 (2004).
[Crossref]

Wang, K.

W. Zhou, D. Zhao, Y. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. Seo, K. Wang, L. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Weisbuch, C.

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdré, R. De La Rue, and C. Weisbuch, “Near-infrared microcavities confined by two dimensional photonic bandgap crystals,” Electron. Lett. 35(3), 228 (1999).
[Crossref]

Winn, Joshua N.

John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, and Robert D. Meade, Photonic Crystals: Molding the Flow of Light (2 edition) (Princeton University Press).

Wittek, S.

M. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. Christodoulides, and M. Khajavikha, “Topological insulator laser: Experiments,” Science 359(6381), eaar4005 (2018).
[Crossref]

Wu, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, and J. Vuckovic, “Arka Majumdar9 & Xiaodong Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Yan, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, and J. Vuckovic, “Arka Majumdar9 & Xiaodong Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Yang, H.

W. Zhou, S. Liu, X. Ge, D. Zhao, H. Yang, C. Reuterskiöld-Hedlund, and M. Hammar, “On-Chip Photonic Crystal Surface-Emitting Membrane Lasers (Invited),” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

W. Zhou, D. Zhao, Y. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. Seo, K. Wang, L. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Yao, W.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, and J. Vuckovic, “Arka Majumdar9 & Xiaodong Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref]

Yoshie, T.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[Crossref]

Zhang, B.

Zhang, Hualiang

Oliver Sale, Safaa Hassan, Noah Hurley, Khadijah Alnasser, Usha Philipose, Hualiang Zhang, and Yuankun Lin, “Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics,” Frontiers of Optoelectronics (in press).

Zhao, D.

W. Zhou, S. Liu, X. Ge, D. Zhao, H. Yang, C. Reuterskiöld-Hedlund, and M. Hammar, “On-Chip Photonic Crystal Surface-Emitting Membrane Lasers (Invited),” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

W. Zhou, D. Zhao, Y. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. Seo, K. Wang, L. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Zhao, Z.

Zhen, B.

C. Hsu, B. Zhen, A. Stone, J. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Zhou, W.

W. Zhou, S. Liu, X. Ge, D. Zhao, H. Yang, C. Reuterskiöld-Hedlund, and M. Hammar, “On-Chip Photonic Crystal Surface-Emitting Membrane Lasers (Invited),” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

X. Ge, M. Minkov, S. Fan, X. Li, and W. Zhou, “Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling,” Appl. Phys. Lett. 112(14), 141105 (2018).
[Crossref]

W. Zhou, D. Zhao, Y. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. Seo, K. Wang, L. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
[Crossref]

S. H. Kim, H. Y. Ryu, H. G. Park, G. H. Kim, Y. S. Choi, Y. H. Lee, and J. S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002).
[Crossref]

H. Altug and J. Vuckovic, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett. 84(2), 161–163 (2004).
[Crossref]

X. Ge, M. Minkov, S. Fan, X. Li, and W. Zhou, “Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling,” Appl. Phys. Lett. 112(14), 141105 (2018).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Electron. Lett. (1)

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdré, R. De La Rue, and C. Weisbuch, “Near-infrared microcavities confined by two dimensional photonic bandgap crystals,” Electron. Lett. 35(3), 228 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Zhou, S. Liu, X. Ge, D. Zhao, H. Yang, C. Reuterskiöld-Hedlund, and M. Hammar, “On-Chip Photonic Crystal Surface-Emitting Membrane Lasers (Invited),” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

J. Appl. Phys. (1)

S. Hassan, D. Lowell, and Y. Lin, “High light extraction efficiency in organic light-emitting diodes by patterning the cathode in graded superlattice with dual periodicity and dual basis,” J. Appl. Phys. 121(23), 233104 (2017).
[Crossref]

J. Chem. Phys. (1)

V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys. 107(17), 6756–6769 (1997).
[Crossref]

Nat. Photonics (1)

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Nat. Rev. Mater. (1)

C. Hsu, B. Zhen, A. Stone, J. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Nature (4)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, and J. Vuckovic, “Arka Majumdar9 & Xiaodong Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Opt. Express (9)

D. Lowell, J. Lutkenhaus, D. George, U. Philipose, B. Chen, and Y. Lin, “Simultaneous direct holographic fabrication of photonic cavity and graded photonic lattice with dual periodicity, dual basis, and dual symmetry,” Opt. Express 25(13), 14444 (2017).
[Crossref]

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[Crossref]

S.-H. Kwon, S.-H. Kim, S.-K. Kim, Y.-H. Lee, and S.-B. Kim, “Small, low-loss heterogeneous photonic bandedge laser,” Opt. Express 12(22), 5356 (2004).
[Crossref]

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (∼ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[Crossref]

F. Bordas, M. Steel, C. Seassal, and A. Rahmani, “Confinement of band-edge modes in a photonic crystal slab,” Opt. Express 15(17), 10890 (2007).
[Crossref]

L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letartre, and P. Viktorovitch, “Slow Bloch mode confinement in 2D photonic crystals for surface operating devices,” Opt. Express 16(5), 3136 (2008).
[Crossref]

A. V. Giannopoulos, Y.-J. Li, C. M. Long, J.-M. Jin, and K. D. Choquette, “Optical properties of photonic crystal heterostructure cavity lasers,” Opt. Express 17(7), 5379 (2009).
[Crossref]

C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17(19), 16745–16749 (2009).
[Crossref]

P. Nedel, X. Letartre, C. Seassal, A. Auffèves, L. Ferrier, E. Drouard, A. Rahmani, and P. Viktorovitch, “Design and investigation of surface addressable photonic crystal cavity confined band edge modes for quantum photonic devices,” Opt. Express 19(6), 5014 (2011).
[Crossref]

Opt. Lett. (1)

Photonics (2)

S. Hassan, K. Alnasser, and Y. Lin, “Effects of Photonic Band Structure and Unit Super-Cell Size in Graded Photonic Super-Crystal on Broadband Light Absorption in Silicon,” Photonics 6(2), 50 (2019).
[Crossref]

S. Hassan, O. Sale, D. Lowell, N. Hurley, and Y. Lin, “Holographic fabrication and optical property of graded photonic super-crystals with a rectangular unit super-cell,” Photonics 5(4), 34 (2018).
[Crossref]

Phys. Rev. Lett. (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett. 80(5), 960–963 (1998).
[Crossref]

Prog. Quantum Electron. (1)

W. Zhou, D. Zhao, Y. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. Seo, K. Wang, L. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Science (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref]

M. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. Christodoulides, and M. Khajavikha, “Topological insulator laser: Experiments,” Science 359(6381), eaar4005 (2018).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

M. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Other (2)

Oliver Sale, Safaa Hassan, Noah Hurley, Khadijah Alnasser, Usha Philipose, Hualiang Zhang, and Yuankun Lin, “Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics,” Frontiers of Optoelectronics (in press).

John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, and Robert D. Meade, Photonic Crystals: Molding the Flow of Light (2 edition) (Princeton University Press).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Interference pattern as an input for the simulation of photonic band structure of the GPSCs; (b) Simulated photonic band gap for TE mode for the near-uniform region in purple squares in (a) using MIT MPB program; (c) Simulated photonic band gaps for TE mode for the graded region in red squares in (a) using MIT MPB program. (d) Simulated photonic band gaps for TE mode for the graded region in red squares in (a) in 3D GPSC using the MIT MEEP program. A thickness of one lattice constant was used for the GPSC. a-insert shows a cross-section of binary dielectric distribution from the graded region in (a). bcd-insert shows the high-symmetry points in the Brillouin zone that are labeled in the x-axis in (b-c). a-insert2 shows the eight beam configuration and interfering angles.
Fig. 2.
Fig. 2. (a) Interference pattern for the 4-fold (8 graded regions) GPSC with a unit cell size of 18a×18a. (b) Simulated photonic band structure of the GPSC with the unit super-cell in (a) by setting the threshold intensity Ith=26%Imax.
Fig. 3.
Fig. 3. (a-b) Simulated electric field distributions in eight side cavities (a/λ=0.35) and central cavity (a/λ=0.42), respectively, in the GPSC with a unit cell size of 24a×24a obtained from the interference pattern with a threshold intensity Ith=26%Imax. (c) Simulated electric field distributions in the central cavity at a frequency a/λ of 0.42 and a threshold intensity Ith=25%Imax. (d) Simulated electric field distributions for the boundary cavity at a frequency a/λ of 0.41 and a threshold intensity Ith=28%Imax. The insets in (a) and (c) show Q-factors for side cavities and central cavity, respectively.
Fig. 4.
Fig. 4. (a) Transmission of normal incident light through the GPSC with a unit cell size of 18a×18a (a = 765 nm) for slab thicknesses of 527 nm (blue circles) and 600 nm (purple triangles). (b) Blue squares are for the plot of a/λ at the wavelength with the 20% transmission for the transmission dip for the periods of 350, 500 and 765 nm, respectively, for the on-resonance case. The purple triangles show transmission dip width at 40% for the off-resonance case. The thickness of the GPSC is 400 nm.
Fig. 5.
Fig. 5. Transmission of normal incident light through the GPSC with a unit cell size of 18a×18a (a = 350 nm) and a slab thickness of 242 nm with a dielectric constant of 12 (red circles) and with real and imaginary refractive index (blue squares).